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ABSTRACT

One of the most common musculoskeletal dis-
orders, osteoarthritis (OA), causes worldwide
disability, morbidity, and poor quality of life by
degenerating articular cartilage, modifying
subchondral bone, and inflaming synovial
membranes. OA pathogenesis pathways must be
understood to generate new preventative and
disease-modifying therapies. In recent years, it
has been acknowledged that gut microbiota

(GM) can significantly contribute to the devel-
opment of OA. Dysbiosis of GM can disrupt the
‘‘symphony’’ between the host and the GM,
leading to a host immunological response that
activates the ‘‘gut–joint’’ axis, ultimately wors-
ening OA. This narrative review summarizes
research supporting the ‘‘gut–joint axis’’
hypothesis, focusing on the interactions
between GM and the immune system in its two
main components, innate and adaptive immu-
nity. Furthermore, the pathophysiological
sequence of events that link GM imbalance to
OA and OA-related pain is broken down and
further investigated. We also suggest that diet
and prebiotics, probiotics, nutraceuticals, exer-
cise, and fecal microbiota transplantation could
improve OA management and represent a new
potential therapeutic tool in the light of the
scarce panorama of disease-modifying
osteoarthritis drugs (DMOADs). Future research
is needed to elucidate these complex interac-
tions, prioritizing how a particular change in
GM, i.e., a rise or a drop of a specific bacterial
strain, correlates with a certain OA subset to
pinpoint the associated signaling pathway that
leads to OA.
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Key Summary Points

Osteoarthritis (OA) and gut microbiota
(GM) have been linked because GM
dysbiosis can disrupt the gut barrier,
activate the ‘‘gut–joint axis,’’ and
modulate innate and adaptive immunity
through various mediators.

The gut–joint axis mediators include
short-chain fatty acids,
lipopolysaccharide, lipoteichoic acid,
tryptophan metabolites, serotonin,
gamma-aminobutyric acid, bile acids,
flagellin, and b-glucans.

GM can alter chronic pain’s central and
peripheral sensitization pathways in many
ways where metabolites,
neurotransmitters, neuromodulators, and
microbial byproducts are implicated.

Targeting the GM could be a new way of
treating and preventing OA and its related
pain. Interventions that have been
suggested include dietary changes,
prebiotics, probiotics, nutraceuticals,
exercise, and fecal microbiota
transplantation as major GM modulators.

This review aims to explore the complex
relationship between GM and OA,
focusing on how the immune system
shapes this bridge.

INTRODUCTION

Osteoarthritis (OA) is a chronic degenerative
disorder characterized by the progressive
degradation of the structures of the joints, such
as the articular cartilage, the subchondral bone,
the ligaments, the capsule, and the synovium
[1]. To put it another way, it is the most wide-
spread kind of arthritis and a significant con-
tributor to both pain and disability in people of
middle age and older [2].

A key characteristic of OA is the deteriora-
tion of the structure and function of articular
cartilage. Additionally, OA is identified by
changes in bone structure and synovitis, which
leads to clinical complaints such as joint pain
and limitations in mobility, social participation,
and quality of life [3].

OA has long been attributed to biomechan-
ical factors [4], ageing [5], and genetic predis-
position [6]. However, a paradigm shift in our
understanding of OA etiology is underway, with
a growing body of evidence implicating the gut
microbiota (GM) as a critical player in the
intricate dance of joint health.

The GM is the resident population of the
human gut. It is believed to consist of over 1014

microorganisms, encompassing the three pri-
mary categories of life: Bacteria, Eukarya, and
Archaea. The bacterial domain has the highest
representation [7–10]. Currently, six distinct
phyla of bacteria have been acknowledged. The
Firmicutes and Bacteroidetes are the most
abundant, with Actinobacteria and Proteobac-
teria following closely after [11]. The composi-
tion of the GM is unmatched. The variation in
an individual’s characteristics is subject to
ongoing and dynamic changes throughout
their life, influenced by both intrinsic elements
like hereditary patterns and gastric acid secre-
tions and extrinsic factors like nutrition, medi-
cal conditions, and environmental influences
[12, 13]. Indeed, proton pump inhibitors can
modify the GM’s composition by decreasing the
stomach acid levels. This reduction in acid can
result in an excessive proliferation of specific
bacterial species in the upper gastrointestinal
tract [14]. The influence of oral health on oral
microbiota and GM must also be underlined
[10, 13, 15]. The dissemination of oral bacteria
(OB) throughout the body, including the gut,
has been linked to many systemic disorders.
Research on animals and humans has demon-
strated that OB can migrate to the gut and alter
its microbiota, potentially affecting the
immune defense system. Ectopic displacement
of OB primarily happens in individuals with
severe systemic disorders, as well as those with
‘‘chronic’’ periodontitis. For instance, Porphy-
romonas gingivalis can disrupt the balance of
microorganisms in the subgingival microbiota
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and weaken the immune system, possibly
leading to dysregulation in the gut [16].

A strong relationship between OA and GM
has been emerging in recent years since GM
dysbiosis (an alteration in the amount, compo-
sition and diversity of microbiota [17]) can dis-
rupt the gut barrier, activate the ‘‘gut–joint
axis’’, modulate innate and adaptive immunity
through LPS release, short-chain fatty acid
modification, macrophage activation, cytokine
liberation, regulation of T-cell responses and B
cells differentiation [18, 19]. Moreover, GM can
influence OA progression by interacting with
other OA risk factors such as age, sex, obesity,
inflammation, and mechanical load [20].

As OA is a condition affecting people of
middle age and older [2], a further link with GM
can be found in the fact that the elderly have an
altered GM [21]. Indeed, a 2017 study showed
that the GM of old mice transferred to germ-free
young mice could promote ‘‘inflammaging’’,
that is, chronic low-grade inflammation at both
the gut and systemic levels [22]. GM dysbiosis

driven by age could therefore be another key
player involved in OA pathogenesis.

The gut–joint axis is, in reality, a gut–im-
mune–joint axis, as the immune system serves
as the conduit through which the GM may
impact the articular environment. Research has
observed that the GM and its associated com-
ponents and metabolites interact with OA by
triggering both local and systemic innate
immune responses [23]. The imbalance of
microorganisms in the gut can influence the
development of early CD4 ? T cells into either
effector T cells or Treg cells, which is essential
for maintaining a balanced immune system and
preventing joint inflammation [24]. Therefore,
the GM, as a whole, can influence the devel-
opment of OA by impacting the immune sys-
tem. Nevertheless, the specific mechanisms
underlying the connection between the innate/
adaptive immune system and the GM in
osteoarthritis remain unknown.

