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ABSTRACT

Chronic pain is a debilitating condition with a
growing prevalence both in the USA and glob-
ally. The complex nature of this condition
necessitates a multimodal approach to pain
management that extends beyond the estab-
lished pharmaceutical interventions currently
employed. A variety of devices comprising both
invasive and noninvasive approaches are avail-
able to patients, serving as adjuvants to existing
regimens. The benefits of these interventions
are notable for their lack of addiction potential,
potential for patient autonomy regarding self-
administration, minimal to no drug interaction,
and overall relative safety. However, there
remains a need for further research and more
robust clinical trials to assess the true efficacy of
these interventions and elucidate if there is an
underlying physiological mechanism to their
benefit in treating chronic pain or if their effect
is predominantly placebo in nature. Regardless,

the field of device-based intervention and
treatment remains an evolving field with much
promise for the future chronic pain
management.
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Key Summary Points

Chronic pain is a complex condition with
increasing prevalence and significant
impact on quality of life for patients
necessitating multimodal approaches to
pain management.

A variety established and novel invasive
and noninvasive approaches besides
pharmaceuticals exist for patients
suffering from chronic pain.

Options for pharmaceutical adjuncts
range from clinic-based interventions to
self-administered, noninvasive devices
that provide patients with autonomy and
control over their chronic pain condition.

The nonpharmaceutical options for
treatment of chronic pain continue to
grow and evolve with novel technologies
and offer patients low-risk alternatives
with minimal to no risk for drug–drug
interactions.

Despite the promise of these adjuncts to
pharmaceutical intervention for chronic
pain, a need for large-scale clinical trials
and further research remains to elucidate
the true efficacy of these interventions.

INTRODUCTION

Chronic pain is a complex problem that places a
significant burden on the patients affected by it.
In contrast to acute pain, which provides a
survival benefit, chronic pain continues to per-
sist after healing from an injury or disease has
taken place, or pain that occurs in the absence
of prior tissue damage. Although commonly a
product of injury or disease, it is imperative to
consider chronic pain as a unique and separate
condition given the variety of treatment
modalities available to clinicians and patients
[1, 2].

The prevalence of pain both worldwide and
in the USA demonstrates the need for myriad
approaches to chronic pain management. The
National Health Interview Survey data indicate
a prevalence in the USA of approximately 20.5%
(50.2 million) American adults being affected by
chronic pain [3, 4]. Globally, approximately 1.9
billion people display common symptoms of
chronic pain, such as tension-type headaches
[2]. The allostatic load hypothesis postulates
that individuals who endure persistent daily
exposure to poor socioeconomic conditions are
predisposed to the development of numerous
diseases, including chronic pain, due to the
elevation and accumulation of stress hormones
such as cortisol. In essence, a steady-state,
sympathetic fight-or-flight state of existence
results in an accumulated stress on the body
that eventually manifests in a variety of disease
states. Furthermore, patients with lower
socioeconomic status (SES) were found to have
greater disability secondary to chronic pain and
experience more intense pain compared with
individuals from higher SES classes [5–7].

The complex nature of chronic pain neces-
sitates a multimodal approach to its manage-
ment, with therapies designed to target various
aspects of its biopsychosocial composition in a
stepwise escalating manner. Initial interven-
tions are comprised of oral analgesics, ranging
from nonsteroidal antiinflammatories (NSAIDs)
to weak and strong opioids. Topical formula-
tions of both opioids and nonopioids are viable
alternatives, especially given their improved
safety profile in comparison to the oral formu-
lations [8–10]. Additionally, the aforemen-
tioned medications can be supplemented with
adjuvant therapies designed to address neuro-
pathic pain in particular: antiepileptics and
antidepressant therapies. Furthermore, antide-
pressants serve a multi-pronged approach given
their primary function of treating the com-
monly associated comorbidities of depression
and insomnia with chronic pain [11]. Patients
with persistent or progressive pain despite oral
and transdermal analgesic interventions are
often candidates for interventional manage-
ment. These therapies include nerve blocks,
denervation procedures, implantable devices
such as infusions pumps and neurostimulators,
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and transcutaneous electrical nerve stimulation
(TENS). New approaches to chronic pain man-
agement include mobile applications and vir-
tual reality (VR), both of which have shown
promise in meta-analyses as potential primary
interventions given their safety profiles [12, 13].

