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ABSTRACT

Introduction: Deep learning (DL) has been
widely used to estimate clinical images. The
objective of this project was to create DL models
to predict the early postoperative visual acuity
after small-incision lenticule extraction (SMILE)
surgery.
Methods: We enrolled three independent
patient cohorts (a retrospective cohort and two
prospective SMILE cohorts) who underwent the
SMILE refractive correction procedure at two
different refractive surgery centers from July to
September 2022. The medical records and sur-
gical videos were collected for further analysis.
Based on the uncorrected visual acuity (UCVA)

at 24 h postsurgery, the eyes were divided into
two groups: those showing good recovery and
those showing poor recovery. We then trained a
DL model (Resnet50) to predict eyes with early
postoperative visual acuity of patients in the
retrospective cohort who had undergone SMILE
surgery from surgical videos and subsequently
validated the model’s performance in the two
prospective cohorts. Finally, Gradient-weighted
Class Activation Mapping (Grad-CAM) was
performed for interpretation of the model.
Results: Among the 318 eyes (159 patients)
enrolled in the study, 10,176 good quality
femtosecond laser scanning images were
obtained from the surgical videos. We observed
that the developed DL model achieved a high
accuracy of 96% for image prediction. The area
under the curve (AUC) value of the DL model in
the retrospective cohort was 0.962 and 0.998 in
the training and validation datasets, respec-
tively. The AUC values in two prospective
cohorts were 0.959 and 0.936. At the video
level, the trained machine learning (ML) model
(XGBoost) also accurately distinguished
patients with good or poor recovery. The AUC
value of the ML model was 0.998 and 0.889 in
the retrospective cohort (training and test
datasets, respectively) and 1.000 and 0.984 in
the two prospective cohorts. We also trained a
DL model which can accurately distinguish
suction loss (100%), black spots (85%), and
opaque bubble layer (96%). The Grad-CAM
heatmap indicated that our models can
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recognize the area of scanning and precisely
identify intraoperative complications.
Conclusions: Our findings suggest that artificial
intelligence (DL and ML model) can accurately
predict the early postoperative visual acuity and
intraoperative complications after SMILE sur-
gery just using surgical videos or images, which
may display a great importance for artificial
intelligence in application of refractive
surgeries.

Keywords: Deep learning; Machine learning;
Prediction; Scanning images; SMILE

Key Summary Points

Why carry out this study?

With the application of deep learning and
the availability of massive numbers of
clinical images, there is a new opportunity
to evaluate old techniques for predicting
patient diagnosis and prognosis.

What was learned from the study?

We created an artificial intelligence
framework to predict early postoperative
visual acuity after SMILE surgery based on
surgical videos.

It is now feasible to accurately predict the
early postoperative visual acuity and
intraoperative complications after SMILE
surgery just using surgical videos or
images.

INTRODUCTION

Refractive error, the most prevalent cause of
correctable vision impairment, is expected to
affect over 6 billion individuals by 2050. Laser
correction of refractive error will become the
popular elective surgery performed worldwide
[1]. Small manual incision lenticule extraction
(SMILE) is a novel corneal refractive surgery that
is recently been developed for use in patients
with myopia and myopic astigmatism to correct

vision, becoming the first choice of treatment
for an increasing number of patients and oph-
thalmologists. As such, SMILE has become the
most mainstream refractive surgery, with the
advantages of minimal invasion, flapless, and
preservation of intact corneal morphology, and
provides faster healing of corneal nerve fiber,
better biomechanical strength, and a lower
incidence of dry eye [2]. Currently, over 2 mil-
lion myopic patients have undergone SMILE
surgery worldwide [3]. Although numerous
previous clinical studies have proven its’ safety,
effectiveness, predictability, and stability in
correcting refractive errors, a number of intra-
operative and postoperative complications have
been reported in different clinical outcomes [4].
Our group has observed that in the clinical
setting about 5% of SMILE patients experience
poor visual recovery on the first postoperative
day (\ 20/25). This is similar to the findings of
Chansue et al. [5] and Ganesh et al. [6], who
reported that about 90%-95% of patients’
uncorrected distance visual acuity was 20/20 on
the first day after SMILE. However, postopera-
tive visual acuity recovery is still an important
indicator for evaluation of laser vision correc-
tion, which is as important as the advantages of
the surgery itself, and is also closely associated
with patients’ satisfaction.