This review aims to unravel the multifaceted
connection between GM and OA, delving into

Fig. 1 Microbial symphony: the gut microbiota (GM) is a
meticulous orchestra director through intricate interac-
tions with the immune system. When impaired, i.e.,
through dysbiosis, an outburst of cytokine release with

increased LPS translocation in the bloodstream and
therefore a systemic inflammation, which starts as a low-
grade inflammation, contributes to the pathogenesis of
osteoarthritis
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the intricate web of interactions with a partic-
ular emphasis on their impact on the immune
system. By illuminating these intricate connec-
tions, we hope to pave the way for targeted
therapeutic interventions that harness the
potential of the GM to modulate immune
responses and, consequently, mitigate the
impact of OA and associated pain on joint
health.

The PubMed, Web of Science, Google Scho-
lar, and Scopus databases were examined for
articles in line with the review topic from Jan-
uary 2005 to January 2024, with an English
language limitation. The search strategy was
created by combining terms relevant to the aim
of this review. The following Boolean keywords
were applied: (‘‘gut’’ AND ‘‘microbio*’’ AND
‘‘osteoarthritis’’);(‘‘gut AND ‘‘microbio*’’ AND
‘‘Immune system’’); (‘‘gut’’ AND ‘‘microbio*’’
AND ‘‘chronic pain’’).

This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors.

GUT–IMMUNE SYSTEM CROSS-
TALK: HOW THE GUT MODULATES
THE IMMUNE SYSTEM

Through the interaction of several cell types
throughout the mucosa, including B cells, T
cells, monocytes, macrophages, NK cells, and
dendritic cells (DCs), GM may have an impact
on the innate and adaptive immune system,
resulting in a putative immunomodulator
[25, 26]. It has been demonstrated that cell wall
elements, such as peptidoglycan [27], can bind
to receptors on the surface of monocytes and
macrophages, thereby indirectly inducing the
production of cytokines by immune cells [28].
The disruption of a harmonic balance of the
cross-talk gut–immune system can lead to
increased LPS, cytokine release, and systemic
inflammation, ultimately contributing to the
pathogenesis of OA (Fig. 1) [29]. In the next
paragraphs, an overview of the interaction
between the GM and the immune system will
be given mainly in the light of OA pathogenesis
(Fig. 1).

Microbial Symphony: the gut microbiota
(GM) is a meticulous orchestra director through
his intricate interactions with the immune
System. When impaired, i.e., dysbiosis, an out-
burst of cytokine release with increased LPS
translocation in the bloodstream and, therefore,
a systemic inflammation, which starts as a low-
grade inflammation, contributes to the patho-
genesis of osteoarthritisFig. 1
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grade inflammation, contributes to the patho-
genesis of osteoarthritisFig. 1

Microbial Symphony: the gut microbiota
(GM) is a meticulous orchestra director through
his intricate interactions with the immune
System. When impaired, i.e., dysbiosis, an out-
burst of cytokine release with increased LPS
translocation in the bloodstream and, therefore,
a systemic inflammation, which starts as a low-
grade inflammation, contributes to the patho-
genesis of osteoarthritis

Gut Microbiota and Innate Immunity

The first line of defense, innate immunity,
employs proteins encoded in the germline to
identify pathogens and stimulate immune
responses. Upon encountering a pathogen, the
innate immune cell either eliminates it or acti-
vates the adaptive immune response to combat
it. OA pathogenesis and progression are signifi-
cantly influenced by the activation of the
innate immune system, which identifies dam-
age-associated molecular patterns (DAMPs) via
interactions with pattern-recognition receptors
(PRRs) [30]. DAMPs are molecules released from
injured or dying cells as a part of the innate
immune response due to trauma or a pathogen
infection [31]. DAMPs resemble microbe- or
pathogen-associated molecular patterns
(MAMPs or PAMPs), the main source of which is
the GM [32]. PRRs are cytosolic and endosomal
receptors found on the cell surface. They
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include Toll-like receptors (TLRs), NOD-like
receptors, and others [33]. PRRs, which are
abundantly present on the outer membrane of
macrophages and other immune cells, can dis-
cern a vast array of danger signals; this is com-
parable to how GM metabolites influence the
innate immune system. When PRRs detect
danger signals, the inflammatory signaling
pathway is subsequently activated [34].

Concurrently identifying microbial DNA and
the intestinal microbiome in the knees of
patients with OA, it was hypothesized that
enteric dysbacteriosis could accelerate the pro-
gression of OA by stimulating the innate
immune system [35]. Furthermore, Liu et al.
[23] demonstrated that the GM, components
associated with GM, and their corresponding
metabolites affected OA by stimulating innate
immune responses at both the local and sys-
temic levels. The following events in sequence
represent the mechanism by which the innate
immune system influences OA:

(1) Synovial joint immune cells are stimulated
and produce DAMPs through interactions
with constant PRRs [36].

(2) The innate immune response is triggered
by host reactions to DAMPs [36].

(3) Prompt-onset inflammatory responses are
initiated [36].

In addition to macrophages, neutrophils,
dendritic cells (DCs), natural killer (NK) cells,
and mast cells comprise the innate immune
cells.

Macrophages play a key role in breaking
down each component of innate immunity,
mediating the immune response between OA
and GM. It has been shown that in the OA
synovial membrane and cartilage, macrophages
and their mediators were highly connected to
inflammatory alterations and devasting reac-
tions [37].

The so-called ‘‘two-hit theory’’ has described
the involvement of LPS in knee OA patients’
joint space size, pain intensity, and pathogen-
esis and severity of osteophytes [38]. This theory
additionally provides potential mechanisms by
which LPS contributes to the progression of OA.
The first hit takes place when lipopolysaccha-
ride (LPS) stimulates joint macrophages via

CD14–TLR4–MD-2 complexes. Subsequently,
LPS triggers a comprehensive inflammatory
response and joint structure degradation via
coexistence and complementarity mechanisms,
including the inflammasome pathway or
DAMPs [39]. Furthermore, fibroblast-like syn-
oviocyte pyroptosis can be induced by LPS
through the action of either nod-like receptor
protein (NLRP) 1 or NLRP3 inflammasomes.
This process is known to contribute to the
advancement of OA [40]. LPS is essential for the
pathogenesis of osteoarthritis and macrophage-
associated inflammatory responses, both of
which are critical components of innate
immunity.

Furthermore, fecal microbiota transplanta-
tion (FMT) from subjects with OA and meta-
bolic syndrome accelerates OA in mice, which
activates TGF-b signaling pathways to regulate
multiple immune cells, such as macrophages,
NK cells, DCs, T cells, and B cells [41].

Neutrophils are among the most abundant
cells of innate immunity. It has been demon-
strated that the number of neutrophils was
greatest in knee synovial fluid with increased
levels of TGF-b and elastase, which are strongly
linked to the severity of radiographic knee OA.
Moreover, neutrophils and macrophages in
knee OA joints have a mutually beneficial
interaction in both the progression and wors-
ening of OA [42].

