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ABSTRACT

Introduction: Keratoconus (KC) is a complex,
genetically heterogeneous, multifactorial
degenerative disorder that is accompanied by
corneal ectasia which usually progresses

asymmetrically. With an incidence of approxi-
mately 1 per 2000 and 2 cases per 100,000
population presenting annually, KC follows an
autosomal recessive or dominant pattern of
inheritance and is, apparently, associated with
genes that interact with environmental,
genetic, and/or other factors. This is an impor-
tant consideration in refractive surgery in the
case of familial KC, given the association of KC
with other genetic disorders and the imbalance
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between dizygotic twins. The present review
attempts to identify the genetic loci contribut-
ing to the different KC clinical presentations
and relate them to the common genetically
determined comorbidities associated with KC.
Methods: The PubMed, MEDLINE, Google
Scholar, and GeneCards databases were
screened for KC-related articles published in
English between January 2006 and November
2017. Keyword combinations of ‘‘keratoconus,’’
‘‘risk factor(s),’’ ‘‘genetics,’’ ‘‘genes,’’ ‘‘genetic
association(s),’’ and ‘‘cornea’’ were used. In total,
217 articles were retrieved and analyzed, with
greater weight placed on the more recent liter-
ature. Further bibliographic research based on
the 217 articles revealed another 124 relevant
articles that were included in this review. Using
the reviewed literature, an attempt was made to
correlate genes and genetic risk factors with KC
characteristics and genetically related comor-
bidities associated with KC based on genome-
wide association studies, family-based linkage
analysis, and candidate-gene approaches.
Results: An association matrix between known
KC-related genes and KC symptoms and/or
clinical signs together with an association
matrix between identified KC genes and genet-
ically related KC comorbidities/syndromes were
constructed.
Conclusion: Twenty-four genes were identified
as potential contributors to KC and 49 KC-re-
lated comorbidities/syndromes were found.
More than 85% of the known KC-related genes
are involved in glaucoma, Down syndrome,
connective tissue disorders, endothelial dystro-
phy, posterior polymorphous corneal dystro-
phy, and cataract.

Keywords: Keratoconus comorbidities;
Keratoconus genes; Keratoconus risk factors

INTRODUCTION

Keratoconus (KC) is a relatively common [1, 2]
bilateral [1, 3–21] corneal disease that is
accompanied by corneal ectasia [1, 3, 4, 6, 9,
10, 13–19, 21–46] which usually progresses
asymmetrically [1, 5, 9, 11–13, 15, 17–19, 30,
31, 33, 38, 39, 45]. Its main clinical

manifestation is thinning and protrusion of the
cornea [1, 2, 4–6, 10, 13–17, 19–22, 25–34, 36–44,
47–58], which assumes a conical shape [1, 2, 4,
13, 15–19, 27, 29–31, 33, 34, 36–40, 42, 44, 47,
48, 51, 55, 56, 58, 59]. These characteristics, even
in the absence of clinically manifest KC, are also
major risk factors for the condition [60, 61];
depending on the stage of the disease, KC pre-
sents with a variety of clinical manifestations
and combinations of these characteristics/clini-
cal signs [15, 55, 62]. KC is characterized by
refractive errors that include myopia and irreg-
ular astigmatism [1, 3–8, 10, 13, 15–22, 25–
28, 31, 32, 38–40, 42, 44–46, 50, 53, 57, 58, 63,
64], vision distortion, sensitivity to light, and
multiple images [13, 31, 50, 65]. It is accompa-
nied by a loss of visual acuity [1, 3–6, 13,
15–19, 22, 31, 35, 38–40, 44–47, 58, 66, 67]
because of the distortions of the corneal curva-
ture [1, 3–8, 10, 17–19, 21, 22, 31, 32, 38–42,
45, 46, 53, 58, 63, 64], which compromise its role
in vision by distorting the refraction of light and
its transmission onto the retina [1]. Corneal
changes in KC also include acute corneal edema
and scar formation [7, 8, 42, 45, 46], as in rare
cases keratoconus presents with a central dense
corneal stromal edema (hydrops) with linear
oblique Descemet’s tears (ruptures in Descemet’s
membrane), followed by corneal edema and
scarring [68]. Finally, KC is associated with
abnormal enzymatic activity within the cornea
[38, 69].

Given that KC is an insidious and irreversible
disease [70], it is vital to diagnose it as soon as
possible [8, 19], and to treat each patient on an
individual basis because of the unique nature of
the disease [8, 19].

The term ‘‘ectasia’’ has been broadly used by
ophthalmologists, vision scientists, and opto-
metrists to characterize different conditions that
affect the shape of the cornea. Keratoconus,
pellucid marginal degeneration (PMD), ker-
atoglobus, and post-refractive surgery progres-
sive corneal ectasia are ectatic diseases, while
keratoconus and PMD are different clinical pre-
sentations of the same basic disease process. In
contrast, Terrien marginal degeneration, dellen,
rheumatoid/autoimmune melts, and other sim-
ilar conditions are corneal thinning disorders.
Against this background, ectasia progression is
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considered to correspond to at least two of the
following three changes: an increase in the
steepness of the anterior corneal surface; an
increase in the steepness of the posterior corneal
surface; and a thinning or thickening of the
cornea upon transversing it from the periphery
to the thinnest point [71]. This means that there
is an average difference of 75 lm in the central
corneal thickness (CCT) between keratoconus
patients and normal controls [34].

METHOD

The present review is based on a search of the
PubMed, MEDLINE, Google Scholar, and Gen-
eCards databases for articles related to KC. The
keywords used were ‘‘keratoconus,’’ ‘‘risk fac-
tor(s),’’ ‘‘genetics,’’ ‘‘genes,’’ ‘‘genetic associa-
tion(s),’’ and ‘‘cornea,’’ as well as all relevant/
meaningful combinations of those terms. The
search focused on articles written in English
from January 2006 until November 2017. A
total of 217 articles were identified and
reviewed, and both the text and references in
each paper were analyzed. The analysis revealed
an additional 124 relevant articles, which were
also reviewed. The review is based on previously
conducted studies and does not contain any
studies with human participants or animals
performed by any of the authors. The aim of the
review is to summarize current research into the
genetics of KC. It also represents an attempt to
correlate genes and genetic risk factors with KC
characteristics and genetically related KC
comorbidities based on genome-wide associa-
tion studies, family-based linkage analysis, and
candidate-gene approaches.

DEMOGRAPHICS

The incidence of KC is approximately 1 per
2000 [1, 2, 4, 10, 32, 49, 51–53], while the
annual incidence of KC is estimated at 2 per
100,000 [1, 13, 15, 18]. However, estimates of its
incidence in the general population vary
widely, from 1/500 to 1/2000 per year
[1, 6, 29, 31, 33–35, 39]. The prevalence of KC is
estimated as between 8.8 and 54.5 per 100,000

[1, 13, 15, 18, 29, 59] and between 50 and 230
per 100,000 depending on ethnicity
[25, 27, 35, 40, 56, 58, 72] and the diagnostic
criteria used [1, 4, 53]. Its prevalence may rise
further as the use of new technologies permits
better and earlier diagnosis [2, 73].

The role of ethnicity is very important; there
is a sixfold increase in the incidence of KC in
Asians compared with Caucasians [74, 75]; its
incidence is 25/100,000 among Asians [72] but
only 3,3/100,000 in Caucasians [72], while dif-
ferences have been reported in the central cor-
neal thinning (CCT) distribution between Asian
and Caucasian patients [76]. Apart from the
differences between Asian and Caucasian
patients, the incidence of KC is greater in Indi-
ans than in Chinese or other ethnic groups
[27, 75, 77]. In the UK, the prevalence of KC in
Asian (Indian, Pakistani, and Bangladeshi) sub-
jects is 4.4–7.5 times greater than that in white
Caucasians, in line with the high prevalence of
KC in India [72, 75, 78] and the higher preva-
lence and incidence of keratoconus in Asian
populations in comparison to Caucasians
[72, 79]. Finally, KC appears earlier and is more
severe in Chinese patients [80], requiring cor-
neal grafting at an earlier age [81].