METHODS

A literature review was conducted using key-
word searches of the PubMed database, specifi-
cally focusing on chronic pain, spinal cord
stimulators, intrathecal and epidural drug
delivery systems, transcutaneous electrical
nerve stimulation, dorsal root ganglion stimu-
lators, peripheral nerve stimulation, noninva-
sive neuromodulation, mobile applications, and
virtual reality. Specifically, the intention was to
do a narrative review educating on the afore-
mentioned devices and not a comprehensive
systematic review. While no inclusion or
exclusion criteria for date of publication were
established, an emphasis on more recent litera-
ture was used during review of the current lit-
erature. Eighty-one resources were selected for
the literature review, with approximately 30
literature sources being discarded due to date of
publication and updated findings in the litera-
ture or lack of relevance to the topic. This article
is based on previously conducted studies and
does not contain any new studies with human
participants or animals performed by any of the
authors.

RESULTS

Spinal Cord Stimulator

A spinal cord stimulator (SCS) is a device that
leverages the principles of neuromodulation of
pain pathways to provide pain relief through
electrical stimulation of the adjacent dorsal
column pathways when placed in the epidural
space, usually with radiographic guidance. As
theories of pain control have moved beyond
gate control theory, the mechanism of SCS pain
modulation has likewise developed, with SCS
modulation thought to affect the descending

antinociceptive system (DAS) and local gamma
aminobutyric acid (GABA)-ergic, cholinergic,
and serotonergic neurons affecting segmental
and supraspinal neurophysiology and central
and peripheral neuroinflammation [14, 15].
After implantation of the electrical stimulation
leads, they are attached to a battery pack and
stimulation generator that are usually placed in
a subcutaneous pocket. While patients with
intractable focal neuropathic pain, such as
those with polyneuropathy or phantom limb
pain may benefit from this intervention, the
most evidence for use of these stimulators is
currently regarding patients who have been
labeled as suffering persistent spinal pain syn-
drome (PSPS) type 2. PSPS type 2 represents an
unfortunate category of patients who have
persistent low back pain following back surgery.
The efficacy of SCS in PSPS type 2 patients is
underpinned by two studies, which together
found that SCS was more effective than both
reoperation or medication management with
the outcome being a significant ([50%)
reduction in pain. In the first, 50 patients were
followed and SCS was found to be more effec-
tive than reoperation in relieving pain for
lumbosacral radicular pain in PSPS type 2, with
the primary measure being[50% pain relief
after the procedure [16]. The second study
showed that patients with persistent radicular
pain after surgery for disc herniation had better
pain control with SCS versus medication man-
agement [17]. These two studies together sug-
gest that in PSPS type 2, patients have a higher
likelihood of significant ([50%) pain relief
with SCS versus reoperation or continued
medication management. However, it is
important to mention that along with the
increased likelihood of significant pain relief,
about 25% of patients have been found to have
complications such as wound infection or
breakdown, lead or electrode problems, or bat-
tery pocket complications [16, 17]. There is no
high or moderate quality evidence for the use of
SCS in patients with low back pain without
previous back surgery according to the recom-
mendations from the American Pain Society
[18]. As such, the use of SCS in PSPS type 2
should be undertaken following an appropriate
informed consent and shared decision-making
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process regarding the likelihood of significant
pain relief balanced with the risks of further
complications and lack of significant relief.