The surgical steps in SMILE divided into
three main steps: (1) femtosecond laser lentic-
ule construction; (2) lenticule separation; and
(3) lenticule extraction. Intraoperative compli-
cations may occur in each step. The lenticule
separation and extraction steps mainly depend
on the surgeon’s operative experience and sur-
gical skills. Consequently, there is a potential
for various intraoperative complications, such
as corneal cap perforation or incisional tear,
lenticule dissection difficulties, lenticule rem-
nant, bleeding, and partial centering, when the
surgeon is at the initial phase of the surgical
learning curve [7, 8]. With improvement in
surgical skills and the popularization of SMILE
surgical technology, such intraoperative com-
plications correlated with lenticule separation
and extraction will be largely avoided [9].
However, lenticule construction is completely
dependent on femtosecond laser scanning.
Femtosecond laser-related complications, such
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as suction loss, black spots, and opaque bubble
layer, inevitably affect the quality of intraoper-
ative femtosecond laser scanning. Conse-
quently, the poor quality of femtosecond laser
scanning will directly determine the level of
difficulty of lenticule separation and extraction,
as well as delaying postoperative visual recovery
[10].

Recent breakthroughs in artificial intelli-
gence (AI), particularly deep learning (DL), have
shown considerable promise for diagnosing a
number of prevalent diseases using clinical
images [11]. For example, machine and DL have
been widely conducted in image processing for
pathomics, radiomics and genomics [12]. With
the application of DL and the availability of
massive numbers of clinical images, there is a
new opportunity to evaluate old techniques for
predicting patient diagnosis and prognosis.
Therefore, in this study, we used a DL model to
identify SMILE scanning images and predict the
early postoperative visual acuity through
supervised learning.

METHODS

Selection Cohorts for SMILE Study

This is a retrospective–prospective paired eye-
control study that included a retrospective
SMILE cohort and two independent prospective
SMILE cohorts. The retrospective SMILE cohort
was consecutively recruited by the Refractive
Surgery Center of West China Hospital,
Chengdu, China from July 2022 to August
2022. Two independent prospective SMILE
cohorts were respectively collected by the
Refractive Surgery Center of West China
Hospital and Ophthalmic center, People’s
Hospital of Leshan, Leshan, China, from August
2022 to September 2022.

In this study, patients with myopia and
myopic astigmatism underwent a SMILE
refractive correction procedure performed by
two surgeons (Y-pD at Chengdu and JT at
Leshan). Both surgeons are the director of the
Refractive Surgery Center at their respective
hospitals and have[5 years of experience with
SMILE surgery, having completed [ 2000

procedures per year during this time period.
Preoperative baseline examinations of the
anterior and posterior segments were performed
on all patients. The inclusion criteria were: (1)
age [ 18 years but \ 45 years; (2) spherical
refraction\ - 10.00 D and myopic astigma-
tism B - 3.00 D; (3) corrected distance visual
acuity (CDVA) B 0 (LogMAR); (4) refractive
errors stable for at least 1 year and without any
corneal diseases before surgery; (5) central cor-
neal thickness (CCT) C 480 lm and residual
stromal thickness (RST) C 280 lm; and (6)
postoperative uncorrected visual acuity (UCVA)
after 24 h B 0.1 in one eye and[ 0.2 (logMAR)
in the other eye. The exclusion criteria were: (1)
patients who had anisometropia C 1.5 D; (2)
existing corneal epithelial damage after surgery;
and (3) patients retained myopia
postoperatively.

The study was carried out in accordance with
the principles of the 1964 Helsinki Declaration
and its later amendments and was approved by
the Ethics Committee of West China Hospital.
Before enrolling in the study, each subject pro-
vided written informed consent.