Among various other ethnicities, the preva-
lence of KC ranges from 0.3 per 100,000 in
Russia [78, 82] to 2300 per 100,000 in Central
India (0.0003–2.3%) [53, 78]. A relatively high
prevalence has been reported in Minnesota,
USA (0.054%) [2, 78] and in Jerusalem [78, 83].
Although the incidence of KC in Saudi Arabia is
20/100,000 (0.02%), its incidence and severity
in specific regions of Saudi Arabia (e.g., Asir
Province) are high, with an early onset and
more rapid progress to the severe disease stage
at a young age [78, 84]. Finally, worldwide
estimates range from 1/100,000 in the United
Kingdom to 2/100,000 in Minnesota (USA), 2.2/
100,000 in Finland, 2.5/100,000 in Hol-
land, and 50/100,000 in New Zealand [78].
Apparently, locations with a lot of sunshine and
hot weather such as India [53, 78] and the
Middle East [78, 84] tend to be associated with a
higher prevalence of keratoconus than locations
with cooler climates and less sunshine, such as
Finland [78, 85], Denmark [51, 78], Minnesota
[2, 78], Japan [78, 86], and Russia [78, 82].
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GROSS AND HISTOLOGICAL
PATHOLOGY

Frequent stimulation and/or damage to the
corneal epithelium contribute to the patho-
genesis of KC [87]. Several types of collagen are
reduced in KC epithelium and stroma. It has
been postulated that altered expression and/or
activity of lysyl oxidase, which plays a critical
role in the biogenesis of connective tissue,
weakens covalent bonds between the collagen
and elastin fibrils and leads to biomechanical
deterioration of the cornea [43, 88]. This
potentially accounts for abnormal microstruc-
tures detected in the keratoconus cone that
result in slippage, folding, and even rupture of
the anterior lamellae and to decreasing biome-
chanical strength during the progression of
keratoconus. Furthermore, these alterations
may encourage keratocyte activation and its
conversion into fibroblasts, and even myofi-
broblasts [43, 88].

Inflammatory and apoptotic pathways are
associated with KC [38, 44, 89, 90], and the
resulting imbalance between the enhanced
apoptosis and the proliferation of the corneal
epithelial cells [91] is thought to play a vital role
in the thinning of the cornea [38, 92]. Histo-
logically, 75% of the normal corneal stroma
thickness is lost [93], resulting in hypoplasia [6]
and extensive corneal distortion characterized
by severe decreases in the amount and distri-
bution of corneal collagen fibers [6, 43, 54, 58].
The collagen fibrils appear morphologically
normal but there is fragmentation of the
epithelial basement membrane. There are
membrane anomalies of the keratocytes, fibril-
lation, and disintegrations of Bowman’s mem-
brane, while electron microscopy reveals
degenerative changes in the basal epithelial
cells [14, 88].

Another feature is Vogt’s striae, which
appear as fine vertical (rarely horizontal) whit-
ish lines in the deep stroma and Descemet’s
membrane that can be observed in a slit-lamp
examination; they disappear on the application
of gentle pressure [1, 19, 25, 26, 56, 94, 95].
Other signs are anterior stromal scars, epithelial
nebulae, and increased visibility of corneal

nerves [1, 4, 6, 11, 12, 19, 42, 46, 53, 96, 97]. In
addition, iron deposits are frequently observed
on the basal layers of the corneal epithelium,
together with breaks in the continuity of Bow-
man’s layer [1, 5, 6, 19, 96, 97].

In the more severe cases, acute stromal
edema may develop, which causes breaks in
Descemet’s membrane and leads to aqueous
leakage (hydrops) [19, 56, 94] and, ultimately,
corneal scarring [19, 21, 27, 42, 45, 46, 62].

A V-shaped conformation of the lower lid
when the patient’s gaze is directed downwards,
which is due to corneal ectasia (Munson’s sign),
can contribute to the diagnosis of KC
[1, 6, 24, 26]. Other clinical signs that can
contribute to the diagnosis of KC are Rizzuti’s
sign and Charleaux’s sign [1, 26]. Also, the
scissoring of the retinoscopic reflex with a fully
dilated pupil can contribute to the diagnosis of
keratoconus [26, 98, 99].

NATURAL HISTORY

Although the onset of KC is a controversial
topic, most studies agree that KC appears in the
teens and early twenties and progresses until
the fourth decade of life [1, 6–8, 16, 18, 19,
27, 29, 31, 35, 44, 47, 48, 56, 100–103], and that
it occurs in all ethnicities [6, 10, 30, 40, 74,
104–106] without a male or female predomi-
nance [6, 30, 31, 104–106]. Other studies,
however, place its onset at an average age of
39.3 years [59], while others estimate the male/
female ratio at 1.7 [1]. Finally, differences
between populations in the biometric parame-
ters of the eyes are attributable to environ-
mental and interethnic factors [107, 108].

HERITABILITY

KC is a complex, genetically heterogeneous,
multifactorial degenerative disorder [1, 109–
114] with a sporadic distribution [1, 2, 104, 109,
115–117]. Reports indicate that proportions
ranging from 5–10% [2, 31, 39, 104] to 8–10%
[1, 29] or 14% [59], and even up to 23% of KC
patients have a family history of KC. It follows
an autosomal recessive or dominant pattern of
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inheritance [1, 35, 39, 104, 118–122]. In the
autosomal dominant pattern, there are many
phenotypes with incomplete penetrance
[39, 123]. In other words, there appears to be a
genetic predisposition for KC [39, 122, 124–
126], and the genes associated with KC interact
with environmental, genetic, and/or other fac-
tors [1, 6, 24, 39, 49, 67, 70, 99, 109, 120, 127–
129]. This underscores the potential role of
genetic factors in KC pathogenesis [72, 95,
125, 128, 130], which is an important consid-
eration in refractive surgery to treat familial KC
[130, 131], given the association of KC with
other genetic disorders and the imbalance
between dizygotic twins [59, 120, 127, 130,
132]. Indeed, the prevalence of KC is 3.34% in
first-degree relatives of KC patients (i.e., 15–67
times higher than that for the general popula-
tion [125]), while its concordance in monozy-
gotic twins adds strong support to the notion of
a genetic basis for KC [1, 124, 125, 133–135].

Another heritability-related issue is that of
increased corneal curvature. The heritability of
this trait has been reported to range between 60
and 95% [136–140]. The Beaver Dam Eye Study
(which included 715 individuals in 185 fami-
lies) estimated it at 95% [137], whereas the
Danish Twin Registry estimated it at 90% based
on a study of 114 pairs of twins [140]. It is
apparent that an increasing corneal curvature is
associated with various factors aside from
heredity, including age, gender, height, ethnic
background, geographical area, and environ-
mental conditions [120, 124, 136, 141–146],
and is influenced by both lifestyle and genetic
factors [63, 108, 141].

ASSOCIATIONS OF KC
WITH DIFFERENT COMORBIDITIES

The genetic etiology of KC is far from being
fully clarified, and the pathophysiological pro-
cesses involved are largely unknown
[24, 147–150]. Multifactorial interactions of KC
with environmental and genetic factors [1, 4,
6, 31, 56, 57, 104, 121, 123–125, 128, 132, 133,
148, 151–162] have already been mentioned.
The pathophysiology of keratoconus is likely to
include the following components: genetic

disorder, biochemical disorder, biomechanical
disorder, and environmental disorder [29].