Intrathecal and Epidural Drug Delivery
Systems

Intrathecal and epidural drug delivery systems
are primarily employed in patients with neuro-
pathic chronic pain, often secondary to spinal
cord injury. This method relies on placement
using radiographic guidance and the implanta-
tion of a pump/reservoir in a subcutaneous
pocket. There is evidence for use of these drug
delivery systems primarily in the administration
of baclofen, morphine, and clonidine for mod-
ulation of spasticity, chronic intractable pain,
and the autonomic nervous system, respectively
[19–21]. Baclofen is a centrally acting skeletal
muscle relaxant, which is a structural analog of
GABA, used to reduce spasticity in patients with
spinal cord injury. When given intrathecally, it
allows for much smaller doses than when given
systemically, maximizing the benefits for
mobility while minimizing the drowsiness and
neurological side effects that come with sys-
temic administration [20, 22]. Intrathecal or
epidural morphine treatments benefit from
route of administration in much the same way,
allowing for modulation of central pain regions
at lower doses than systemic treatment (likely
secondary to more direct access to the substan-
tia gelatinosa) while minimizing potential side
effects and the risk of central respiratory
depression [23]. This has been particularly
helpful in chronic pain from cancer, and inter-
ventional pain management has a role to play
in the comprehensive treatment of
intractable cancer pain [24]. Finally, the use of
clonidine as an adjunct to local anesthetics,
morphine, and baclofen has been studied with
regards to the analgesic effects of both its a-2
agonism and recent research suggesting that
they may have a role in inhibiting allodynic
pain signaling through inhibition of proin-
flammatory cytokines [25, 26]. Clonidine has
also been found to be effective for patients with
complex regional pain syndrome (CRPS) [27].

Dorsal Root Ganglion Stimulator

Dorsal root ganglion stimulators are devices
similar to SCS, but focus on the first-order sen-
sory neurons whose cell bodies sit in the dorsal
root ganglion (DRG) and project from the distal
nociceptors to the spinal cord and central ner-
vous system (CNS). The DRG is a good target for
stimulation because of its position in the
epidural space bathed in cerebral spinal fluid
(CSF), as well as the ability to spatially target
chronic pain [28]. In fact, a systematic review of
current literature in 2019 suggested that DRG
stimulation has significant efficacy in the
treatment of CRPS types I and II, as well as for
patients who have focal neuropathic pain with
an identified pathology. In fact, DRG stimula-
tion was agreed upon to be superior to tonic SCS
for focal pain secondary to CRPS I or II in the
lower extremities [29, 30]. Another prospective
study on patients with intractable chronic pain
of the trunk or lower limbs secondary to PSPS
type 2, CRPS, or peripheral nerve injury found
that DRG stimulators provided significant
([50%) pain relief in 49% of patients, while
reducing the primary area of pain in these
patients [31].

Transcutaneous Electrical Nerve
Stimulation

Transcutaneous electrical nerve stimulation
(TENS) is a hand-held device that delivers non-
invasive low-voltage electrical currents through
adhesive electrodes that are applied to patients’
skin. The amplitude, frequency, duration, and
pattern of the electrical currents can be adjusted
to provide analgesia specific to a patient’s
needs. The exact mechanism of analgesia is
likely multifactorial in nature and involves
multiple aspects of the pain-signaling pathway.
Specifically, TENS results in activation of large
diameter afferent fibers that subsequently cause
activation of descending inhibitory systems in
the central nervous system functions to modu-
late the perception of noxious stimuli. This
mechanism relies on the gate control theory of
pain modulation: activation of lower-threshold
potential for activation mechanoreceptor
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afferents will inhibit or downregulate ascending
signals from higher-threshold nociceptive
afferents [32–35]. This proposed mechanism
was supported in studies where the periaque-
ductal gray (PAG), rostral ventromedial medulla
(RVM), and spinal cord were blocked, resulting
in decreased efficacy of TENS analgesic effects
[36]. Peripherally, TENS has been shown to
reduce substance P release, a proinflammatory
molecule, as well as modulation of alpha-2a
receptors [37, 38].