Surgical Procedure

Oxybuprocaine hydrochloride eye drop was
used as a topical anesthesia. The eye had been
sterilized and docked. For the SMILE process, a
500-kHz VisuMax femtosecond laser system
(Carl Zeiss Meditec, Jena, Germany) with an
energy of 130 nJ was employed. The following
scans were performed on the lenticule: spiral in
for the posterior plane, border, spiral out for the
anterior plane, and side cutting. The diameters
of the optical zone and corneal cap were
6.0–6.5 mm and 7.0–7.5 mm, respectively. The
corneal cap thickness was 120–130 lm. The eye
was undocked after the suction was released.
The lenticule was first separated at the anterior
surface, then split at the posterior surface with a
blunt spatula. Next, the lenticule was extracted
from the corneal stromal via a small incision.
The postoperative care included antibiotic and
topical steroid eye drops (0.1% tobramycin
dexamethasone [Alcon China Ophthalmic Pro-
duct Co., Ltd., Beijing, China]; 0.5%
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levofloxacin [Santen Pharmaceutical, Ikoma,
Nara, Japan]), which were prescribed 4 times a
day for 1 week. Also, artificial tears (0.1%
sodium hyaluronate) with no preservatives were
applied 6 times per day.

Scanning Images Acquired and Processing

Videos of SMILE procedures were acquired from
the VisuMax laser and then divided into a ‘good
visual outcome’ category (UCVA B 0.1) and a
‘poor visual outcome’ category (UCVA[ 0.2)
based on postoperative UCVA after 24 h. The
SMILE scanning images were then extracted
from the videos (1 image per 0.5 s). Taking into
account the large number of images acquired
from SMILE videos (usually 80–160 images per
video), we selected those images obtained from
the end of the posterior plane scanning to side
cutting for subsequent analysis. The number of
scanning images per video generally ranged
from 30 to 34. The eyes of the retrospective
SMILE cohort were divided into training and
validation datasets at random at a 7:3 ratio. The
training dataset was used for model building
and hyperparameter tuning, while the valida-
tion dataset was used to evaluate generalization
performance. Both data augmentation and
normalization were employed for the training
images, however only normalization was used
for validated images. In our investigation, we
used random affine modification and horizontal
patch flipping to enhance the data. After Z-score
normalization on RGB channels, the upgraded
images were center cropped to 224 9 224 pixels.
This simplified procedure is shown in Fig. 1.

DL: Feature Extraction and Screening

The videos for the retrospective SMILE cohort
were first cropped into scanning images and
trained as a DL Resnet50 model. We use a batch
size of 32 and default weight initialization. The
default optimizer was SGD with a learning rate
of 10-2 and L2 regularization of 10-5. We
trained the Resnet50 model for 50 epochs until
the validation loss failed to improve. During
image prediction, the Resnet50 model was used
to compute scanning image probability with

the video label. Because the videos consisted of
numerous scanning images, we aggregated the
likely scanning images into a probability map of
the video, which was then used to calculate the
features based on the image likelihood his-
togram. Moreover, we conducted principal
component analysis (PCA) to compress the
likelihood histogram into 24 DL features. Pear-
son correlation analysis was initially used to
eliminate redundant DL features. If the coeffi-
cient of two features was[ 0.9, one of the two
features was deleted. After that, LASSO-penal-
ized feature selection was used to identify the
most significant features. Then, seven classic
machine learning classifiers (Decision-Tree,
Extra-Tree, KNN, LightGBM, Random-Forest,
SVM, and XGBoost) combined with tenfold
cross-validation were applied to train models for
predicting each video’s classifications [13–15].
Two independent prospective SMILE cohorts
were processed in the same way to establish the
accuracy and robustness of the model in clinical
application.

Statistical Analysis

All statistical analyses were performed using R
(v 4.0.3) or Python (v 3.8.0) with installed
packages. Pytorch (v 1.10.1) in Python was used
to implement all DL frameworks. The machine
learning algorithms were run using Python’s
‘‘sklearn’’ package. Receiver operating charac-
teristic (ROC) curves and area under the curve
(AUC) values were generated using the ‘‘pROC’’
package in R. The logarithm of the minimum
angle of resolution (logMAR) units were used in
the statistical analysis for visual acuity. Con-
tinuous variables were described using the
mean ± standard deviation (SD) or median
with interquartile ranges (IQR), and the cate-
gorical variables were described using frequen-
cies. The correlation test was evaluated using
Pearson coefficients. The Wilcoxon test was
used to compare two groups, while the
Kruskal–Wallis test was used to compare more
than two groups. The Chi-square test was per-
formed to evaluate the associations between
cohorts and clinicopathological traits.
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RESULTS

Study Cohorts

A total of 216 eyes from 113 patients (84 male
and 137 female) met our selected criteria and
were included in the retrospective SMILE
cohort. The median age of the subjects was 27.5
(IQR 22–32) years. Preoperative sphere was -

5.00 D (IQR - 6.00 to - 4.00 D) and the
cylinder was - 0.50 D (IQR - 1.00 to - 0.25
D). Preoperative corneal thickness was 539 mm
(IQR 519–554 mm), and keratometric 1 (K1)
power was 42.85 D (IQR 42.00–43.58 D). The
two prospective SMILE cohorts consisted of 48
eyes from 24 individuals (19 male and 29
female) and 54 eyes from 27 individuals (30
male and 24 female), respectively. The baseline
characteristics of all patients according to
cohort are given in Table 1.