KC has been associated with spring con-
junctivitis [163], contact lens use, atopic dis-
ease, UV light, and eye rubbing
[1, 31, 33, 104, 128, 151, 154, 156–160], while it
can be triggered by trauma [164]. KC is also
associated with several diseases, especially those
belonging to the atopic diathesis. Atopic disor-
ders affect up to one-third of the population in
developed countries. They affect several
epithelia, including the skin (atopic dermatitis,
AD), the respiratory tract (asthma, allergic
rhinitis), and the eye (allergic conjunctivitis).
Atopic diseases, especially AD, which is typi-
cally the first clinical manifestation of atopy,
have been associated with KC in several
uncontrolled studies with conflicting data
according to the type of patient recruitment
[29]. KC is also associated with a constellation
of genetic syndromes, including Down syn-
drome [32, 165–168], Marfan syndrome [169],
osteogenesis imperfecta [170], GAPO syndrome
[171], Ehlers–Danlos syndrome and its subtypes
[56, 57, 172, 173], Noonan syndrome, pigmen-
tary retinopathy [174], Leber congenital amau-
rosis (LCA) [57, 127, 175–178], Apert syndrome,
mitral valve prolapse [1, 4, 104, 115,
124, 128, 132, 133, 148, 151–153, 155, 161, 165
–167, 179, 180], congenital hip dysplasia [181],
Rieger syndrome [182], focal dermal hypoplasia
[183], Crouzon syndrome [184], floppy eyelid
syndrome [185], monosomy X (Turner syn-
drome), Bardet–Biedl syndrome, nail-patella
syndrome, ichthyosis, neurofibromatosis,
xeroderma pigmentosum, collagenosis, neuro-
cutaneous angiomatosis, pseudoxanthoma
elasticum, retinitis pigmentosa [104, 124, 174],
atopy, vernal keratoconjunctivitis [127, 165,
166, 176–180], and other noninflammatory
connective tissue disorders such as joint
hypermobility [1, 56, 167]. Finally, other disor-
ders associated with KC are cataracts, Avellino
corneal dystrophy, and granular corneal dys-
trophy, although there is a school of thought
which insists that KC is not a feature of any
specific syndrome but mostly an isolated ocular
disorder [147, 148, 186, 187].

KC therefore can be divided into three broad
categories: (a) KC associated with genetic
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disorders such as Down syndrome, neurofibro-
matosis, LCA, Turner syndrome, nail-patella
syndrome, etc.; (b) KC associated with eye rub-
bing, mitral valve prolapse, atopy, contact lens
use, LCA, and a positive family history; and
(c) isolated KC without any associations
[188–190].

THE ROLE OF GENETIC FACTORS
IN KC

Although the genetic etiology of diseases such
as age-related macular degeneration and pseu-
doexfoliative glaucoma is almost fully known
[191], much about heritable blinding diseases
such as primary open-angle glaucoma, KC, and
myopia is still unknown [191]. Observations
regarding KC heritability and the association of
KC with a multitude of genetic syndromes have
prompted a shift of focus to the genetic factors
involved in KC [95, 128]. A host of genetic
epidemiological data, segregation analyses, and
gene mapping studies have indicated that
genetic factors play a significant role
[95, 122, 124–126, 128], and many gene loci
and chromosomal regions associated with
familial KC have been mapped by linkage
analysis [104, 109, 114, 117–119, 121, 192–196],
especially in Caucasians, Australians, and Chi-
nese [51]. However, no specific genes have been
identified in these regions as yet
[118, 121, 192–196], and reports on differen-
tially expressed genes in KC patients are scarce
[197–200].

CCT meta-analysis of a sample of more than
20,000 individuals suggested that there are 27
CCT-associated loci [201]. Eleven SNPs showed
nominal associations with KC, while 6 had sig-
nificant associations after correcting for multi-
ple testing [70]. These 11 CCT-associated loci
were located 100 kb upstream [202, 203] of the
ZNF469 gene (zinc finger 469 gene; MIM
612078)—the gene most strongly associated
with CCT [76, 201, 204–209]. The SNPs
rs12447690 and rs9938149 [201] upstream of
the ZNF469 gene were also identified in Aus-
tralian, UK, Croatian, Scottish, Indian, Malay,
Caucasian, and Latino populations
[203, 205, 208], a finding that suggests the

involvement of these SNPs in CCT variation.
Studies from Australia and the UK revealed two
genome-wide significant signals at 16q24.2 and
13q14.1 in intragenic regions that influence the
genes ZNF469 and FOX01, respectively [210].
However, sequencing analysis of the gene
ZNF469 in patients with KC and high myopia
showed no significant variants [211].

Genome-wide association studies (GWASs)
and other studies have also associated KC with
more than 60 genes/loci, although the roles of
these genes/loci are inconclusive, as the repor-
ted associations were inconsistent across differ-
ent study cohorts. Among them are the genes
HGF (Hepatocyte Growth Factor, which has
well-established effects on epithelial cells), LOX
(a lysyl oxidase whose copper-dependent amine
oxidase activity functions in the crosslinking of
collagens and plays a significant role in collagen
chain trimerization), FOXO1 (a gene of the
forkhead family of transcription factors, the
specific function of which is yet to be deter-
mined, but which participates in the cytokine
signaling pathways in the immune system),
and FNDC3B (Fibronectin Type III Domain
Containing 3B). GWASs have also associated
KC with more than 150 polymorphisms
[70, 201, 212–214]. It should be noted, however,
that this number is inflated, and a significant
association with KC has only been proven for
some of them [70]. Thus, GWAS identified 7
genes/loci, including the LOX, FOXO1, HGF,
and FNDC3B genes and the 2q21.3, 3p26, and
19q13.3 loci [70]. Again, these associations dif-
fer from study to study, so their roles remain
uncertain [201, 212–214]. Moreover, the genetic
association profiles of sporadic and familial
keratoconus could be different [70]. For exam-
ple, GWASs of KC report that rs3735520, loca-
ted upstream of the HGF gene, is associated
with KC in American and Australian popula-
tions [213, 215]. In addition, a relation between
HGF and refractive error has been reported in
Caucasian and Han Chinese populations [216].
Other studies of KC families from Australia
report an association between the LOX variants
(rs10519694 and rs2956540) located at 5q23.2
and KC [196, 214]. Furthermore, there are
reports that rs3735520 in the promoter of HGF
and rs2956540 in LOX are associated with KC in
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the European population [35, 217]. In contrast,
a recent meta-analysis showed that there is no
significant association between KC and SNPs in
ten reportedly associated genes/loci, including
IL1A, IL1B, BIRC8, BHLHB2, LRRN1, KIF26B,
VSX1, PPP3CA, 3q26.2, and 12p13.3 [201].

Another focus of investigations of genetic
contributions to KC is their role in KC progres-
sion. This is a very complex subject because of
the genetic heterogeneity of KC [195]; many of
these studies focus on different chromosomal
loci, have moderate sample sizes, and have dif-
ficulties in localizing regions through linkage
[195]. Despite the lack of sufficient information
for selecting KC susceptibility genes [212],
GWASs are a very effective means for investi-
gating KC progression [218, 219]. Two other
GWASs, the Singapore Malay Eye Study (SiMES)
and the Singapore Indian Eye Study (SINDI),
reported two genetic regions (RXRA/COL5A1
and COL8A2) that are associated with central
corneal thinning in Asians. RXRA (Retinoid X
Receptor Alpha) is a protein coding gene with a
well-established association with keratoconus;
it participates in the apoptotic pathways in
synovial fibroblasts and in organelle biogenesis
and maintenance. COL5A1 encodes an alpha
chain and appears to regulate the assembly of
heterotypic fibers composed of both type I and
type V collagen. COL8A2 encodes the alpha 2
chain of type VIII collagen; this protein is a
major component of the basement membrane
of the corneal endothelium and forms homo- or
heterotrimers with alpha 1 (VIII)-type collagens.
Defects in this gene are associated with Fuchs
endothelial corneal dystrophy and posterior
polymorphous corneal dystrophy (PPCD) type 2
[220]. The SiMES and SINDI studies also agreed
with the results for Europeans regarding the role
of ZNF469 [206] (which encodes a zinc-finger
protein); it may function as a transcription
factor or extranuclear regulator factor for the
synthesis and/or organization of collagen fibers.
Mutations in this gene cause brittle cornea
syndrome.