The intensity of stimulation is therefore a
critical factor in optimizing efficacy, regardless
of frequency of application. Intensity needs to
produce a strong, nonpainful sensation to
stimulate mechanoreceptor afferents with sub-
sequent titration during treatment to maintain
an adequate level of activation for 30 min. As
previously mentioned, TENS has mechanisms to
produce hypoalgesia or analgesia through
peripheral means described as extra-segmental
analgesia: decreased inflammation-induced
dorsal horn neuron sensitization, altered levels
of inhibitory neurotransmitters such as gamma-
aminobutyric acid and glycine, and modulation
of the activity of cells that support and sur-
round neurons in the spinal cord. These extra-
segmental effects are targeted when using
acupuncture-like TENS therapy [32, 35].

One of the most significant advantages of
TENS in chronic pain management is the
autonomy patients derive with the device, and
the minimal adverse effects and abuse potential.
Furthermore, it provides an additional adjuvant
to a patient’s analgesic regimen without con-
cern of polypharmacy or unwanted drug inter-
actions. Multiple randomized control trials
(RCTs) have shown benefit in the management
of both acute and chronic pain, including
arthritis, chronic low back pain, fibromyalgia,
myopathy, and neuropathic pain
[32, 33, 39–41]. However, the quality of these
RCTs remains in question. Several meta-analy-
ses have been conducted to assess the quality of
data regarding the efficacy of TENS in chronic
pain management and were relatively consis-
tent in their findings. There is a plethora of
poorly powered trials; however, the majority
favors a benefit from TENS intervention when

compared with a lack of benefit or adverse
effects [33, 42, 43].

Despite the benefits, there are limitations to
this noninvasive intervention. The electrodes
must be placed on healthy skin directly over the
painful area for best results. Additionally, while
the pulse amplitude is a key factor on how
patients will respond to TENS due to the rela-
tionship to fiber recruitment, the effects of
other modifiable aspects are based on poor
research, failing to pinpoint the sole influencer.
Therefore, a trial-and-error approach is required
to establish the most efficacious device settings,
which may be a hindrance to patient compli-
ance. Progression of the chronic pain condition
may also limit the analgesic effects over time,
necessitating additional manipulation of the
amplitude, frequency, duration, and pattern of
the electrical currents. The limitations of TENS
grow evident when used as the only treatment
for moderate-to-high acute pain, thus support-
ing its role as an adjuvant in a multimodal
analgesic plan [32, 34, 44].

Peripheral Nerve Stimulation

Peripheral nerve stimulators (PNS) are approved
for use in intractable pain of peripheral nerve
origin. This allows for targeted pain relief
without disruption of the central nervous sys-
tem and without violating the dural sac. The
peripheral, noninvasive approach reduces the
risk profile of stimulator placement, but also
confines its benefits to one or two localized
peripheral nerve distributions [45]. However,
the lack of surgical intervention results in a
more attractive option in cases where antico-
agulation status or other limitations prevent
placement of a more centrally acting nerve
stimulator. The use of PNS in chronic pain
treatment is on the rise, with much of the lit-
erature regarding its use and possible applica-
tions occurring within the past few years. It has
been shown to be effective in the treatment of
CRPS types I and II, as a retrospective chart re-
view at the Cleveland Clinic showed a 20%
reduction in opioid use 12 months after place-
ment, as well as improved pain scores in this
study and other prospective studies [46, 47]. It is
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also effective in the treatment of trigeminal
neuropathic pain and phantom limb pain
[48, 49]. A systematic review of the literature
shows that the strongest case for PNS use is in
chronic pain from refractory peripheral nerve
injury, followed by use for pelvic pain and
cluster headaches [50]. However, given the
exciting future ahead for the use of PNS, future
applications extend to essentially any named
nerve as long as basic tenets of safe implanta-
tion are followed. The most significant risks
associated with PNS are those of lead migration
and erosion (given proximity to neurovascular
bundles and generally more movement than
with axial SCS leads), and issues such as lead
fracture and infection. As such, it represents a
relatively safe and reliable option for the treat-
ment of refractory chronic pain in limited nerve
distributions. A promising new horizon for PNS
exists when looking at both the increase in
purpose-built systems for implantation, as well
as examinations of possible mechanisms by
which PNS may influence CNS remodeling and
potentially lead to prolonged improvement of
pain beyond the period of stimulation [51, 52].