DCs are antigen-presenting cells that come
from monocytes. They link the innate and
adaptive immune systems by recognizing and
responding to PAMP and DAMP [43]. In normal
conditions, certain subsets of DCs reside in the
intestinal mucosa. Upon encountering
microorganisms, they undergo a transformation
into an inflammatory state through the sup-
pression of disabled homolog 2 (DAB2) gene
expression. This process is hindered by the
interactions between TLR ligands TRIF and
MyD88 [44]. Butyrate and propionate, which
are short-chain fatty acids (SCFA) GM metabo-
lites, may inhibit the growth of DCs by blocking
the Na(?)-coupled monocarboxylate trans-
porter (Slc5a8) through the inhibition of
HDACs [45]. Moreover, propionate can safe-
guard against allergic inflammation by regulat-
ing DCs. Another study demonstrated that the
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surface components and metabolites of Lacto-
bacillus reuteri can stimulate the maturation of
immature DCs and increase the production of
the anti-inflammatory cytokine IL-10 by DCs
[46]. If we shift to the joints where OA develops,
DCs may initiate and accelerate the advance-
ment of OA through the TLR family, particu-
larly TLR4, as it has been proven in mice with
OA where Nie et al. demonstrated a notable in-
crease in the expression of TLR 1–8 in DCs
[44, 47].

NK cells are a subset of lymphocytes that
comprise around 15% of all lymphocytes in the
bloodstream. They are characterized by the
presence of CD56 and the absence of CD3. NK
cells play a crucial role in the innate immune
system by eliminating pathogens using death-
inducing receptors or by releasing soluble
chemicals such as perforin and granulysin [48].

It has been found that NK cells constituted
over 30% of the CD45 ? lymphocytes in the
synovium of individuals with OA with the
presence of the chemoattractant receptors
CCR5 and CXCR3 [49]. Compared to NK cells
found in the blood, NK cells in the synovium of
patients with OA have a silent phenotype
indicative of post-activated exhaustion [50].
However, the production of IFN-g by these NK
cells can stimulate neutrophils, macrophages,
and DCs. Furthermore, the expression of
NKG2D by NK cells can stimulate the activation
of T lymphocytes [51].

Mast cells are watchful agents of the innate
immune system and promptly react to both
internal danger signals and external infections.
Mast cell degranulation, which involves the
release of preformed mediators such as pro-in-
flammatory lipids, tryptases, histamine,
chemokines, and cytokines, can be induced by
several factors, including the IgE receptor FceRI,
IL-33, and complement receptor C5aR [52].
When we focus on GM, butyrate inhibits the
production of cytokines, specifically IL-6 and
TNF-a, in mast cells generated from murine
bone marrow. This suppression is achieved by
suppressing HDAC activity in the cells [53].
Moreover, propionate and butyrate can prevent
the release of granules from human or mouse
mast cells, whether or not IgE is involved. This

suppression is linked to the inhibition of HDAC
[54].

LPS can stimulate fully developed mast cells
to generate tryptase, chymase, and car-
boxypeptidase [55]. If we look at the joint side,
it has been observed that mast cells are dis-
persed in varying patterns inside osteophytes
and knee synovial fluid, potentially exacerbat-
ing the inflammatory pathophysiology of
osteoarthritis [56]. This led researchers to
introduce a novel classification system for the
synovial tissue in patients with OA based on the
levels of mast cells (low, medium, and high).
They identified specific markers for mast cells in
a mouse model and found that blocking his-
tamine activity can decrease the severity of OA
symptoms and the release of substances associ-
ated with OA [57].

Gut Microbiota and Adaptive Immunity

Recent studies have specifically focused on the
impact of adaptive immunity on the GM and
osteoarthritis OA. An investigation of immune
cells, their cytokines, and synovial inflamma-
tion in OA found that the predominant
immune cells present in OA synovial tissues
were mast cells, macrophages, and T cells. B,
NK, and plasma cells were also detected in
smaller quantities. Furthermore, they observed
a high abundance of cytokines associated with T
cells or macrophages in OA synovial tissues,
suggesting that T cells and macrophages were
activated in these tissues [58]. Another study
discovered that T cells and macrophages were
responsible for producing most pro-inflamma-
tory cytokines, even without additional stimu-
lation. Notably, CD4 ? and CD69 ? T cells
were highly abundant [59]. Furthermore, there
was a significant correlation between the
quantity of CD4 ? T cells in synovial tissues
and the severity of pain, as measured by the
visual analog scale (VAS) [59].

Currently, there is a consensus that there are
notable changes in Th17 cells, Th9 cells, T
memory cells, cytotoxic T cells, regulatory T
(Treg) cells, and Th1 cells in the synovial fluid,
synovial tissues, and peripheral blood of indi-
viduals with OA [60].
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The GM has been suggested as a potential
risk factor for OA and may regulate the T-cell
response, particularly for Th17 cells [24]. Th17
cells, the first form of CD4 ? T cells, are dis-
tinguished by their ability to produce pro-in-
flammatory cytokines, including IL-22, IL-21,
and IL-17. The induction of Th17 cells can be
triggered by pro-inflammatory cytokines such
as IL-21, IL-6, and TGF-b [61]. TGF-b plays a
two-fold role in immune regulation. Small
quantities of TGF-b promote the development
of Th17 cells, whereas large quantities of TGF-b
stimulate the formation of Treg cells, which
suppress inflammation [61]. Disruptions in the
composition of microorganisms in the intesti-
nes can influence the transformation of
CD4 ? T cells into either regulatory T cells or
effector T cells. This process is essential for
maintaining a balanced immune system and
preventing joint inflammation [24]. How do
perturbations in GM lead to activation of Th17
cells? On the one hand, segmented filamentous
bacteria can cause the buildup of Th17 cells in
the synovial fluids and synovium of individuals
with OA. This is achieved by increasing the
synthesis of local serum amyloid A, which in
turn stimulates DCs in the lamina propria to
induce the formation of Th17 cells [24].

On the other hand, the concurrent admin-
istration of L. acidophilus, vitamin B, and cur-
cumin in a rat model of OA resulted in pain
relief, preservation of cartilage, modulation of
the anabolic/catabolic equilibrium, and reduc-
tion of pro-inflammatory cytokines, such as
MCP-1, TNF-a, IL17, and IL-1b. Moreover, T
follicular helper (TFH) cells can control the
activation of B cells to produce immunoglobu-
lins by releasing IL-21. Butyrate is essential for
maintaining the balance of the GM as It can
stimulate the production of inducible Treg
(iTreg) cells by increasing histone acetylation,
which promotes gene expression by blocking
HDAC activity [62].