Another GWAS, which used microarray
analysis of scraped-off epithelial tissue to com-
pare gene expression in normal corneal epithe-
lium with that from KC patients, identified 15
keratoconus-associated SNPs from 13 loci

[197–199, 221]. Other reports focus on the vital
role of apoptosis in KC corneal thinning
[38, 44, 200] or the associations between dif-
ferent SNPs and KC [24, 95, 166, 188,
201, 213, 222–230]. Meta-analysis revealed that
there is an association between KC and the SNP
rs4954218 located near RAB3GAP1, which
encodes the catalytic subunit of the RAB3GAP
enzyme (i.e., the RAB3GTPase-activating pro-
tein); this enzyme controls the exocytosis of
neurotransmitters and hormones and the RAB3
cycle [231]. Alterations in RAB3GAP1 are related
to the autosomal recessive Martsolf syndrome
and the Warburg Micro syndrome, which are
combined with ocular and neurodevelopmental
dysfunctions [221, 232].

SNPs and Loci Identification

Apart from the contributions of GWASs to
known KC-related gene identification, substan-
tial contributions to the clarification of the
genetics of KC have arisen from the identifica-
tion of relevant SNPs and loci. Five loci with six
independent SNPs associated with KC have
been reported, of which two have been con-
firmed in relation to KC risk in an independent
cohort of patients of European origin [233]:
rs1324183, upstream of the MPDZ gene (Multi-
ple PDZ Domain Crumbs Cell Polarity Complex
Component, which plays a role in nonsyn-
dromic autosomal recessive 2 hydrocephalus
and in congenital communicating hydro-
cephalus), and rs9938149, upstream of the
ZNF469 gene. It is not known if other SNPs
among those found in European patients are
relevant to the SNPs found in Asians [76].

Specific CCT SNPs associated with KC are
rs4894535 (FNDC3B), rs1324183 (MPDZ-NF1B),
rs1536482 (RXRA-COL5A1), rs7044529
(COL5A1), rs2721051 (FOXO1), and rs9938149
(BANP-ZNF469) [201]. Furthermore, linkage
analysis has shown that there are six chromo-
somal loci for isolated KC [201, 212]: 2p24,
3p14–q13, 5q14.3–q21.1, 13q32, 16q22.3–
q23.1, and 20q12. However, no other disease-
related mutation was identified for these loci
[53, 118, 148, 192–194]. Of those, the chromo-
somal regions 2p24, 3p14–q13, 5q14.3–q21.1,
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and 16q22.3–q23.1 were mapped by genome-
wide scans of various resolutions in family
studies, while the linkage between KC and locus
13q32 [148] was identified by linkage analysis.
Also, heterozygous nucleotide substitutions
were identified in c.2262A[C (exonic region of
DOCK9), in c.2377-132A[C (intronic region
of IPO5 which codes for a protein of the
important beta family involved in nucleocyto-
plasmic transport), and in c.1053 ? 29G[C
(STK24), showing 100% segregation with the
affected phenotype (in an Ecuadorian family)
[148]. It should be noted that the STK24 gene
encodes a serine/threonine protein kinase
which is cleaved into two chains by caspases;
the N-terminal fragment (MST3/N) translocates
to the nucleus and promotes programmed cell
death. Moreover, a Gln754His substitution (be-
cause of a variant c.2262A[C in DOCK9)
might negatively affect the VSX1 (Visual System
Homeobox 1)-coded protein function and
structure [233]. Meta-analysis studies, therefore,
have identified 8 SNPs in 6 genes/loci which are
thought to be significant genetic markers for KC
in whites, including FNDC3B rs4894535, BANP-
ZNF469 rs9938149, RXRA-COL5A1 rs1536482,
FOXO1 rs2721051, COL4A4 rs2228557 and
rs2229813, and IMMP2L rs214884 and rs757219
[70]. They have also identified 10 genes/loci
with suggestive evidence of associations with
keratoconus [70].

Regarding 3p14–q13 and 5q14–q21 men-
tioned above, and 15q22–q24 (which is also
involved in congenital cataract), a link has been
established with autosomal dominant forms of
KC [119, 195]. Moreover, the 2p24 locus has
been linked with KC in families from Europe
and the West Indies and the locus 16q22–q23
has been linked to KC in families from Finland
[118, 192, 194, 196]. It should be noted that
there are no references to these regions in other
populations [117].

Also, affected-only linkage analyses related
regions 4q31, 5q31, 9q34, 12p12, 14p11, 17q24,
and 20q12 to KC [31, 188, 193, 194, 222, 234].
Of these, locus 9q34 has been linked with KC in
families from Spain and locus 20q12 with KC in
families from Tasmania. In addition, a copy
number variation (deletion) of 5q31 has been
reported in a family with autosomal dominant

KC as well as in KC patients with other ocular
and developmental abnormalities [235].

In another study, a large four-generation
Caucasian pedigree was identified and the
responsible gene was subsequently mapped to a
novel 8.2 MB (megabases or million base pairs)
genomic region located at 5q14.3–q21.1 that
contains more than 50 known or predicted
genes [35, 196]. Further genotyping of tightly
spaced SNPs in the linkage region by the same
group resulted in the narrowing down of the
region to approximately 5mb (96mb–100mb)
[35, 121], though this locus still needs confir-
mation. The 5q31.1–q35.3 linkage region over-
laps with two of the other loci on 5q associated
with KC, namely with 5q31 in Caucasian/His-
panic populations and 5q32–q33 in Southern
Italian populations, supporting the possibility
that the 5q31.1–q35.3 locus might actually be
linked with KC [119, 236]. Similarly, SPARC
(Secreted Protein Acidic and Cysteine Rich
gene), which encodes a cysteine-rich acidic
matrix-associated protein involved in extracel-
lular matrix (ECM) synthesis [237] and the
promotion of changes to cell shape) and LOX,
which are located on 5q31.3–q32 and 5q23.2,
respectively, are indicated as candidate genes
for KC (linkage in familiar KC) [35, 121, 196].

SPECIFIC GENES INVOLVED
IN KERATOCONUS

Several genes from the chromosomal regions
COL6A1 (which encodes the alpha 1 subunit of
type VI collagen), SOD1 (which encodes a sol-
uble cytoplasmic protein which converts
superoxide radicals to molecular oxygen and
hydrogen peroxide), and COL8A1 (which
encodes one of the two alpha chains of type VIII
collagen, which is a major component of the
basement membrane of the corneal endothe-
lium) have been excluded as KC causal agents.
Also, only a few KC patients have been reported
to carry VSX1 mutations
[35, 188, 193, 194, 222, 224]. VSX1 mutations
cause PPCD and keratoconus (e.g., the SNP
rs6050307 in a Han Chinese population) [238].
However, studies into the role of VSX1 have
yielded conflicting results [149, 163, 176, 186,
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188, 239–241], while there are no definitive or
consistent findings about the roles of most
genes [104, 118, 119, 148, 166, 180,
188, 193, 199, 200, 242, 243].