Noninvasive Neuromodulation

Neuromodulation involves the alteration of
nerve activity, either peripherally or centrally,
via a targeted stimulus that can be range from
noninvasive to surgical modalities. Noninvasive
neuromodulation in particular is an appealing
method of chronic pain management given its
nonaddictive qualities and safety profile in
comparison to pharmacologic and invasive
interventions. Currently, there are three forms
available to patients: transcranial magnetic
stimulation (TMS), transcranial current stimu-
lation (TCS), and transcranial focused ultra-
sound (tFUS).

The mechanism of action of TMS remains
unclear, although it is likely multifactorial in
nature, with several studies showing a potential
for individualized responses to the stimulation
[53]. One proposed mechanism; however, is
that TMS of the motor cortex restores inhibitory
processes that are likely impaired in chronic
pain conditions [54]. Additionally, cortical

stimulation may result in enhanced endoge-
nous opioid secretion in nociceptive modula-
tion brain regions such as the periaqueductal
gray [55, 56]. TMS has been shown to be effi-
cacious in the treatment of chronic neuropathic
pain with evidence of prolonged analgesic
effects after multiple sessions [57–59]. Regard-
ing other forms of chronic pain, there remains
limited evidence but some studies show pro-
mise for condition such as CRPS and
fibromyalgia [60, 61].

TCS relies on direct current stimulation of
the cortex to either reduce (cathodal) or
increase (anodal) excitability of neurons
directly under the area of the scalp electrodes
[62]. In a similar mechanism to TMS, this
stimulation of modulates the inhibitory mech-
anisms the cortex to reduce overactivity in
thalamic nuclei and activate descending pain
control mechanisms [63, 64]. Multiple clinical
trials have been conducted with subsequent
meta-analyses showing moderate analgesic
effects in a variety of chronic pain conditions;
however, clinical recommendations exist only
for fibromyalgia and lower-limb pain [53, 65].

Unlike TMS and TCS, which suffer from tis-
sue attenuation and lack of spatial precision,
tFUS is an emerging technology that can be
readily adjusted to target specific cortical
regions with greater fidelity. The pulsed
mechanical energy from the ultrasound trans-
ducer can be adjusted to induce excitation or
inhibition as necessary to elicit the desired
analgesic effects. The exact mechanism of tFUS
remains unclear at this time and additional
studies are necessary to elucidate the chronic
pain conditions that would benefit most from
this growing technology [65–67].

Mobile Applications and Virtual Reality

The use of mobile phone applications in
managing chronic pain provides an alternative
to more invasive interventions such as
implantable devices or TENS. Furthermore,
given how common access to mobile phones
has become, these applications offer patients an
out-of-clinic modality that is readily available to
facilitate a multimodal approach to their
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chronic pain symptoms. Several meta-analyses
have examined the efficacy of various applica-
tions and were notable for improvements in
patients’ perceptions of their pain in addition to
quality of life measures [13, 68]. Additional
benefits are based on the autonomy patients
exercise in utilizing these interventions, creat-
ing more ownership over their pain manage-
ment in an effort to reduce relapse rates [69].

The context of mobile applications span a
broad spectrum, ranging from instructions on
self-acupressure to music intervention and arti-
ficial intelligence, to chat forums moderated by
experts in pain management [70–72]. However,
despite the myriad of options available to
patients and the noted improvement in pain
scores, care must be exercised due to the lack of
scientific validation and low-quality consensus
guidelines that are used in developing these
applications. Furthermore, the implementation
of self-management support and behavior-
modifying features is often lacking, raising the
question of long-term pain improvement with
cessation of use [69, 73, 74]. Regardless, these
interventions offer a promising adjunct to cur-
rent pain management regimens, especially
when careful consideration by the physician
and patient is undertaken to ensure high-qual-
ity and well-developed applications are used.