Regarding B cells, they are responsible for
producing immunoglobulins and modulating
immune responses. Regulatory B cells (Bregs)
function as immunosuppressive cells by
upholding immunological tolerance through
the secretion of IL-10, IL-35, and TGFb1, which
in turn suppress the activation of Th1 cells,

Th17 cells, and CD8 ? T cells. They also play a
role in controlling the differentiation of mac-
rophages and DCs. Additionally, Bregs promote
the development of regulatory T cells (Tregs)
[63, 64]. An example of the link between GM
and B cells is that the administration of butyrate
as a supplement enhanced the activation of AhR
in Bregs, leading to the alleviation of arthritis
[65]. A study reported that individuals with RA
had lower levels of SCFAs, such as valerate,
butyrate, propionate, and acetate, and it was
also observed that the amounts of these SCFAs
were positively associated with the frequency of
Bregs in the peripheral blood, rather than Tregs
[66]. Administration of SCFAs alleviated
arthritic symptoms, enhanced the occurrence of
Bregs, and decreased the occurrence of transi-
tional B and follicular B cells in collagen-in-
duced mice arthritis by activating the FFA2
receptor [66]. In another study, SCFAs admin-
istration led to an increase in the expression of
Bregs and an improvement in the clinical scores
of arthritis in mice with collagen-induced
arthritis. This effect was observed to rely on the
inhibitory activity of HDAC [67]. These data
suggest that the GM may have a similar regu-
latory influence on Bregs in OA.

THE GUT–JOINT AXIS: HOW
DYSBIOSIS LEADS
TO OSTEOARTHRITIS

GM may be pivotal in the pathogenesis of OA
itself and the perception of the pain that
accompanies this condition [68].

Dysbiosis refers to an imbalance or disrup-
tion in the GM, significantly affecting gut per-
meability. It can appear in different forms, such
as decreasing beneficial microorganisms and
increasing dangerous or harmful species. Dys-
biosis can arise due to various variables,
including nutrition, antibiotic usage, stress
levels, infections, lifestyle habits (such as
smoking and excessive alcohol consumption),
obesity, metabolic syndrome, age, and genetic
predisposition [17].

Dysbiosis can result in a range of adverse
effects on human health, such as:
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(1) Inflammation: dysbiosis can result in the
secretion of pro-inflammatory cytokines
and the generation of inflammatory com-
pounds by the GM. Persistent inflamma-
tion is linked to various health issues, such
as inflammatory bowel diseases (IBD), obe-
sity, and autoimmune diseases [69].

(2) Metabolic diseases, such as obesity and
type 2 diabetes [70].

(3) Impaired immune function: dysbiosis can
harm the immune system, perhaps render-
ing patients more vulnerable to infections
and autoimmune disorders [71].

Another consequence of dysbiosis that has
been recently unraveled is the disruption of the
‘‘gut–joint axis’’. GM is closely associated with
various factors related to OA, including ageing,
obesity, food, activity, joint abnormalities, and
trauma. The complex connection between the
gut and joints has led to the development of the
gut–joint axis idea, which proposes that the GM
may be crucial in understanding the develop-
ment of OA [20].

This interplay is shaped by GM itself and its
metabolites. SCFAs have been identified as
potential contributors to osteoarthritis OA
across several microbial communities. They are
thought to regulate the balance of bone,
decrease inflammation, and hinder bone
breakdown by directly influencing osteoclasts’
activity [72]. Furthermore, a damaged intestinal
barrier, commonly known as ‘‘leaky gut syn-
drome,’’ can result in the movement of micro-
bial products into the bloodstream, leading to
endotoxemia and an inflammatory condition.
Performing fecal microbiota transplantation
(FMT) from donors with metabolic issues in
animal experiments accelerated the progression
of OA, establishing a distinct correlation
between GM and the initiation of OA [73].

How Pain is Generated at the Joint Level

A few pathophysiological mechanisms may
occur in OA-related pain. An intense nocicep-
tive drive from joint capsule, ligaments,
periosteum, menisci, subchondral bone, and
synovium has historically been used to charac-
terize pain perception in OA as a peripheral

joint condition [74]. Subgroups of individuals
with OA may also exhibit characteristics of
neuropathic pain, such as electric shocks and
searing pain, according to recent research [75].

An intense and continuous intra-articular
nociceptor activation can lead to pain chroni-
fication through neurogenic inflammation
involving nociceptors and non-neuronal cells
such as mast cells, basophils, platelets, macro-
phages, neutrophils, endothelial cells, ker-
atinocytes, and fibroblasts, that in turn can
amplify this damaging inflammation [76]. This
persistent inflammatory state comprises
increased vascularity, fibrin deposits, fibroblast-
like synoviocytes hyperplasia/hypertrophy, and
the infiltration of inflammatory cells such as
lymphocytes and macrophages, leading to car-
tilage breakdown, subchondral bone remodel-
ing synovitis and fibrosis [77]. All of these
conditions could be caused by or made worse by
microbial dysbiosis [78].

As a result of the inflammatory state, a
decrease in the threshold and/or an increase in
the amplitude of responsiveness at the sensory
nerve fibers’ peripheral ends can occur (i.e.,
peripheral sensitization).

Also, in the dorsal root ganglions (DRGs),
neuronal cell bodies coexist with small satellite
glial cells and macrophages, and their interac-
tions may facilitate the shift from acute to
chronic pain [79].

Central sensitization can also occur in OA-
related pain [80]. The ‘‘train’’ of joint nociceptor
inputs results in an excessive CNS activation
with functional and structural CNS changes.
Central sensitization may lead to a combination
of three phenomena: hyperalgesia, allodynia,
and global sensory hyperresponsiveness [81] in
response to any sensory input coming from the
body’s periphery or external environment.
Finally, central sensitization can explain spon-
taneous joint pain without sensory input from
the periphery [81].

The Link Between GM and OA-Related
Pain

GM has the potential to affect the central and
peripheral sensitization mechanisms that

Pain Ther



contribute to chronic pain in a variety of ways.
Several GM-produced substances are implicated,
including metabolites, neurotransmitters, neu-
romodulators, and microbial byproducts [82].
The GM can adjust the sensitivity of neurons in
the DRG and control the inflammation of
nerves in both the peripheral and CNS in cases
of chronic pain. Directly acting on primary
sensory neurons in the DRGs, PAMPs cause
immune cells to release chemokines and
cytokines that promote inflammation. Con-
versely, PAMPs can directly activate or sensitize
primary sensory neurons in DRGs. LPS may
bind to TLR4 to trigger the activation and
increased sensitivity of pain-sensing neurons in
the DRGs, partly through a mechanism involv-
ing the Transient receptor potential vanilloid 1
(TRPV1) receptor [83]. Further, a mechanism
independent of TLR4 is responsible for LPS’s
direct stimulation of the transient receptor
potential ankyrin 1 (TRPA1) channel, which in
turn triggers the release of the calcitonin gene-
related peptide (CGRP), calcium flow, and
action potentials in sensory neurons that detect
pain [84]. Thus, PAMPs originating from GM
can potentially enhance peripheral sensitiza-
tion by directly affecting primary nociceptive
neurons or indirectly influencing immune cells
to cause heightened neuronal excitability,
resulting in peripheral sensitization.