Other genes that are associated with KC are
DOCK9 (Dedicator of Cytokinesis) and MIR184
(microRNA 184) [188, 228, 229, 239]. MIR184
regulates the VEGF and Akt signaling pathways,
and it can inhibit corneal angiogenesis; muta-
tions in the seed region of MIR184 cause
familial keratoconus with cataract, which is
known as EDICT syndrome.

THE VSX1 GENE

Despite the often conflicting results of studies
focusing on the role of VSX1 in KC, there are
many studies that report specifically on the
role of VSX1 in the pathogenesis of KC
[117, 121, 148–150, 153, 166, 186, 188, 195,
226, 228, 239–241, 244–254], as well as studies
focusing on both the VSX1 and SOD1 genes
[166, 188, 222, 239–241, 255], which are highly
conserved across many species [188–190].
Studies that failed to associate VSX1 with KC
[105, 148, 149, 166, 167, 186, 188, 190, 212,
241, 244, 245, 247, 250–252, 254, 256] most
likely did so because of ethnic variation, the low
frequency of changes, and the multifactorial
and polygenic character of KC [167]. The VSX1
gene plays a role in corneal wound repair in the
corneal stroma. This involves the development
of myofibroblasts by corneal stromal cells, and
is evidenced by the increased expression of
VSX1 during the process of wound healing and
abnormal stromal repair [257].

The VSX1 gene is located within chromo-
some 20p11–q11 [166] and encodes a protein
acting as a homeodomain transcription factor
which is responsible for cone opsin expression
during early ocular development and the dif-
ferentiation of cells in craniofacial development
[149, 249, 258–260]. Moreover, it is associated
with the core of the locus region that controls
the red-green visual pigment gene cluster [166].
It has also been observed that there are six
transcripts and five variants which encode a
truncated protein, while two of them retain the
DNA-binding domain [261]. The five exons of

VSX1 encode a protein consisting of 365 amino
acids with a homeobox DNA-binding domain, a
ceh-10 domain, and a Chx10/VSX1 domain
[166, 249, 262]. The mRNA from the VSX1 gene
is detected in embryonic craniofacial tissue, in
the inner layer of the retina, and in the cornea
[249, 257, 258]. Mutations in VSX1 trigger
developmental abnormalities in retinal cells,
craniofacial tissues, sella turcica, and in corneal
endothelium [253].

There are 5 exons in the VSX1 gene which
span 6.2 kb of the coding sequence
[247, 249, 258]. Other reports mention that the
exons of VSX1 span 6.7 kb of DNA on chro-
mosome 20 with two main transcripts; tran-
script 1 (NM_014588) encodes protein isoform
A (NP_199452.1) and transcript 2 (NM_199425)
encodes protein isoform B (NP_955457)
[252, 261]. Two more exons of VSX1 produce
four previously unknown VSX1 transcripts
[241, 249, 258, 261]. Therefore, VSX1 spans
10.65 kb of genomic DNA and has 7 exons pro-
ducing 6 transcripts (via different splicing pat-
terns). According to Genbank, these are
NM_199425 (or DQ854808), NM_014588 (or
DQ854807), DQ854809, DQ854810, DQ854811,
and DQ854812 [241, 249, 258, 261]. Exons 2, 3,
and 4 of VSX1 apparently have an increased
probability of being mutated [244]. Even so, not
all VSX1mutations are causally connected toKC.
Attempts to associate Q195H in VSX1 with KC
were unsuccessful [153].

Variants of VSX1 such as G160D, P247R,
L17P, G160V, N151S, D144E, H244R, L159M,
and R166W are possibly associated with KC
[153, 166, 248, 258]. For example, the G160D
variant is pathogenic while P247R is not
pathogenic [153, 166, 248, 258]; however,
P247R seems to co-segregate with KC [188].
There is also confusion about the role of the
D144E mutation in KC, as some studies men-
tion that it is pathogenic whereas others do not
[188, 248, 251, 252]. In addition, the variants
H244R, L159M, and R166W are not considered
sufficient to cause KC, although they have been
identified in KC patients [240]. Also, the roles of
mutations of H244R, L159M, and R166W in
VSX1 in KC [166], as well as the role of the
mutation of D144E, have been disputed
[153, 186, 240, 245, 248, 251, 252, 261]. Finally,
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in the Korean population, two other variants,
G160V and N151S, were identified but have not
been demonstrated in other populations [239].

Other VSX1 variants identified in KC
patients are c.432CAG (Asp144Glu), c.475T4A
(Leu159Met), c.496C4T(Arg166Trp), and
c.731A4G(His244Arg) [166]. Three of these, i.e.,
Asp144Glu, Leu159Met and Arg166Trp, as well
as Pro247Arg and Gly160Asp (also in the VSX1
gene), are possibly associated with two corneal
dystrophies, KC and PPCD [166, 220]. Other
mutations in VSX1 such as Leu17Pro [188], the
missense mutations Asn151Ser and Gly160Val,
and one intragenic polymorphism are associ-
ated with KC only [239]. In addition, suscepti-
bility to KC is evident in patients with LCA and
mutations in CRB1 (which encodes a protein
that localizes to the inner segment of mam-
malian photoreceptors), CRX (which encodes a
photoreceptor-specific transcription factor that
participates in the differentiation of photore-
ceptor cells and is essential for normal cone and
rod function), and AIPL1 (which is expressed in
photoreceptors and the pineal gland; it encodes
aryl-hydrocarbon-interacting protein-like 1 and
is involved in nuclear transport activity)
[175, 178]. Note that, apart from LCA, N
mutations are also associated with a severe form
of retinitis pigmentosa (RP12); CRX mutations
are associated with photoreceptor degeneration,
LCA type III, and autosomal dominant cone-rod
dystrophy 2; while AIPL1 mutations are
responsible for 20% of recessive LCA.

VSX1 and PPCD

The VSX1 gene is associated with the patho-
genesis of endothelial corneal dystrophy, Fuchs,
and PPCD [166, 188–190, 220, 246, 254, 263–
266]. PPCD is a typically bilateral hereditary
corneal dystrophy characterized by abnormali-
ties in Descemet’s membrane and the corneal
endothelium, with a primarily asymmetric
clinical presentation [220, 267]. PPCD is,
reportedly, associated with KC
[155, 220, 268, 269]; it is genotypically hetero-
geneous [270, 271], with one-third of the PPCD
cases associated with mutations in the PPCD3

locus, in the AIPL1gene (which encodes a zinc
finger transcription factor; mutations of it are
associated with posterior polymorphous corneal
dystrophy-3 and late-onset Fuchs endothelial
corneal dystrophy) [270, 271]. PPCD is also
affected by the COL4A3 gene (which encodes
the collagen type IV alpha 3 chain) expression
in the cornea. Similarly, mutations in COL8A2
are associated with PPCD and Fuchs
[220, 266, 270, 271]. Finally, the chromosome
20p11–q11 is associated with PPCD1 (cytoge-
netic location 20p11.23), while VSX1 gene
mutations (genetic locus VSX1; MIM#605020
and genetic locus KTCN1; MIM#148300) are
involved in PPCD1 and KC, respectively
[166, 220, 239, 248].

The SOD1 Gene

The SOD1 gene has a role in the pathogenesis of
KC [147, 150, 166, 222], albeit without a defi-
nite association [186, 272, 273]; SOD1 muta-
tions have also been implicated in amyotrophic
lateral sclerosis [274, 275]. The SOD1 enzyme
binds zinc and copper ions and destroys free
superoxide radicals, thus protecting the cell
from damage [147, 276, 277]. It is of note that
the distribution of superoxide dismutase isoen-
zymes differs between the healthy cornea and
the corneas of KC patients [278].