Another novel and evolving noninvasive
patient-autonomous intervention utilizes vir-
tual reality (VR) to create an artificial three-di-
mensional (3D) environment in which patients
can interact via an avatar. A head-mounted
display and various head and hand-held sensors
allow for the perception of movement within
the simulated environment. The primary
mechanism of analgesia provided by VR is
through manipulation of the neuromatrix the-
ory of pain. Specifically, pain is a multidimen-
sional experience influenced by cognition,
sensation, and affect that can be attenuated
with distraction [75–77]. The impact of distrac-
tion analgesia can be seen in functional mag-
netic resonance imaging of specific pain-related
regions in the brain during VR distraction, with
noted decreased activity in those regions [78].
This method of analgesia is especially potent in
the acute pain setting as it has been imple-
mented in pediatrics during venipuncture and

other painful procedures [77, 79]. However, the
pathophysiology of chronic pain is unique from
acute pain and raises the question of the effi-
cacy of VR in distraction analgesia and neuro-
modulation in this particular patient
population.

Several meta analyses have analyzed the lit-
erature and found evidence of significant
improvements in pain and quality of life (QoL)
scores [12, 80–82]. In a prospective study con-
ducted by Alemanno et al., the use of VR in
reducing chronic low back pain was reviewed,
focusing on pain and QoL scores in addition to
neuropsychological and functional outcomes.
Significant decreases in pain scores were noted
for patients in addition to improvements in
QoL scores. Although less profound, cognitive
functions were also improved from baseline
assessments. In particular, this study focused on
the hypothesis of neuromodulation and body
perception correction: specifically, patients
with chronic low back pain often have poor
perceptions of their functional abilities and
somatic dis-perception, likely secondary to
reorganization of the primary somatosensory
cortex [77, 83–85]. Through multiple training
sessions, participants showed enhanced move-
ment reproducibility, lending support to the
hypothesis of improving body perception with
VR. Furthermore, all patients completed the
study without any dropouts, in line with pre-
vious reports showing VR training to be a
pleasant experience that is well tolerated by
chronic pain patient populations [86].

Despite the significant benefits of VR train-
ing in improving pain and QoL scores in
chronic pain patients, there remains a signifi-
cant gap regarding the long-term effects of these
interventions. A small study of six women with
fibromyalgia conducted by Botella et al. showed
improvement in functional status at 6 months
post VR training; however, the small power of
this study and lack of evidence in other forms of
chronic pain necessitates a need for further
investigation to elucidate whether there is long-
term neuromodulation of specific brain regions
[87]. Regardless, the decreasing cost of VR and
relative accessibility should not preclude the
implementation of this noninvasive therapy in
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a multimodality approach to management of
chronic pain.

DISCUSSION

Chronic pain has a complex nature affecting
multiple aspects of patient well-being that
necessitates multiple avenues of management,
ranging from oral analgesics to invasive inter-
ventions and more novel techniques such as
mobile apps or VR. As outlined in the neuro-
matrix theory of pain developed by Melzack,
management of chronic pain requires a multi-
modal approach to address the various factors
that influence a patient’s experience. Therefore,
implementing a single treatment modality will
likely create deficits that impede the ability to
improve a patient’s experience with chronic
pain. Novel devices and approaches continue to
become critical to devise more efficacious regi-
mens to combat the ever-increasing burden of
chronic pain that now affects more than one in
five Americans.