Performance of Scanning Image Classifier

The scanning image classifier was constructed
in the training dataset and validated in the
validation dataset of the retrospective SMILE

cohort (training:validation datasets ratio: 7:3)
(Table 2). Construction of this image classifier
consisted of two steps: image prediction and
video prediction. To summarize, the SMILE
procedure video was first limited from the
completed posterior plane scanning to side
cutting, following which the SMILE video was
cropped into scanning images, which were then
sent into a DL model (Resnet50) to predict
postoperative visual acuity status at the level of
the images. Secondly, a histogram of scanning
image probability was utilized to merge many
likely images into a probability matrix of the
video. To unify the scanning features of the
SMILE video, we performed PCA to compress
the probability matrix into 24 DL features.
Finally, based on the DL features, we used var-
ious machine learning methods to determine
the visual acuity of the patient post-surgery.

The performance of the scanning image
classifier was evaluated by using the validation
dataset in the retrospective SMILE cohort. We
found that with increasing number of training
iterations, the training accuracy converged near
90% at the first 4000 iterations (Fig. 2a). The
confusion matrix illustrated that the Resnet50
model achieved a high accuracy of 96%

Fig. 1 Analytic workflow in our current investigation.
KNN K-Nearest Neighbor, machine learning algorithm,
PCA principal component analysis, Resnet50 50-layer
convolutional neural network, SVM support vector

machine, XGBoost Extreme Gradient Boosting machine
learning library

Ophthalmol Ther (2023) 12:1263–1279 1267



Table 1 Preoperative and interoperative clinical information of eyes by cohort

Baseline clinical and
demographic patient data

Study cohorts p Statistical test

Retrospective
cohort

Prospective cohort
1

Prospective cohort
2

Eyes, n 226 48 54

Age, years 27.50 [22.00,

32.00]

28.00 [20.00,

34.00]

19.00 [18.00,

21.00]

0 Kruskal–Wallis

test

Sex, n (%) 0.09 Chi-square test

Female 137 (60.6) 29 (60.4) 24 (44.4)

Male 89 (39.4) 19 (39.6) 30 (55.6)

Sphere, D - 5.00

[ - 6.00,

- 4.00]

- 4.75

[- 5.56, - 3.94]

- 4.69

[- 5.75, - 2.75]

0.18 Kruskal–Wallis

test

Cylinder, D -0.50 [ - 1.00,

- 0.25]

- 0.62

[- 1.00, - 0.25]

- 1.25

[- 1.69, - 0.75]

0 Kruskal–Wallis

test

K1 power, D 42.85 [42.00,

43.58]

43.05 [41.60,

44.00]

42.30 [41.12,

43.00]

0.01 Kruskal–Wallis

test

K2 power, D 43.90 [42.90,

44.70]

44.10 [42.98,

45.32]

43.90 [42.47,

45.08]

0.55 Kruskal–Wallis

test

Axial length 25.19 [24.73,

25.82]

25.13 [24.55,

25.83]

25.70 [25.05,

26.17]

0.02 Kruskal–Wallis

test

Corneal thickness, lm 539.00 [519.00,

554.00]

544.50 [522.75,

560.50]

546.50 [537.00,

566.50]

0.01 Kruskal–Wallis

test

Cornea diameter, mm 11.60 [11.40,

11.80]

11.65 [11.40,

11.90]

11.60 [11.43,

11.80]

0.36 Kruskal–Wallis

test

IOP, mmHg 15.50 [13.80,

17.28]

15.70 [14.55,

17.60]

17.00 [15.00,

19.00]

0.01 Kruskal–Wallis

test

Suction time, mm 29.00 [28.00,

29.00]

29.00 [28.75,

29.00]