SOD1 is located on chromosome 21q22.11
and encodes superoxide dismutase enzymes
[222, 274, 275]. A SOD1 variant with a seven-
base deletion in intron 2 (IVS2 ? 50del7 bp) is
associated with KC [147, 222]; mRNA analysis
showed the presence of two additional tran-
script splice variants coding for proteins lacking
the active site of the SOD1 enzyme [222], while
a deletion has been identified within intron 2
close to the 50 splice junction of SOD1 in 3 KC
patients [186, 222, 272, 273]. In addition, the
skipping of SOD1 exon 2 or SOD1 exon 2 ? 3
results in weak protein expression or no
expression at all, since it diminishes the enzyme
levels and activities [154, 186, 222, 272, 273]. It
is probable that mutations on chromosome 21
may be related to the effects of oxidative stress
on the cornea, while trisomy 21 is associated
with an increased risk of KC [150, 255, 278].
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The SOD Isoenzymes and ROS
Oxygen tension, light exposure, and high
metabolic activity contribute to the production
of reactive oxygen species (ROS) [277], while the
human eye is particularly vulnerable to oxida-
tive stress [277]. There are three superoxide
dismutase (SOD) isoenzymes (SOD1, SOD2, and
SOD3). They are compartmentalized in the
mitochondrial matrix, the cytosol, and the
extracellular space, and they trigger the gener-
ation of hydrogen peroxide by catalyzing the
dismutation of the superoxide radicals [277]. In
KC patients, these antioxidant enzymes are
altered [110, 222, 278, 279], resulting in an
increase in the byproducts of the nitric oxide
and lipid peroxidation pathways [111, 280].
Furthermore, increased levels of reactive oxygen
species (ROS) result in a decrease in mitochon-
drial membrane potential [281], apoptosis of
corneal fibroblasts, and oxidative damage that
leads to the upregulation of altered proteins,
degradation of enzymes, cellular dysfunction,
and DNA damage [93, 282–284].

The ZNF 469 Gene

ZNF469 is a two-exon gene that codes a 413 kDa
protein consisting of 3,925 amino acid residues
[285]. It is detected in the human cornea as well
as in various tissues [210]. ZNF469 shows a 30%
sequence similarity to the helical parts of
COL1A1 (encoding the pro-alpha1 chains of
type I collagen, which is abundant in the cor-
nea), COL1A2 (encoding the pro-alpha2 chains
of type I collagen, also abundant in the cornea),
and COL4A1 (which encodes a type IV collagen
alpha protein, an integral component of base-
ment membranes). The COL1A1, COL1A2, and
COL4A1 genes are highly expressed in the cor-
nea [31, 210].

There are five classical C2H2 zinc finger
domains (ZNFs) in the C-terminus; these are the
most important parts of the ZNF469 protein.
ZNFs work as sequence-specific DNA-binding
motifs that regulate some specific transcription
processes [207]. Although the role of ZNF469 is
not well established, evidence shows that it
regulates the development and maintenance of
the ECM [286]. It is also possible that ZNF469 is

a transcription factor or an extranuclear regu-
lator for the synthesis and organization of the
corneal collagen fibers in humans
[114, 207, 286]. This organization of the colla-
gen fibers occurs in conjunction with the gene
PRDM5 (which encodes a transcription factor of
the PR-domain protein family); heterozygous
mutations of PRDM5 have been linked with
mildly reduced CCT (480–505 lm), KC, and
blue sclera [286].

Brittle Cornea Syndrome (BCS)
BCS (also known as brittle cornea syndrome 1)
can lead to blindness. It is a tissue disorder
characterized by thinning and fragility of the
cornea that can develop even after minor
trauma, and is associated with homozygous
mutations in ZNF469 [120]. It is an autosomal
recessive generalized connective tissue disorder
associated with extreme corneal thinning to
between 220 and 450 lm, leading to a high risk
of corneal rupture [286, 287]. Other common
features of BCS include deafness, leading to
combined sensory deprivation [287] and joint
hypermobility, among other features of con-
nective tissue disorders, including scoliosis
[287, 288].

There are two types of BCS. BCS type 1
(OMIM#229200) features all of the signs men-
tioned above and is a result of homozygous
mutations in the ZNF469 gene [210]. As previ-
ously mentioned, the gene was originally map-
ped to chromosome 16q24 [210], while five
homozygous mutations of the ZNF469 have
been reported: a homozygous frameshift muta-
tion (c.9527delG) resulting in a premature ter-
mination codon (p.Gln3178ArgfsX23) [210];
p.Gln1392X [210]; p.Phe717SerfsX14; p.Gl-
n1757X [286]; and the homozygous missense
mutation p.Cys3339Tyr [288]. BCS type 2 is an
autosomal recessive condition (like BCS type 1)
results from mutations in the PRMD5 gene
[286]. The wide variety of mutations in ZNF469
have been reported to be linked to an increased
risk of isolated KC and BCS type 1 in patients of
different ethnicities (23% of patients with KC in
New Zealand, 12.5% of the European KC
patients from three different cohorts and 50%
of Maori or Polynesian KC patients). Among the
KC patients in Polynesian populations, 23%
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were reported to have a rare missense mutation
in ZNF469 [203].

The TGFb Pathway

The TGFb pathway (transforming growth factor-
b pathway) alters the modulation of the ECM,
thus contributing to the pathogenesis of KC
[289, 290]. TGFb consists of three isoforms:
TGFb1, TGFb2, and TGFb3, and binds to TGFb
receptors (which also present three different
isoforms) [291]. TGFb1 (transforming growth
factor beta 1) plays a role in myofibroblast
transformation and proliferation, wound heal-
ing, keratocyte activation, chemotaxis, and
corneal dystrophies [292]. TGFb2 is increased in
the aqueous humor of KC patients, although no
elevation in TGFb2 levels was observed in
immunofluorescence studies [291].

THE TGFBI GENE

Another gene that may be associated with KC is
TGFBI (Transforming Growth Factor b-In-
duced), which encodes the protein big-h3 that
binds to type I, II, and IV collagens and plays a
role in cell–collagen interactions [224]. big-h3 is
involved in the development of corneal stroma,
contributing to the movement, cell adhesion,
and interaction with the ECM [293]. This pro-
tein is decreased in the ECM and epithelium of
KC patients, implying the involvement of the
TGFBI gene in KC [293]. The role of the TGFBI
gene in KC was elucidated by observing that the
c.1603G4T mutation located in exon 12 of
TGFBI led to the Gly535Ter substitution at the
protein level in a Chinese patient with sporadic
KC [224]. This result has not been replicated,
and an association between TGFBI and KC is yet
to be established [235].

Expression of cytokine nuclear factor jb (NF-
jb), anti-inflammatory marker transforming
growth factor b (TGF-b), interleukin 6 (IL-6), and
the proinflammatory marker tumor necrosis
factor a (TNF-a) increases in the corneas of KC
patients [294]. TGF-b is associated with corneal
dystrophies [295, 296], while there is aberrant
TGF-b signaling in KC [297]. The TGF-b ligand

binds to TGF-bR1, which then dimerizes with
TGF-bR2 and stimulates the phosphorylation of
SMAD2/3 [298]. It is then translocated to the
nucleus and the transcription of genes targeted
by TGF-b is activated [298]. TGF-b signaling is
negatively regulated by SMAD6 and SMAD7
[298, 299]. The role of SMAD 6 and SMAD7 is to
compete for the binding of receptor-regulated
SMAD3, to bind histone deacetylases and inhibit
the transcription of TGF-b-responsive genes, and
to promote the recruitment of ubiquitin E3
ligases that cause the dissolution of TGF-b
receptors [298, 299]. TGF-b1, TGF-b2, and TGF-
b3 are the three isoforms of TGF-b that modulate
the expression of the matrix metalloproteinase,
terminal differentiation to the myofibroblast,
and ECM remodeling [300, 301]. In addition,
TGF-b1 and TGF-b2 contribute to the stimula-
tion of a profibrotic response after injury
[302, 303], while TGF-b3 has an antifibrotic role
[304, 305]. Finally, TGF-b3 can stimulate human
KC cells to assemble normal stroma [304].