Continued advances in chronic pain man-
agement are evident in the variety of devices
available to physicians and their patients.
Implantable devices comprise a wide variety of
therapeutic modalities targeted to specific
regions of the pain pathway. Spinal cord stim-
ulators have been shown to provide significant
reductions in pain in several studies; however,
their efficacy has only been studied in a small
subset of the various types of chronic pain, most
notably PSPS type 2. This deficit of evidence
provides an opportunity for future studies to
assess the efficacy of SCS in the management of
a variety of chronic pain types. DRG stimulators
are an alternative to SCS in particular subsets of
the chronic pain population, specifically those
with CRPS. DRG stimulators were shown to
have superior efficacy when compared with
tonic SCS. Of note, however, is the important
consideration that these invasive procedures are
not without their own risk of complications and
potential for device failure.

Intrathecal and epidural drug delivery sys-
tems have also been shown to provide relief of
chronic pain to a greater variety of chronic pain
than noted with SCS. Utilizing a variety of drugs

such as baclofen, morphine, and clonidine to
alleviate spasticity, chronic intractable pain,
and the autonomic nervous system, respec-
tively, these delivery systems can be tailored to
the specific needs of each patient. A unique
benefit of these systems is the route of admin-
istration limits the well-documented adverse
effects of the aforementioned drugs due to the
smaller doses required, thus limiting systemic
absorption. Again, as noted with SCS and DRG
stimulators, there are complications that must
be considered with these devices in addition to
certain preexisting conditions or prior spinal
surgeries that would preclude patients from
being potential recipients.

In contrast to the above devices, which are
notable for their invasive nature and subse-
quent associated risks, TENS, noninvasive neu-
romodulation, mobile applications, and VR
offer unique modalities of intervention with
significant benefits rooted in their relative ease
of access and minimal-to-nonexistent adverse
effects. TENS devices rely on the gate control
theory of pain modulation by providing non-
painful stimulation over the painful area to
downregulate or inhibit afferent nociceptive
signals in addition to extra-segmental release of
endorphins and inhibitory neurotransmitters.
The notable benefits of these devices are patient
autonomy, ease of use, and their lack of abuse
potential and adverse interactions with anal-
gesic drugs. However, the relatively short-term
effect and habituation to the stimulation
requires more frequent application to obtain
similar effects with prolonged use. Noninvasive
neuromodulation techniques function through
multiple mechanisms including upregulation of
inhibitory processes and increased endogenous
opioid release to produce analgesia. While TCS
and TMS have been shown to be efficacious in a
variety of chronic pain conditions, they lack the
precision, depth of penetration, and modifia-
bility that tFUS provides. However, given the
relatively novel technique of tFUS and need for
understanding parameter manipulation with
excitatory and inhibitory pulses, further
research is required to allow this modality to
become a more common tool used in chronic
pain management. Mobile applications com-
prise a broad spectrum of interventions
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designed to address particular aspects of chronic
pain that can be selected to best suit a patient’s
needs and lifestyle. However, the limitation
with these applications is their lack of high-
quality consensus guidelines and scientific lit-
erature being used to develop them. This places
an additional burden on physicians and care
teams to ensure due diligence in selecting a
mobile application to serve as an adjunct in a
management plan, while raising the question of
the long-term efficacy of these interventions.
Specifically, the notable deficits in this area of
chronic pain management necessitates the need
for more a more rigorous process of developing
and creating these applications to ensure their
foundation in sound science and well-refuted
consensus guidelines. VR, in contrast, relies on
manipulating the neuromatrix theory of pain
through distraction analgesia and body percep-
tion training. Studied in a variety of chronic
pain conditions with notable success in patients
with chronic low back pain, VR holds promise
as an adjuvant with some evidence of long-term
impact in particular populations, such as those
affected with fibromyalgia. Additionally, the
multimodal mechanism by which VR works to
improve chronic pain creates an opportunity for
further research to better understand the
underlying physiology, in addition to implant-
ing this adjuvant in previously untested chronic
pain groups. Therefore, despite their drawbacks,
mobile applications and VR provide a low-cost
and low-risk adjuvant to more invasive or high-
risk interventions.