Regarding central sensitization, the activa-
tion of glial cells, specifically microglia and
astrocytes, can generate pro-inflammatory
molecules known as cytokines or chemokines,
including TNF-a, IL-1b, and CXCL1. This acti-
vation can lead to an increase in glutamatergic
synaptic neurotransmission, a decrease in
GABAergic synaptic neurotransmission, or both
[85, 86]. Both effects contribute to the forma-
tion of central sensitization [87]. The link
between GM and central sensitization is that
GM significantly influences microglia’s matu-
ration, morphology, and immunological func-
tion [88].

Furthermore, both parasympathetic and
sympathetic systems have a major influence on
GM and vice versa, therefore possibly affecting
OA-related pain. It was shown that removing
both superior cervical ganglia substantially
impacted the composition of GM, suggesting

that the sympathetic pathway plays a function
in controlling GM [89]. Similarly, the vagus
nerve and the enteric nervous system are critical
links between GM and the peripheral nervous
system [68]. Specifically, the vagus nerve has a
dual purpose: it establishes a direct link between
the gastrointestinal system and the brain,
functioning as a conduit for all the GM media-
tors. On the other hand, vagal signaling plays a
vital role in controlling immunological
responses in the body’s periphery, as evidenced
by studies on patients who have undergone
vagotomy [90]. We can speculate that the
implications of GM on autonomic dysfunctions
may mimic or resemble some of the pathways
implicated in other forms of chronic pain
associated with autonomic nervous system
derangement, such as fibromyalgia [91].

In a review exploring the GM-OA interplay
by Favazzo et al., essential findings were iden-
tified: (a) there is a connection between the
levels of bacterial metabolites in the blood-
stream and joint degeneration; (b) antibiotics, a
germ-free environment and a high-fat diet can
cause changes in the microbial community in
the gut; (c) dietary supplementation with joint-
protective nutraceuticals may exert their effects
by altering the composition of the GM [92].

If we look at experimental studies, three
investigations [93–95] have discovered a direct
association between the amounts of certain
types of microorganisms or microbial products,
notably LPS, and the inflammatory condition
and intensity of symptoms related to
osteoarthritis, including knee WOMAC dis-
comfort. The primary microbial groups believed
to be implicated are Clostridium and Streptococ-
cus species. Clostridium has been demonstrated
to stimulate Th17 cells and contribute to the
development of arthritis. On the other hand, it
is suggested that Streptococcus may induce
heightened knee pain by activating macro-
phages either locally or systemically [94]. The
assumptions above align with previous findings
that establish a correlation between LPS and
LPS-binding protein in patients with OA’s
serum and synovial fluid and the presence of
activated macrophages in the knee. Further-
more, it correlates these factors with the severity
of OA and its primary symptom, pain [95]. In
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another study, a distinct DNA pattern of
microorganisms was discovered in the knee and
hip cartilage samples taken from patients with
OA [96]. The study also showed increased Gram-
negative components, such as LPS, in human
OA cartilage. It is plausible to hypothesize that
gut dysbiosis contributes to the development of
inflammation in both local and systemic areas.
This is likely due to the release of microbial
products or metabolites through a compro-
mised epithelial barrier, ultimately leading to
the onset or worsening of pain associated with
OA (Fig. 2).

GUT MICROBIOTA MODULATION
STRATEGIES

Harnessing the GM may represent a novel
strategy to prevent and treat OA. Among the
main GM modulators, the interventions that
have been proposed are Diet and prebiotics,

probiotics, nutraceuticals, exercise, and FMT
(Fig. 3).

Diet and Prebiotics

Prebiotics are defined as a substance specifically
used by microorganisms in the host’s body,
resulting in a positive impact on health [97]. To
be classified as prebiotic, the substance must
possess the following characteristics: resistance
to the acidic pH of the stomach, immunity to
hydrolysis and absorption in the gastrointesti-
nal tract, ability to undergo fermentation by
GM, and the capacity to selectively promote the
growth and activity of the GM with beneficial
effects on the host [98].

Various categories of prebiotics exist, the
majority of them being oligosaccharides, which
are carbohydrates. The carbohydrate groups
consist of galactooligosaccharides, fructans, and
other oligosaccharides derived from starch,

Fig. 2 Effects of GM on OA-related pain through
modulation of peripheral sensitization, DRG modulation,
and central sensitization. Different GM mediators are
implicated in this interplay. Some may have a protective
effect (for example, SCFAs), hence slowing down OA

progression and dulling its pain, while others (for instance,
LPS) may be harmful and speed up OA development. BA
bile acids, LPS lipopolysaccharide, SCFAs short-chain fatty
acids, LTA lipoteichoic acid, 5-HT 5-hydroxytryptamine,
GABA c-Aminobutyric acid
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pectin, and glucose [99]. However, prebiotics
are not exclusively restricted to carbohydrates.
For instance, there are cocoa-derived flavanols,
which, as indicated by in vivo and in vitro
investigations, have stimulating effects on lactic
acid bacteria [100]. Each prebiotic has a peculiar
mechanism of action. For instance, fructans
specifically act on lactic acid bacteria, while
galactooligosaccharides target Bifidobacteria,
Lactobacilli, Enterobacteria, Bacteroidetes, and
Firmicutes [99]. Moreover, starch and glucose-
derived oligosaccharides raise butyrate produc-
tion by targeting Bifidobacteria [99].

There are many ways by which we can
administer prebiotics. Oral supplementation
may be an option, but the cheapest would be
changing the patient’s lifestyle by focusing on
their eating habits and motivating them to
incorporate more GM-friendly foods into their
daily routine. The influence of nutrition on
GM’s composition, variety, and richness is sig-
nificant throughout life. A diet that includes a
wide range of fruits, vegetables, and fibers is
linked to increased abundance and diversity of
gut microorganisms [101]. For example, a study
on mice showed that the consumption of fruits

and vegetables not only increased the number
of Firmicutes but also decreased the number of
Bacteroidetes, resulting in a greater gut diversity
[102]. Fresh salad and herbs should be priori-
tized for their high microbial load [103]. An
example of foods that contain a high concen-
tration of prebiotics is sugar beet, garlic,
asparagus chicory, onion, Jerusalem artichoke,
wheat, honey, banana, barley, tomato, rye,
soybean, human’s and cow’s milk, etc. [99].