29.00 [28.00,

29.00]

0.11 Kruskal–Wallis

test

Cap thickness, lm 120.00 [120.00,

120.00]

120.00 [120.00,

120.00]

120.00 [120.00,

127.50]

0 Kruskal–Wallis

test

Cap diameter, mm 7.50 [7.40, 7.50] 7.50 [7.50, 7.50] 7.50 [7.50, 7.50] 0.1 Kruskal–Wallis

test

Optical zone, mm 6.50 [6.40, 6.50] 6.50 [6.50, 6.50] 6.50 [6.50, 6.50] 0.05 Kruskal–Wallis

test

RST 307.00 [289.00,

324.00]

307.50 [289.75,

325.00]

329.00 [297.50,

346.50]

0.01 Kruskal–Wallis

test

Suction loss, n (%) 0.54 Chi-square test
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(Fig. 2b). The ROC curve and precision-recall
curve showed that our model manifested an
extraordinary performance in the training
dataset (ROC-AUC [RAUC] = 0.962; precision-
recall AUC [PAUC] = 0.964; Fig. 2c) and valida-
tion dataset (RAUC = 0.998; PAUC = 0.999,
Fig. 2d). We used the two prospective SMILE
cohorts as external datasets to test the general-
ization ability and robustness of the model. The
ROC curve and precision-recall curve suggested
that our model also performed well in the two
prospective SMILE cohorts (RAUC and
PAUC[0.9; Fig. 2e, f). Subsequently, we com-
pressed the histogram of image likelihood into
24 DL features (Electronic Supplementary
Material [ESM] File 2). The Pearson correlation
analysis resulted in the retention of 24 DL fea-
tures for the LASSO-penalized feature selection.
We discovered that the LASSO model had the

lowest mean squared error (MSE) when the
penalization lambda was 0.039 (Fig. 3a). There
were six DL features with coefficients greater
than zero based on the lambda criteria (Fig. 3b).
Finally, the LASSO-penalized model revealed six
DL features, and their relative weight is shown
in Fig. 3c. The six DL features were then trans-
ferred to seven machine learning models and
evaluated using tenfold cross-validation. Based
on the AUC distribution of these seven machine
learning models, the SVM, XGBoost, and
LightGBM methods were observed to have the
highest values of AUC (Fig. 3d). The accuracy
distribution further indicated that XGBoost
manifested the best accuracy in the training and
test datasets among the seven machine learning
methods (Fig. 3e). Therefore, we selected the
XGBoost model for video prediction. The pre-
dict probabilities for samples in the training and

Table 1 continued

Baseline clinical and
demographic patient data

Study cohorts p Statistical test

Retrospective
cohort

Prospective cohort
1

Prospective cohort
2

No 224 (99.1) 47 (97.9) 54 (100.0)

Yes 2 (0.9) 1 (2.1) 0 (0.0)

OBL, n (%) 0.19 Chi-square test

No 202 (89.4) 40 (83.3) 51 (94.4)

Yes 24 (10.6) 8 (16.7) 3 (5.6)

BA, n (%) 0.25 Chi-square test

No 220 (97.3) 48 (100.0) 54 (100.0)

Yes 6 (2.7) 0 (0.0) 0 (0.0)

Postoperative sphere 0.04 [ - 0.50,

0.50]

- 0.15 [- 0.50,

0.25]

- 0.0 2[- 0.50,

0.37]

0.37 Kruskal–Wallis

test

Postoperative cylinder - 0.16 [ - 0.25,

0.75]

- 0.29

[- 0.50, - 0.25]

- 0.25

[- 0.50, - 0.14]

0.31 Kruskal–Wallis

test

Values in table are presented as the median with the interquartile range (IQR) in square brackets, or as a number with the
percentage in parentheses
BA Black areas, D dioptre,IOP intra-ocular pressure, IQR interquartile range, K keratometric, OBL opaque bubble layer,
RST residual stromal thickness
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Table 2 Clinical characteristics of the training and validation dataset in the retrospective cohort

Clinical characteristics Datasets p Statistical test

Training Validation

n 159 67

Age, years 29.00 [22.50, 32.00] 27.00 [21.50, 31.50] 0.52 Wilcox test

Sex, n (%) 0.08 Chi-square test

Female 90 (56.6) 47 (70.1)

Male 69 (43.4) 20 (29.9)