THE ROLE OF LONG NONCODING
RNAS IN THE PATHOPHYSIOLOGY
OF KERATOCONUS

Long noncoding RNAs (lncRNAs), i.e., RNAs
that are at least 200 nucleotides long but do not
code for proteins, participate in the complex
pathophysiology of KC [306], and there are
several lncRNAs that contribute to KC patho-
genesis [307]. Recent surveys have accounted
for more than 200,000 lncRNA transcripts in
humans [308]. These are believed to be powerful
regulators of transcriptomes [307], even though
their function is not clear [308]. lncRNAs have
been found to regulate gene expression in both
pathologic and physiologic situations at the
transcriptional and post-transcriptional levels
[307], contributing to the cellular processes of
transcription, translation, protein localization,
splicing, imprinting, stem cell pluripotency,
cellular structure integrity, migration, oxidative
stress response, wound healing, the cell cycle,
and apoptosis [309]. lncRNAs are also linked to
a variety of human diseases such as cancer
[306].
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Microarray analyses of RNAs isolated from
KC-affected epithelium and keratocytes [307]
and RNA-Seq were recently used to study the
expression of lncRNAs in KC and to determine
the differential expression of RNAs in KC
patients and normal subjects [307], as well as to
assess the potential roles of lncRNAs in
lncRNA–RNA duplexes [307]. These studies
highlighted the role of the AQP5, lnc-WNT4-2:1,
lnc-ALDH3A2-2:1, SFRP1, and CTGF genes and
the WNT, TGF-b and PI3K/AKT pathways in KC
[307]. In addition, many coding and noncoding
RNAs that potentially contribute to KC have
been identified by RNA-Seq-based analyses [307].

The lncRNA–RNA duplexes affect the meta-
bolism of the more than 50,000 transcripts that
exist [306]. Bioinformatics analysis yielded 870
lncRNAs, some of which potentially affect genes
putatively associated with KC [306]. There are
also genes that are differentially expressed
under oxidative stress. For example, the
expression of lnc-ALDH3A2-2:1 increases more
than threefold under oxidative stress. The lnc-
ALDH3A2-2:1 sequence overlaps with the last
exon of the ALDH3A1 gene and may alter pro-
tein levels without affecting mRNA [307].

The WNT signaling pathway is essential for
normal corneal development, and variants of
the WNT7B and WNT10A genes have been
associated with CCT and KC risk [307], while
dysregulation of WNT signaling in the corneal
epithelium in KC was highlighted by a recent
RNA-Seq-based study [307]. Also, the expression
of lnc-WNT4-2:1 (a sense transcript for its
overlap with exon 5 of the WNT4 gene) is
increased in KC patients [307]. Finally, signifi-
cant changes in WNT4 mRNA of KC corneas
apparently eliminate the role of lnc-WNT4-2:1
in regulating the WNT signaling pathway [307].

MICRORNAS AND THE ROLE
OF MIRNA 184 IN KERATOCONUS

Gene expression is also regulated by microRNAs
(miRNAs), which are single-stranded noncoding
RNAs [310]. miRNAs, which mediate mRNA
degradation and the suppression of translation,
consist of 19–25 nucleotides and bind to the 30

untranslated regions (UTRs) of mRNAs
[229, 311]. Many miRNA mutations can cause
disease [114, 312, 313], making them possible
therapeutic targets [229, 311, 314, 315]. In
addition, miRNAs target the mRNAs from many
genes that regulate the abundance of proteins in
some organs and tissues [229]. The miRNA that
is primarily expressed in the cornea and the lens
is miRNA 184 [229, 311, 314, 316], which is
localized in the endothelium, the basal and the
immediate suprabasal cells of the epithelium of
the cornea, but not in the limbus nor the con-
junctival epithelia [229, 311, 314, 316]. miRNA
184 competitively inhibits the binding of
miR205 to its mRNA [230, 313] so that miR205
cannot encode integrin beta 4 (ITGB4) and
inositol polyphosphate like 1 (INPPL1), which it
generally can [229, 311].

There are numerous miRNAs in specific
chromosomal loci that are related to KC
[223, 317]. Their target genes, MBNL (which
encodes a C3H-type zinc finger protein that
modulates alternative splicing of pre-mRNAs)
and ZIC5 (which encodes a member of the ZIC
family of C2H2-type zinc finger proteins that
acts as a transcriptional repressor), are located
on 13q32. MBNL2 (which encodes a C3H-type
zinc finger protein that modulates alternative
splicing of pre-miRNAs) is targeted by miRNA
548ab and miR5688, while ZIC5 is targeted by
miR568 [223, 317]. The chromosome locus of
miRNA 548 (which was identified in a white
family from western Europe) is 8q13.1–q21.11.
Finally, SMAD2 is also considered a target for
miR568 [117, 297].

Another characteristic mutation that is
found in KC patients is in the 5.5 Mb linkage
region of miR184 on 15q25.1 (MIRN184 (MIM
613146)) [229]. This heterozygous mutation
c.57 C[U was found in a Northern Irish family
who had anterior polar cataract and KC [229].
Also, two KC patients were found to have two
heterozygous mutations in the region of
MIR184 (?3A[G and ?8C[A) [291, 318].

KC mutations are associated with the region
within the EDICT interval [119, 319]. EDICT is
an autosomal dominant syndrome character-
ized by congenital cataract, KC with stromal
thinning, iris hypoplasia, and endothelial dys-
trophy [291, 318]. Both the EDICT syndrome
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and KC are, in some families, caused by the
same mutations (c.57C[T) [291, 318]. How-
ever, although the mutations in miR184 cause
congenital cataract, there are differences in the
changes they inflict on the cornea. The same
mutation has been found in a family from
Galicia in Spain whose main symptoms were
severe KC, congenital cataract, and nonectatic
corneal thinning [310]. Therefore, mutations in
miR184 are associated with KC regardless of the
presence or absence of other lens and corneal
defects.

MITOCHONDRIAL DNA

Mitochondria play an important role in the cell
cycle, cell signaling, differentiation, death, and
growth [320], and they are a significant
endogenous source of reactive oxygen species

(ROS) [321]. Mitochondria carry their own
genome; mitochondrial DNA (mtDNA) is
inherited maternally and has a characteristic
absence of recombination and a high mutation
rate. Certain mtDNA polymorphisms may pre-
dispose to certain diseases [322]. Such diseases
that are focused on the eye include Leber
hereditary optic neuropathy (LHON) [323], type
2 diabetes [324] and Wolfram syndrome [325],
nonarteritic ischemic optic neuropathy [326],
chronic progressive external ophthalmoplegia,
and pigmentary retinopathy [327]. Mitochon-
drial haplogroups H and R have been linked to
an increased risk of developing KC in Saudi
patients [328].