A few pre-clinical studies [104, 105] that
explore the potential of oligofructose have been
conducted. In a study, the administration of
oligofructose corrected the imbalance in the
intestinal microflora of obese mice. This was
achieved by increasing the presence of impor-
tant commensal microflora, specifically benefi-
cial Bifidobacteria. As a result, it suppressed the
subsequent inflammatory responses in both the
local and systemic circulation, ultimately
reducing joint cartilage injury associated with
osteoarthritis [105]. Supplementing with
oligofructose can prompt Bifidobacteria to
reduce gut permeability, enhance the produc-
tion of tight junction proteins, and suppress
inflammation. Furthermore, oligofructose

Fig. 3 Potential strategies to harness GM and modulate the gut–joint axis
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decreased the levels of pro-inflammatory
cytokines, specifically MCP-1 and IL-12, while
simultaneously increasing the levels of the anti-
inflammatory cytokine IL-10 in obese mice. In
addition, oligofructose inhibited the shift of
macrophages associated with obesity to the
joint synovium and decreased the levels of the
pro-inflammatory cytokine MCP-1 in the joints
of obese mice. This may suggest that oligofruc-
tose plays a role in regulating macrophage
migration in the development of OA [105].

Another study found that early oligofructose
supplementation could counteract the adverse
effects of a high-fat/high-sucrose diet on joint
damage in a rat model of OA. Additionally, this
supplementation greatly improved insulin
resistance, restored GM imbalances, and
reduced endotoxins in the body [104]. The
changes in the GM composition showed an
increase in the populations of Bifidobacterium,
Bacteroides/Prevotella, and Roseburia. At the same
time, the levels of Akkermansia muciniphila,
Methanobrevibacter, Faecalibacterium prausnitzii,
Clostridium cluster I, and Clostridium cluster IV
dropped. Bifidobacterium, Bacteroides/Prevotella,
and Roseburia had a positive correlation with
the preservation of cartilage, whereas Akker-
mansia muciniphila, Faecalibacterium prausnitzii,
and Clostridium cluster IV displayed a positive
association with cartilage deterioration.
Regardless, the rats that were exposed to a high-
fat/high-sucrose diet for 12 weeks were unable
to recover from the existing knee damage even
when given prebiotics and subjected to exercise
[104], thus underlining the potential role of
oligofructose as a prophylactic measure but not
as a treatment.

Probiotics

Probiotics are live microorganisms that benefit
the host when supplemented in sufficient
quantities [106]. Most data available comes
from pre-clinical studies, but some trials on
patients have been completed, and some are
ongoing. The main probiotics strains that have
been investigated are Lactobacillus casei, Lacto-
bacillus rhamnosus, Lactobacillus acidophilus,

Lactobacillus plantarum, and Streptococcus ther-
mophilus (TCI633).

In a study on rats, Lactobacillus casei has been
shown to alleviate inflammatory joint damage
in collagen-induced arthritis [107]. Interest-
ingly, Lactobacillus casei has also been investi-
gated in association with type II collagen and
glucosamine, where it has shown a synergic
action in reducing pain cartilage breakdown
and lymphocyte infiltration compared to glu-
cosamine or probiotics alone [108]. At the
molecular level, this synergistic action devel-
oped by decreasing the expression of the COX-2
enzyme, several pro-inflammatory cytokines
(TNF-a, IL-1b, IL-2, and IFN-c), and matrix
metalloproteinases (MMP1, MMP3, and
MMP13), while increasing anti-inflammatory
cytokines (IL-4 and IL-10) in both synovial
fibroblasts and chondrocytes [108]. A ran-
domised, double-blind clinical investigation
suggested that Lactobacillus casei Shirota had
advantageous benefits on the treatment out-
comes of knee joints affected by OA. This study
examined 537 patients with knee OA and
reported that taking a daily supplement of the
probiotic Lactobacillus casei Shirota for 6 months
resulted in significant improvements in the
western Ontario and McMaster Universities
Arthritis Index (WOMAC) functional scale, pain
VAS. Moreover, compared to a placebo group, a
reduction in systemic inflammation was noted
as measured by hs-CRP levels [109]. CRP levels
in OA patients, as demonstrated by Jin et al., are
strongly correlated with pain and a decline in
physical abilities [110].

Lactobacillus rhamnosus, a butyrate producer
strain, showed pre-clinically in a rat model of
OA an improvement in joint pain and inflam-
mation [111]. The molecular pathway impli-
cated in the rats that received the probiotic is an
increased expression of peroxisome proliferator-
activated receptor gamma (PPAR-c) and c-
aminobutyric acid (GABA), which are known to
regulate pain. It has been shown that PPAR-c
ligands effectively hinder significant inflam-
matory signaling pathways in individuals with
OA. They also reduce the COX-2/PGE2 path-
way, MMP-1, and IL-6 production in human
synovial fibroblasts [112].
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Lactobacillus rhamnosus has also been inves-
tigated in a trial on a single individual, a
67-year-old female with OA In her lower back
and right ankle [113]. The trial was organized in
three blocks, each lasting 10 weeks. Probiotic
supplementation consisted of a daily dosage of
two capsules containing a combination of Lac-
tobacillus rhamnosus, Saccharomyces cerevisiae,
and Bifidobacterium animalis ssp. Lactis. The
interventional group resulted in a modest yet
medically meaningful decrease in pain score for
the patient (VAS score 4.9 ± 2.2 in the placebo
group vs 4.0 ± 1.7 in the probiotic group) [113].

Lactobacillus acidophilus, a probiotic generally
used in yoghurt and other fermented dairy
products, has been showing pre-clinically
properties in relieving OA-associated pain by
suppressing the production of pro-inflamma-
tory cytokines and minimizing damage to the
cartilage [114]. Furthermore, it was noted that
the levels of TRPV1 and CGRP in the DRG were
elevated in OA rats but were reduced by treat-
ment with the probiotic. TRPV1 and CGRP have
a potential role in mediating the pain pheno-
type in OA rats [115].

In another experimental murine model,
Lactobacillus acidophilus was supplemented
twice a week orally to mice with OA produced
by partial medial meniscectomy [116]. The
treatment resulted in a notable decrease in pain,
the expression of TRPV1 in the DRG, and pro-
inflammatory markers such as TNF-a and NF-jB
in the knee. The study demonstrated that the
administration of Lactobacillus acidophilus
effectively alleviated knee joint pain caused by
inflammation and halted the progression of OA
when treatment was initiated during the
inflammatory stage of joint pain [116]. In
addition, the administration of Lactobacillus
acidophilus resulted in a large increase in the
abundance of the Akkermansia genus and bac-
teria belonging to the Lachnospiraceae family,
which are responsible for SCFAs production
[117].