Sphere, D - 5.00 [- 5.75, - 4.00] - 5.25 [- 6.00, - 3.88] 0.33 Wilcox test

Cylinder, D - 0.50 [- 1.00, - 0.25] - 0.50 [- 0.75, - 0.25] 0.3 Wilcox test

K1, D 42.80 [42.00, 43.45] 43.00 [42.00, 43.70] 0.46 Wilcox test

K2, D 43.90 [42.90, 44.65] 43.80 [43.00, 44.95] 0.89 Wilcox test

Axial length 25.17 [24.74, 25.86] 25.21 [24.73, 25.74] 0.97 Wilcox test

Corneal thickness, lm 540.00 [519.50, 555.00] 535.00 [518.00, 551.50] 0.5 Wilcox test

Cornea diameter, mm 11.60 [11.40, 11.85] 11.60 [11.30, 11.75] 0.37 Wilcox test

IOP, mmHg 15.40 [14.10, 17.25] 15.50 [13.20, 17.20] 0.47 Wilcox test

Suction time, min 29.00 [28.00, 29.00] 29.00 [28.00, 29.00] 0.07 Wilcox test

Cap thickness, lm 120.00 [120.00, 120.00] 120.00 [120.00, 120.00] 0.05 Wilcox test

Cap diameter, mm 7.50 [7.40, 7.50] 7.50 [7.30, 7.50] 0.17 Wilcox test

Optical zone, mm 6.50 [6.40, 6.50] 6.50 [6.30, 6.50] 0.12 Wilcox test

RST 307.00 [290.00, 325.00] 307.00 [286.00, 321.00] 0.43 Wilcox test

Suction loss, n (%) 0.89 Chi-square test

No 157 (98.7) 67 (100.0)

Yes 2 (1.3) 0 (0.0)

OBL, n (%) 0.09 Chi-square test

No 138 (86.8) 64 (95.5)

Yes 21 (13.2) 3 (4.5)

BA, n (%) 0.8 Chi-square test

No 154 (96.9) 66 (98.5)

Yes 5 (3.1) 1 (1.5)

Values in table are presented as the median with the interquartile range (IQR) in square brackets, or as a number with the
percentage in parentheses
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Fig. 2 The deep learning (DL) model (Resnet50) for
image prediction. a Curve for accuracy distribution of
model training. b Confusion matrix of DL model. c The
receiver operating characteristic (ROC) curve and preci-
sion-recall curve in the training dataset of the retrospective
cohort. d The ROC curve and precision-recall curve in the
validation dataset of the retrospective cohort. e The ROC

curve and precision-recall curve for estimating the perfor-
mance of the model in one of the prospective cohorts.
f The ROC curve and precision-recall curve for estimating
the performance of the model in the second prospective
cohort. RAUC ROC-area under the curve, PAUC preci-
sion-recall AUC
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Fig. 3 Selection of the DL features. a Distribution of the
lowest mean squared error (MSE) with the associated
penalization lambda (k) value in the LASSO-penalized
model. b The selected criterion of k determine the LASSO
coefficient profiles of all DL features. c Bar plot of
coefficient profiles for the selected features in the LASSO-

penalized model. d Distribution of the AUCs of 7
machine learning classifiers (SVM, KNN, Decision-Tree,
Random-Forest, Extra-Tree, XGBoost, and LightGBM)
with tenfold cross-validation. e A accuracy distribution of
7 machine learning classifiers in the retrospective cohort
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test datasets were uncovered in Fig. 4a and b,
respectively. The AUC value of the XGBoost
model for the training dataset was 0.998 (95%
confidence interval [CI] 0.988–0.999) (Fig. 4c).
The AUC value of the XGBoost model for the
test dataset was 0.889 (95% CI 0.667–0.889)
(Fig. 4d). The AUC values (1.000 and 0.984) in
the two prospective SMILE cohorts (Fig. 4e, f)
suggested that our XGBoost model also per-
formed very well in terms of predicting in the
prospective cohorts.

