CORRECTION

Correction to: Digital Tools for the Self-Assessment of Visual Acuity: A Systematic Review

Janneau L. J. Claessens (D) · Judith R. Geuvers · Saskia M. Imhof · Robert P. L. Wisse (D)

Published online: July 31, 2021 © The Author(s) 2021

Correction to: Ophthalmol Ther https://doi.org/ 10.1007/s40123-021-00360-3

In Fig. 4 of this article, the 95%LoA are not properly visualized for three studies (Muijzer 2021, VA \leq 0.5 logMAR; Rosser 13 2001 [ETDRS] and Lim 2010 [ETDRS]); the figure should have appeared as shown below.

The original article has been corrected.

The original article can be found online at https://doi. org/10.1007/s40123-021-00360-3.

J. L. J. Claessens (🖂) S. M. Imhof · R. P. L. Wisse Department of Ophthalmology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GX Utrecht, The Netherlands e-mail: j.l.j.claessens@umcutrecht.nl

J. R. Geuvers Faculty of Medicine, Utrecht University, Utrecht, The Netherlands

	N	Name of the digital tool	Reference standard	T	Mean difference (95% LoA)
Overall measurement accuracy					
Zhang 2013	240	Eye Chart Pro	Tumbling E		• 0.02 [-0.14; 0.19]
Gounder 2014	122	EyeSnellen app	Snellen		0.00 [-0.17; 0.17]
Bastawrous 2015 (OD)	272	Peek Acuity	ETDRS		0.01 [-0.40; 0.42]
Bastawrous 2015 (OS)	272	Peek Acuity	ETDRS		• 0.03 [-0.33; 0.40]
Bastawrous 2015 (OD)	272	Peek Acuity	Snellen	•	-0.08 [-0.44; 0.28]
Bastawrous 2015 (OS)	272	Peek Acuity	Snellen		-0.07 [-0.55; 0.40]
Han 2019 (OD) Adolescent Chinese	50	Vision@Home	ETDRS tumbling E		0.01 [-0.23; 0.25]
Han 2019 (OS) Adolescent Chinese	50	Vision@Home	ETDRS tumbling E		0.01 [-0.27; 0.29]
Han 2019 (OD) Elderly Chinese	50	Vision@Home	ETDRS tumbling E	+	0.05 [-0.17; 0.27]
Han 2019 (OS) Elderly Chinese	50	Vision@Home	ETDRS tumbling E		0.06 [-0.23; 0.35]
Han 2019 (OD) Australian	63	Vision@Home	ETDRS tumbling E		• 0.10 [-0.20; 0.40]
Han 2019 (OS) Australian	63	Vision@Home	ETDRS tumbling E	1	0.08 [-0.16; 0.32]
Nik Azis 2019 (OD)	195	AAPOS Vision Screening	LEA symbols		0.02 [-0.18; 0.23]
Nik Azis 2019 (OS)	195	AAPOS Vision Screening	LEA symbols		• 0.03 [-0.19; 0.24]
Wisse 2019 (OD)	97	Easee	ETDRS	.	-0.07 [-0.54; 0.40]
Wisse 2019 (OS)	97	Easee	ETDRS		-0.06 [-0.49; 0.37]
Ansell 2020	24	Eye Chart	ETDRS	1 -	• 0.02 [-0.06; 0.10]
Tiraset 2021	295	Eye Chart	ETDRS		-0.01[-0.21;0.19]
Satgunam 2021	68	Peek Acuity	Tumbling E		0.01 [-0.27; 0.29]
Muijzer 2021	84	Easee	ETDRS		-0.01 [-0.63; 0.61]
Claessens 2021	98	Easee	Snellen		• 0.02 [-0.21; 0.26]
				1	
Subgroup analyses for different VA ranges				1	
Zhang 2013, VA < 1.0 logMAR	182	Eye Chart Pro	Tumbling E	I —	0.00 [-0.12; 0.12]
Zhang 2013, VA ≥ 1.0 logMAR	58	Eye Chart Pro	Tumbling E	i—	0.10 [-0.12; 0.31]
Wisse 2019, VA ≤ 0.5 logMAR	125	Easee	ETDRS		0.04 [-0.18; 0.26]
Wisse 2019, VA > 0.5 logMAR	64	Easee	ETDRS	• !	-0.26 [-0.77; 0.25]
Muijzer 2021, VA ≤ 0.5 logMAR	43	Easee	ETDRS		0.15 [-0.25; 0.55]
Muijzer 2021, VA > 0.5 logMAR	41	Easee	ETDRS		-0.20 [-0.82; 0.41]
hidger Lorr, we obstognish		20000	21010	i i	
Test-retest variability of logMAR charts				1	
Lovie-Kitchin 1988 (Bailey-Lovie)	115			I	0.02 [-0.14; 0.18]
Arditi 1993 (ETDRS)	78				0.04 [-0.05; 0.13]
VandenBosch 1997 (ETDRS)	70			_ _	-0.09 [-0.16; -0.02]
Rosser 2001 (ETDRS)	41				0.00 [-0.18; 0.18]
Hazel 2002 (ETDRS)	40				-0.12 [-0.26; 0.02]
Lim 2010 (ETDRS)	40			1	0.01 [-0.13; 0.15]
2010 (210(3)	40				0.01 [-0.13, 0.15]
Test-retest variability of Snellen charts					
Lovie-Kitchin 1988 (line assignment)	115				0.01 [-0.25; 0.26]
Rosser 2001 (line assignment)	41				-0.02 [-0.35; 0.31]
Rosser 2001 (single letter)	41 40				0.01 [-0.23; 0.25]
Lim 2010 (single letter)	40				0.05 [-0.13; 0.23]
				-0.6 -0.5 -0.4 -0.3 -0.2 -0.1	0 0.1 0.2 0.3 0.4 0.5
				0.0 0.0 0.4 0.0 0.2 0.1	

Fig. 4 Mean differences between distance visual acuity assessments (digital tool minus reference standard) and 95% limits of agreement in logMAR. Some articles reported separate comparisons per subgroup or per eye. The dashed lines represent \pm 0.15 logMAR, a difference

that has been suggested in literature to be clinically acceptable [20]. Abbreviations: *N* number of paired observations; 95% LoA 95% limits of agreement

OPEN ACCESS

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/bync/4.0/.