Lactobacillus plantarum is a lactic acid bac-
terium found in the human stomach, possess-
ing some immunoregulative proprieties by
reducing the concentration of anti-inflamma-
tory cytokines. In a pre-clinical study [118], this
probiotic was evaluated In a rat model of knee

OA produced by anterior cruciate ligament
transection (ACLT). After 6 weeks, the inter-
vention resulted in a notable decrease in pain-
related behavior. The group treated with Lacto-
bacillus plantarum showed low cartilage degra-
dation and reduced levels of TNF-a and IL-1b,
indicators of synovial inflammation generated
by ACLT.

Streptococcus thermophilus (TCII633) is a new
strain that has been identified in human breast
milk, which possesses the ability to synthesize
hyaluronic acid (HA) [119]. In a rat OA model
with ACLT, the administration of TCI633 (at a
dosage of 5 9 1010 or 5 9 1011 CFU/kg/day)
and glucosamine led to pain behavior reduc-
tion, joint swelling reduction, and synovial tis-
sue inflammation reduction in an osteoarthritis
rat model. Additionally, an increase in the
expression of type II collagen in the cartilage
was noted [120]. HA has been recognized,
together with physical and rehabilitative inter-
ventions, as an effective agent in improving
disability, pain, and quality of life in subjects
with knee and ankle OA [121].

Streptococcus thermophilus has also been
investigated in a clinical trial on humans lasting
12 weeks, with 80 participants [122]. The treat-
ment showed a significant improvement of
41.58% in serum collagen type II C-telopeptide
(sCTX-II) and 39.58% in serum CRP. Despite
these positive laboratory results, the pain, stiff-
ness, and function values at 0, 4, 8, and 12
weeks in the probiotic group exhibited compa-
rable levels without any significant statistical
disparity among them. Moreover, the study
found that the absence of any change in
WOMAC scores demonstrated that the inter-
vention effectively slowed down the progres-
sion and development of osteoarthritis by the
end of the experiment [122].

A few trials exploring probiotics in OA
patients have been completed, but the results
have not been published yet [123–125]. It can
be summarized that probiotics may alleviate
pain associated with OA by decreasing the
expression of MCP-1, CCR2, TRPV1, and CGRP
in the DRG, by suppressing the expression of
MMP, COX-2, MCP-1, CCR2, and pro-inflam-
matory cytokines in the tissues of the joints and

Pain Ther



by increasing the quantity of SCFA or type II
collagen [126].

Nutraceuticals

Chondroitin and glucosamine are nutraceuti-
cals commonly used in clinical practice for OA
patients for their analgesic and chondroprotec-
tive effects [127].

The connection of these substances with GM
is duplex: on one hand, they can regulate GM,
and by doing so, they affect the GM–joint axis,
potentially alleviating OA symptoms. On the
other hand, the GM itself can also influence the
effectiveness of nutraceuticals in the gut
because they impact the metabolism of glu-
cosamine sulfate and chondroitin metabolism,
thereby restricting the efficacy of administering
these substances orally. For instance, the
degradation products of CSA, the main com-
ponent of chondroitin sulfate, have been
investigated in the GM of six healthy humans.
It has been found that each subject’s GM
showed different degrading activities, but all
the end products contained DUAGalNAc4S.
This suggests that chondroitin sulfate can be
easily broken down to different extents by var-
ious microbial communities. The degradation
may contribute to the low bioavailability and
varying effects of chondroitin sulfate in
managing patients with OA [128].

A pre-clinical study on mice discovered that
chondroitin sulfate disaccharides could
decrease blood LPS levels and enhance the
levels of fecal total SCFAs, particularly butyrate.
Furthermore, the addition of chondroitin sul-
fate resulted in a decrease in the presence of
Proteobacteria and an increase in the presence
of Bacteroidetes in the gastrointestinal tract
[129]. This indicates that chondroitin sulfate is
a bioactive nutraceutical with anti-inflamma-
tory properties and protects the gut and its res-
ident microbiota. In another pre-clinical study
that compared the effectiveness of Chondroitin
sulfate, chicken cartilage powder and collagen
peptides in treating OA, it was found that
chondroitin sulfate had the most effective
therapeutic effect by significantly improving
the structure of joint cartilage and reducing OA

scores through a decrease in the levels of
inflammatory cytokines, such as prostaglandin
E2, TNF-a, IL-1b, IL-6, and IL-17, in the serum or
synovial fluid. Additionally, chondroitin sulfate
increased the presence of Bacteroidetes, a type of
bacteria associated with beneficial effects [130].

Regarding glucosamine, a study found that
supplementing glucosamine sulfate or green-
lipped mussel extract could alleviate symptoms
of OA by regulating the GM [93]. A systematic
review identified eight studies that examined
how glucosamine sulfate or chondroitin sulfate
affected the composition of the GM in either
adult people or animals [131]. The authors
reported that chondroitin sulfate enhanced the
presence of Bacteroides in the intestines of both
people and mice, hinting at its potential role in
alleviating OA. However, there was minimal
data about the impact of glucosamine sulfate on
the GM [131]. Further research is needed on
nutraceuticals to study the potential effect of
OA treatment by GM modulation.

Exercise

Data from pre-clinical and clinical studies
demonstrated that exercise is a cornerstone of
GM modulation. For instance, since 2008, run-
ning exercises in mice have been known to
change GM, leading to an increase in butyrate
levels, an SCFA that is pivotal as it is the primary
fuel utilized by colon cells [132]. Consequently,
the more butyrate is available, the higher the
growth of cells in the colon lining, with an
improvement in the gut barrier and the modu-
lation of the host’s immune system and gene
expression [133]. The same dynamic can be seen
in humans, as a study showed that rugby play-
ers had a more diverse and abundant GM
compared to inactive slim individuals. The
athletes had higher levels of 40 different types
of bacteria and exhibited reduced levels of Bac-
teroides and Lactobacillus species [134]. In these
studies, exercise is not the only variable in the
equation. The diet differed between the two
comparative groups, with athletes consuming
more proteins than the other group [134].
Similarly, another study found that physically
active women who engaged in at least 3 h of
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exercise per week had higher amounts of Fae-
calibacterium prausnitzii, Roseburia hominis, and
Akkermansia muciniphila compared to inactive
individuals. These strains are key players in GM
eubiosis as the first two strains produce butyrate
while the latter is involved in enhanced meta-
bolic health [135]. A possible explanation of
this GM modulation by physical activity could
be found in the ability of exercise to modify the
gene expression of intraepithelial lymphocytes.
This, in turn, reduces the production of pro-
inflammatory cytokines and increases the
secretion of anti-inflammatory cytokines and
antioxidant compounds [136]. Moreover, exer-
cise can impact the integrity of the mucus layer
along the gastrointestinal mucosa, exerting a
double action by hindering the attachment of
microorganisms to the lining of the mucosa and
by acting as a source of nourishment for par-
ticular microorganisms such as Akkermansia
muciniphila [137].