The involvement of mitochondrial abnor-
malities in KC is well documented
[281, 329, 330]. Compared to control subjects,
KC patients have significantly lower levels of
leukocyte mtDNA [331]. KC corneas also have a

Table 1 Correlation matrix between specific genes implicated in keratoconus and clinical symptoms/signs

GENE 
Abbrevia�on GENE NAME / FUNCTION CLINICAL SIGN/SYNDROME (see legend) 12 4 11 15 10 13 5 7 18 9 3 17 14 2 6 16 8 1
DOCK9 Dedicator Of Cytokinesis 9 * * * 3
FNDC3B Fibronec�n Type III Domain Containing 3B * * * * 4
PRDM5 PR/SET Domain 5 * * * * 4
MPDZ Mul�ple PDZ Domain Crumbs Cell Polarity Complex Component * * * * * 5
MIR184 MicroRNA 184 * * * * * * 6
ZNF469 Zinc Finger Protein 469 * * * * * 6
RAB3GAP1 RAB3 GTPase Ac�va�ng Protein Cataly�c Subunit 1 * * * * * * 7
COL6A1 Collagen Type VI Alpha 1 Chain * * * * * 8
COL8A1 Collagen Type VIII Alpha 2 Chain * * * * * * * * 8
FOXO1 Forkhead Box O1 * * * * * * * * * 9
COL4A1 Collagen Type IV Alpha 1 Chain * * * * * * * * * 9
COL4A3 Collagen Type IV Alpha 3 Chain * * * * * * * * * 9
COL8A2 Collagen Type VIII Alpha 1 Chain * * * * * * * * * 9
CRX Cone-Rod Homeobox * * * * * * * * * 9
RXRA Re�noid X Receptor Alpha * * * * * * * * * * 10
CRB1 Crumbs 1, Cell Polarity Complex Component * * * * * * * * * * * 11
COL5A1 Collagen Type V Alpha 1 Chain * * * * * * * * * * * 11
HGF Hepatocyte Growth Factor * * * * * * * * * * * * 12
SPARC Secreted Protein Acidic And Cysteine Rich * * * * * * * * * * * * 12
VSX1 Visual System Homeobox 1 * * * * * * * * * * * 12
LOX Lysyl Oxidase * * * * * * * * * * * * 13
TGFB1 Transforming Growth Factor Beta * * * * * * * * * * * * 13
COL1A1 Collagen Type I Alpha 1 Chain * * * * * * * * * * * * * 14
SOD1 Superoxide Dismutase 1 * * * * * * * * * * * * * 14

NUMBER OF GENE ASSOCIATIONS WITH EACH CLINICAL SYMPTOM / SIGN 1 3 4 4 6 8 9 11 12 14 15 15 16 17 18 19 22 24 218
CLINICAL SYMPTOM / SIGN ID (see legend below) 12 4 11 15 10 13 5 7 18 9 3 17 14 2 6 16 8 1

ID SYMPTOM / SIGN ID SYMPTOM / SIGN ID SYMPTOM / SIGN
1 Central corneal thinning 7 Corneal (surface) distor�on 13 Photophobia 
2 Corneal curvature 8 Corneal scarring 14 Visibility of corneal nerves 
3 Corneal protrusion 9 Deep stromal scarring 15 Corneal hydrops 
4 Corneal steepening 10 Corneal iron deposits 16 Kera�nocyte apoptosis 
5 Corneal ectasia 11 Corneal gu�ae 17 Focal fibrosis s
6 Corneal edema 12 Scissoring sign 18 Fine parallel lines/Posterior stroma

Symptoms/signs are represented according to the number of genes they correspond to, in an ascending order from top to
bottom. The correspondence between symptoms/signs and their ID in this table is presented in the columns to the left of
this legent
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Table 2 Correlation matrix between genes implicated in keratoconus and different keratoconus-related comorbidities
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32 8
33 9
34 9
35 9
36 10
37 10
38 13
39 14
40 15
41 15
42 15
43 17
44 19
45 20
46 22
47 22
48 22
49 23

4 6 8 11 12 13 13 14 14 15 17 17 17 17 17 18 18 19 20 20 22 24 25 30

The comorbidities have been tabulated from top to bottom according to the number of genes that are implicated in both the
comorbidity and Keratoconus. The numbers on the left column correspond to the different Keratoconus related comor-
bidities as they are listed in Table 3
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lower mtDNA-to-nDNA ratio, as well as a higher
level of mtDNA damage when compared to
normal corneas [330]. The mitochondria in KC
corneal tissues appear swollen under transmis-
sion electron microscopy [329].

CONCLUSIONS

The present review focused on the genetic basis
of KC and its associations with different
comorbidities. Data came primarily from gen-
ome-wide association studies, SNP studies, and
genetic loci identification. Emphasis was placed
on the most definitively implicated genes
involved in KC: the VSX1 gene, which is
involved in (among other conditions) posterior
polymorphous corneal dystrophy; the SOD1
gene, which determines the effects of reactive

Table 3 List of keratoconus-related comorbidities

ID# Disease/syndrome

1 EDICT syndrome

2 Granular corneal dystrophy (GCD)

3 Martsolf syndrome

4 Xeroderma pigmentosum

5 Noonan syndrome

6 Vernal keratoconjunctivitis

7 Pseudoexfoliative glaucoma

8 Spring conjunctivitis

9 Atopy

10 Avellino corneal dystrophy

11 Bardet–Biedl syndrome

12 Turner syndrome (monosomy X)

13 Nail-patella syndrome

14 Ichthyosis

15 Neurofibromatosis

16 Osteogenesis imperfecta

17 Fuchs endothelial corneal dystrophy (FECD)

18 Leber hereditary optic neuropathy (LHON)

19 Warburg Micro syndrome

20 Floppy eyelid syndrome

21 Leber congenital amaurosis (LCA)

22 Pseudoxanthoma elasticum

23 Chronic progressive external ophthalmoplegia

24 Ehlers–Danlos syndrome

25 Nonsyndromic autosomal recessive 2 hydrocephalus

26 Rieger syndrome

27 Atopic disease

28 Congenital communicating hydrocephalus

29 Mitral valve prolapse

30 Pigmentary retinopathy

31 Marfan syndrome

32 Joint hypermobility

33 BCS (brittle cornea syndrome)

Table 3 continued

ID# Disease/syndrome

34 Focal dermal hypoplasia

35 Retinitis pigmentosa

36 Rheumatoid arthritis

37 Scoliosis

38 Congenital hip dysplasia

39 Age-related macular degeneration

40 Iris hypoplasia

41 Noninflammatory connective tissue disorders

42 Primary open-angle glaucoma

43 Eye rubbing

44 Cataract

45 Posterior polymorphous corneal dystrophy (PPCD)

46 Endothelial dystrophy

47 Connective tissue disorders

48 Down syndrome

49 Glaucoma

Numbers in the left column correspond to the numbering
(comorbidity identification number) in the left column of
Table 2
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oxygen species; the ZNF 469 gene, which is also
involved in brittle cornea syndrome; the TGF8
pathway, which is involved in the regulation of
the extracellular matrix composition; the TGFI
gene, which plays a role in cell–collagen inter-
actions; and the roles of microRNAs (especially
miRNA 184), mitochondrial DNA, and reactive
oxygen species in KC.

A total of 18 different KC symptoms and
clinical signs were identified, documented, and
cross-referenced to 24 different genes/genetic
loci; each of the symptoms was associated with
between 3 and 14 identified KC genes, as pre-
sented in Table 1. In addition, 49 diseases/syn-
dromes that involve at least some of the KC-
implicated genes were also identified and cross-
referenced to the 24 identified KC genes, and
each of those 49 diseases/syndromes was asso-
ciated with between 1 and 23 identified KC
genes, as presented in Tables 2 and 3.

The expectation underscoring the present
review is that it will promote due vigilance by
ophthalmologists to prevent KC, and will
encourage medical practitioners to refer KC-re-
lated comorbidities to ophthalmologists so that
theymay prevent the further development of KC.
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293. Takács L, Csutak A, Balázs E, Módis L, Berta A.
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