CONCLUSIONS

The field of chronic pain management contin-
ues to evolve to address the need of this diverse
patient population, as noted with the variety of
treatment modalities above. This growth is a
critical evolution given the complex nature of
chronic pain and the myriad ways in which it
manifests. However, despite these advance-
ments in alternatives to oral analgesics such as
opioids, there clearly remains a distinct need for
persistent innovation in conjunction with rig-
orous research and development processes that
involve all affected parties. Each device would

benefit from a large systematic review to pro-
vide a more robust compilation of current
information and data in addition to high-pow-
ered clinical trials and prospective studies to
determine the true efficacy of these interven-
tions and provide both clinicians and patients
more clarity when considering the options
available to them.
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80. Brea-Gómez B, Torres-Sánchez I, Ortiz-Rubio A,
et al. Virtual reality in the treatment of adults with
chronic low back pain: a systematic review and
meta-analysis of randomized clinical trials. Int J
Environ Res Public Health. 2021;18:22. https://doi.
org/10.3390/IJERPH182211806.

81. Mallari B, Spaeth EK, Goh H, Boyd BS. Virtual
reality as an analgesic for acute and chronic pain in
adults: a systematic review and meta-analysis. J Pain
Res. 2019;12:2053–85. https://doi.org/10.2147/JPR.
S200498.

82. Mo J, Vickerstaff V, Minton O, et al. How effective
is virtual reality technology in palliative care? A
systematic review and meta-analysis. Palliat Med.
2022;36:7. https://doi.org/10.1177/
02692163221099584.

83. Flor H, Braun C, Elbert T, Birbaumer N. Extensive
reorganization of primary somatosensory cortex in
chronic back pain patients. Neurosci Lett.
1997;224(1):5–8. https://doi.org/10.1016/S0304-
3940(97)13441-3.

84. Tack C. Virtual reality and chronic low back pain.
2019;16(6):637–645. doi:https://doi.org/10.1080/
17483107.2019.1688399

85. Li L, Yu F, Shi D, et al. Application of virtual reality
technology in clinical medicine. Am J Transl Res.
2017;9(9):3867.

86. Alemanno F, Houdayer E, Emedoli D, et al. Efficacy
of virtual reality to reduce chronic low back pain:
proof-of-concept of a non-pharmacological
approach on pain, quality of life, neuropsycholog-
ical and functional outcome. PLoS ONE. 2019;14:5.
https://doi.org/10.1371/JOURNAL.PONE.0216858.

87. Botella C, Garcia-Palacios A, Vizcaı́no Y, Herrero R,
Baños RM, Belmonte MA. Virtual reality in the
treatment of fibromyalgia: a pilot study. https://
home.liebertpub.com/cyber. 2013;16(3):215–223.
doi:https://doi.org/10.1089/CYBER.2012.1572

354 Pain Ther (2023) 12:341–354

https://doi.org/10.3390/IJERPH182211806
https://doi.org/10.3390/IJERPH182211806
https://doi.org/10.2147/JPR.S200498
https://doi.org/10.2147/JPR.S200498
https://doi.org/10.1177/02692163221099584
https://doi.org/10.1177/02692163221099584
https://doi.org/10.1016/S0304-3940(97)13441-3
https://doi.org/10.1016/S0304-3940(97)13441-3
https://doi.org/10.1080/17483107.2019.1688399
https://doi.org/10.1080/17483107.2019.1688399
https://doi.org/10.1371/JOURNAL.PONE.0216858
https://home.liebertpub.com/cyber
https://home.liebertpub.com/cyber
https://doi.org/10.1089/CYBER.2012.1572

	A Review of Chronic Pain and Device Interventions: Benefits and Future Directions
	Abstract
	Introduction
	Methods
	Results
	Spinal Cord Stimulator
	Intrathecal and Epidural Drug Delivery Systems
	Dorsal Root Ganglion Stimulator
	Transcutaneous Electrical Nerve Stimulation
	Peripheral Nerve Stimulation
	Noninvasive Neuromodulation
	Mobile Applications and Virtual Reality

	Discussion
	Conclusions
	Acknowledgements
	References