Lastly, subjects engaged in more physical
activities have lower resting levels of circulating

bacterial endotoxin LPS and a stronger heat-
shock protein (HSP) response to heat stress than
sedentary individuals [138]. How is this more
robust HSP response going to help? By hinder-
ing the deterioration of tight junction proteins
that connect epithelial cells, thus reinforcing
the gut barrier [139].

A possible mechanism behind these data
may be found in the connection between gut
lymphatic vessels and GM. The lymph produc-
tion and propulsion process is essential for
maintaining the proper balance of fluid in the
interstitial tissue and serosal spaces [140]. Exer-
cise may contribute to lymph propulsion by an
extrinsic mechanism, which usually affects
blood vessels in parts of the body that undergo
regular motions, such as the heart or skeletal
muscles and lymphatic vessels affected by heart
activity or breathing, intestinal movement,
and external pressure [141]. For this propulsion
to happen, it is pivotal to maintain the integrity
of the lacteals, i.e., the lymph vessels located in
the villi, whose integrity depends on GM

Fig. 4 The role of exercise is to shape the interplay
between the GM and the lymphatic system. The mechan-
ical propulsion favors the drainage of important GM

factors that interact with the rest of the body. A mucus
layer protects the gut by facilitating the harboring of
commensals versus pathogens
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eubiosis [142]. Lymph propulsion may allow
several GM mediators discussed above to reach
their target, such as the joint or the brain along
the gut–joint and gut-brain axis (Fig. 4).

Established that exercise strongly impacts
GM, this ‘‘positive’’ perturbation has to be
linked to a positive change in OA pathogenesis.

Therapies involving aerobic exercise and
prebiotic fiber, individually or in combination,
effectively shielded knee joints from harm in rat
models of OA. This indicates that exercise may
impact the advancement of OA in conjunction
with GM [104] by influencing apoptotic, pro-
inflammatory, and anti-inflammatory signals.
Similarly, physical activity in rats with an OA
model enhances the variety of microorganisms
in the GM, decreases the levels of LPS in syn-
ovial fluids and blood, reduces the expression of
MMP-13 and TLR4, and improves cartilage
damage [143].

Whole body vibration (WBV) is an innova-
tive neuromuscular approach that utilizes the
vibration produced by a vibration platform to
enhance the bioactivity of muscle groups [144].
This therapy has demonstrated in rats that it
leads to a notable rise in the numbers of CD4
and CD25 positive lymphocytes, as well as an
improvement in the differentiation of Treg cells
with a significant rise in the abundance of Lac-
tobacillus animalis [145]. The changes in the
composition of GM, specifically concerning
Lactobacillus spp., caused by WBV were found to
be associated with the development of T reg
cells in mice. These cells have a crucial function
in the human intestine by producing IL-10,
which is necessary for maintaining the balance
and stability of the intestinal environment and
the GM [145]. Thus, WBW may affect OA
pathogenesis by modulating GM, which in turn
affects the immune system, dulling the low-
grade inflammation, which is the light motive
of OA pathogenesis [146].

Fecal Microbiota Transplantation

FMT is a medical procedure whereby a dysbiotic
patient receives stools from a ‘‘healthy’’ donor
to restore eubiosis [147]. Every bacteria that live
in the gut normally, along with all its

byproducts, is present in an FMT sample.
Because of this, this therapy might be more
effective than others at restoring dysbiosis
[148]. There are hazards associated with this
procedure, though. As a matter of fact, infec-
tions that are undesirable and/or undiagnosed
may also be transferred from the donor to the
receiving person, occasionally even leading to
death [149]. FMT has been demonstrated to be
highly effective in treating recurrent Clostridium
difficile infection [150], which led scientists to
investigate the use of FMT in various condi-
tions, such as allergic diseases, metabolic syn-
drome, irritable bowel syndrome, and
inflammatory disease [151].

Among the medical conditions that may
benefit from this procedure, OA treatment by
FMT has also been hypothesized. An interesting
attempt to explore the feasibility of FMT has
been performed by Huang et al. in mice [41].
Fecal samples were collected from human
donors: four were healthy controls, four had
knee OA without metabolic syndrome, and four
had knee OA with metabolic syndrome. These
three groups of samples were transplanted into
germ-free mice 2 weeks before getting meniscal
ligamentous injury (MLI). After 10 weeks from
the start of the experiment, the severity of his-
tological OA in mice was assessed, along with
systemic inflammation, intestinal permeability,
and synovitis. The mice that had been trans-
planted with the samples from patients with OA
and metabolic syndrome exhibited elevated
cartilage damage scores, increased levels of
serum inflammatory factors (IL-1b, IL-6, and
macrophage inflammatory protein-1a), higher
levels of serum LPS, greater intestinal perme-
ability, and reduced diversity of the GM. The
study found a significant correlation between
the gut bacterial genera, cartilage histology
scores, and inflammatory factors. Specifically,
the presence of Fusobacterium and Faecalibac-
terium and the decreased abundance of
Ruminococcaceae were associated with higher
cartilage histology scores and increased levels of
inflammatory factors [41]. This study confirmed
the two-hit models of OA pathogenesis where
one hit Is the emergence of gut dysbiosis and
the second is the joint damage, paving the way
for new studies exploring the possibility of GM
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modulation by FMT to treat OA. No studies
have been done in humans, let alone for a single
case report where FMT has been employed on a
patient to treat RA [152]. Further research is
urgently needed in the light of these findings.

CONCLUSIONS

The developing comprehension of the connec-
tion between this meticulous symphony direc-
tor, the GM, and joints, known as the gut–joint
axis, with its potential impact on OA is a
promising area of investigation. Nevertheless,
numerous inquiries still lack resolution. To
completely understand the onset and progres-
sion of the disease, it is necessary to conduct
thorough investigations into the gut bacteri-
ome, mycobiome, and virome in individuals
with OA, pushing the transition from bench to
bedside. Gaining insight into these intricate
relationships has the potential to unlock novel
approaches for preventing and treating OA. The
correlation between GM and OA signifies a
captivating and dynamic area of research. The
idea of the gut–joint axis emphasizes the com-
plex interaction between GM and joint health.
Currently, the main evidence points to the fact
that if, on the one hand, interventions such as
supplements and FMT may require further val-
idation, on the other hand, others such as diet
and exercise, may already be slowly imple-
mented as they have been proven feasible and
safe by their beneficial effect through several
mechanisms on a broad spectrum of patholo-
gies. Advancements in research in this field may
reveal new and effective treatment options for
addressing this widespread and incapacitating
ailment. Although there is still a great deal of
knowledge to acquire, the potential influence
on the well-being of individuals with OA is
encouraging and exciting.
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