Interpretation of Scanning Images

Gradient-weighted Class Activation Mapping
(Grad-CAM) was able to calculate the key
regions predicted by the model on the SMILE
scanning images and therefore was utilized to
visualize the heatmap of the model’s final con-
volutional layer, overlaying it on the original
images [16]. The red section that leads inwards
to the blue section is active, suggesting that the
model paid special attention to this region. We
observed that our model can precisely concen-
trate on areas of scanning (Fig. 5). Regarding
intraoperative complications, the model mainly
focused on the edge of the femtosecond laser
scanning for the opaque bubble layer (OBL),
whereas for black spots (BS) our model played
particular attention to the central area of the
femtosecond laser scanning (Fig. 6). Further-
more, we used Image-J software to calculate the
percentage of BS area in the femtosecond laser
scanning. The region of interest BS is visualized
in Fig. 6b. The Wilcoxon test determined that
the proportion of region of BS in the poor visual
group was larger than that in the good visual
group (Fig. 6b).

Distinguishing SMILE Intraoperative
Complications

The intraoperative complications which occur-
red during SMILE surgery include suction loss
(LS), OBL and BS. We first collected intraopera-
tive images that were associated with LS
(n = 120), OBL (n = 90), BS (n = 150), and nor-
mal scanning (Norm: n = 150). Subsequently,
we randomly split these images into training

and test sets at a 7:3 ratio and trained a Res-
net50 model for 50 epochs. Details on the
parameters (accuracy, AUC, sensitivity, speci-
ficity, positive predictive values, negative pre-
dictive values, [recision, recall) for assessment of
model are listed in ESM File 3. Grad-CAM was
applied to visualize the heatmap and superim-
posed on the four categories (Fig. 6c). The con-
fusion matrix heatmap illustrated that our
model was able to accurately distinguish LS
(100%), OBL (96%), BS (85%), and Norm (97%)
(Fig. 6c).

DISCUSSION

Following the encouraging outcomes of several
prospective trials on SMILE surgery and the
appearance of recent publications revealing that
the visual and refractive corrections achieved
with SMILE are comparable to those achieved
with femtosecond laser-assisted in situ ker-
atomileusis (FS-LASIK), SMILE refractive surgery
has grown in popularity [6, 17]. SMILE surgery
also achieves better biomechanical strength and
stability characteristics than FS-LASIK [18, 19].
However, a small proportion of patents who
have undergone SMILE surgery report delayed
visual acuity recovery postoperatively. This
delay appears to be particularly evident in
patients with similar refractive errors in eyes
that underwent SMILE refractive surgery, while
the postoperative visual acuity recovery in each
eye was totally different. To our knowledge, the
present study is the first to develop a DL model
for predicting the outcome of SMILE postoper-
ative visual acuity. The results of this work
reveal that the developed DL model can predict
images and videos with a high accuracy. It is
extensively used in clinical practice, allowing
every surgeon with a femtosecond laser scan-
ning image or video to acquire an estimated
prognosis of each patient.

The formation of the intrastromal lenticule
is essential for the safety and predictability of
the SMILE procedure [20]. Because the lenticule
is exclusively manufactured by the femtosecond
laser, femtosecond laser-related intraoperative
problems, such as BS and OBL, are unavoidable.
BS are defined as several scattered little black
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dots in the stroma for complete photo disrup-
tion following femtosecond laser; in contrast,
black areas or black islands occur as patchy or

strips formations. Due to the block of debris,
such as foreign bodies, secretions of meibo-
mian, and mucus of the conjunctival at the
interface, the black areas or black islands gen-
erally format at both the anterior and posterior
lenticule for incomplete photo disruption
[21–23]. In our work, we observed that BS
occurred in almost all SMILE videos, mainly in
the posterior lenticule. However, the incidence
of black areas in our study eyes was 2.7% (ESM
File 1). The incidence of BS determined in our
study differs greatly from that reported in earlier
studies, but the incidence of black areas is con-
sistent with earlier studies, ranging from 0.33%
to 11% [9, 24, 25]. Therefore, we believe that
the terms ‘black spots,’ ‘black areas,’ or ‘black
islands’ may not have been used consistently in
previous publications [26, 27].

Using the DL model, we can easily assess the
quality of femtosecond laser images and predict
the postoperative visual acuity at 24 h. To
visualize the attention mechanisms of DL, we
used the Grad-CAM heatmap to calculate the
key regions of the SMILE scanning images. The
heatmaps indicated that our model pays special
attention to the region of femtosecond laser
scanning (Fig. 5) and, in particular, to the active
region (blue color) where it pays more attention
to BS. Therefore, we calculated the percentage
of area occupied by black spots using Image-J
software and found that the size of BS ranged
from 20 to 100 pixels. Moreover, the area per-
centage of BS in the poor visual acuity group
(3.49 ± 1.08%) was larger than that in the good
visual acuity group (1.23 ± 0.68%). None of the
BS in our study were associated with difficulties
of intrastromal lenticule separation and extrac-
tion and did not lead to impairment of visual
outcomes. Hence, we recognized that the BS are
the tissue bridges between laser spots. This
phenomenon was indirectly confirmed by Lin
et al. who estimated the black areas of four
levels of low laser energy for SMILE surgery and
found that the lowest energy used had the lar-
gest area of BS [24]. The surface quality of
scanning may be mainly determined by two
factors: (1) the distance of laser spots and the
delivered energy of per pulse; and (2) tissue
reaction for photo disruption [28, 29]. The sur-
face becomes smoother when the laser spots

bFig. 4 The machine learning model (XGBoost) for video
prediction. a, b XGBoost model was used to calculate the
probabilities of patients in the training (a) and test
(b) dataset that was derived from the retrospective cohort.
Colored dots indicate each patient, with the difference
colors representing the different probability belonging to
the subclass. Red dots represent the probability of being in
the poor recovery group; blue dots represent the proba-
bility of being in the good recovery group. c ROC curve
and corresponding AUC value of the model in the training
dataset. d ROC curve and corresponding AUC value of
the model in the test dataset. e ROC curve for estimating
the performance of the model in 1 of the prospective
cohorts. f ROC curve for estimating the performance of
the model in the second prospective cohort

Fig. 5 The original femtosecond laser images and the
corresponding Gradient-weighted Class Activation Map-
ping (Grad-CAM) heatmaps highlight important regions
for the model prediction
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Fig. 6 Interpretation of scanning images. a Example
images for opaque bubble layer (OBL), black spots (BS)
and corresponding Grad-CAM heatmaps. b Quantitative
measurement for percentage area of BS. c Grad-CAM

heatmaps for interoperative complications, such as OBL,
BS and suction loss (SL), and the confusion matrix
heatmap of the model for distinguishing interoperative
complications. Norm Normal scanning
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adjoin more closer. The same spot distance of
4.5 mm and pulse frequency of 500 kHz were
utilized in our study. A lower femtosecond laser
energy may be inadequate to disturb the deep
corneal stroma and result in BS in the posterior
lenticule.

We also found that the poor scanning group
had a high incidence of OBL (12.6%) compared
to good scanning group (8.0%). The OBL all
occurred at the peripheral. Although OBL at the
edge of lenticule does not influence the final
visual outcome, their presence may make it
difficult to separate and extract the lenticule,
cause transient corneal edema and delay early
recovery of postoperative visual acuity [30–33].
The Grad-CAM heatmap suggested that our
developed DL model can accurately recognize
the position of OBL and make correct predic-
tions (Fig. 6a). The good performance of our
model for distinguishing OBL and BS led us to
speculate whether a Resnet50 model could be
trained to identify SMILE intraoperative com-
plications. The results shown here indicate that
the Resnet50 DL model also has a high accuracy
to distinguish intraoperative complications.
However, despite SMILE providing a promising
performance for the correction of myopia and
myopic astigmatism, intraoperative problems
are unavoidable. Therefore, our DL model can
timely and correctly remind the surgeon of the
correct management strategies for dealing with
intraoperative complications during the opera-
tion. The Grad-CAM heatmap also revealed
various features to be alert for regarding these
intraoperative complications, which may dis-
play a great importance for artificial intelligence
in the application of refractive surgeries.

Our study’s main limitation is the small
sample size and short follow-up period. How-
ever, in addition, this study only utilized SMILE
videos and did not make use of support from
other aspects, such as clinical records and other
physical examinations. As a result, we were
unable to perform multi-dimensional evalua-
tion, thus limiting the accuracy of the results in
real-world settings. Therefore, future research

should focus on expanding cohort size, pro-
longing the follow-up duration, and including
multimode data to increase the accuracy of the
DL models.

CONCLUSIONS

Overall, we created a DL model for predicting
the early visual outcomes based on SMILE
scanning images. Using these images, it is now
feasible to distinguish the intraoperative com-
plications of the SMILE procedure than has
been previously reported.
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