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ABSTRACT

Investigating the disproportionate rates of
chronic pain and their related comorbidities
between Black and non-Hispanic White (White)
individuals is a growing area of interest, both in
the healthcare community and in general soci-
ety. Researchers have identified racial differ-
ences in chronic pain prevalence and severity,
but still very little is known about the mecha-
nisms underlying them. Current explanations
for these differences have primarily focused on
socioeconomic status and unequal healthcare
between races as causal factors. Whereas these
factors are informative, a racial gap still exists
between Black and White individuals when
these factors are controlled for. One potential
cause of this racial gap in chronic pain is the
differences in nutrition and dietary intake
between groups. Certain foods play a key role in
the inflammatory and oxidative stress pathways
in the human body and could potentially
influence the severity of the pain experience.
Here, we review the previous literature on the
surrounding topics and propose a potential
mechanism to explain racial differences in the

chronic pain population, based on established
racial differences in diet and oxidative stress.
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Key Summary Points

There are identified racial differences in
pain experience.

Dietary intake and metabolic responses
may differ between racial groups.

Specific foods and food components have
direct and indirect effects on
inflammation.

Oxidative stress as a result of different diet
may be the mechanism underlying racial
differences in pain.

INTRODUCTION

The prevalence of chronic illness is increasing
with an aging population, leading to higher
healthcare costs and increasing morbidity for
these populations [1]. As a consequence, there is
a growing interest in chronic pain [2, 3], a
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disease state that has tremendous impact on
quality of life, health, and socioeconomic con-
ditions [4, 5]. Chronic pain is defined as any
pain that is recurrent or long lasting—typically
6 months or more [6]. It is a unique experience,
with complex biopsychosocial pathology, and
has very burdensome effects on both physical
and mental health. While chronic pain can, at
times, develop from an initial injury or insult, it
is not simply an extension of acute pain and
requires different diagnostic and management
strategies [7]. Attempts to treat this disease state
have primarily relied on pain-masking phar-
maceuticals. Analgesics have demonstrated
efficacy in relieving pain, but the healthcare
community is now facing an epidemic as more
and more people per year die due to overdose or
complications with these drugs, particularly the
opioids [8–11]. This social crisis has prompted
providers and researchers alike to investigate
whether there are treatments that exist that
relieve pain but do not have the costly side
effects of current therapies. Unfortunately, the
burden associated with pain does not fall
equally on all groups.

To alleviate differences in chronic pain, the
underlying mechanisms require elucidation. In
addition to racial differences, there are recog-
nized differences in pain that are related to sex
and age. There are significant differences in pain
threshold and tolerance between the males and
females [12–14], with females reporting
increased sensitivity and greater likelihood of
developing a chronic pain disorder [15]. Older
individuals are also at a higher risk for devel-
opment and increased severity of painful dis-
orders [16]. There are multiple explanations for
these phenomena: genetic and hormonal dif-
ferences in brain neurochemistry, immune sys-
tem differences, social and cultural expectations
of societal roles, and differences in coping
strategies [17].

Of particular importance to this review is the
disparity between races with respect to pain. In
general, race is derived from biological disposi-
tions; however, it is important to note that
there are both biological and social components
of race that play pivotal roles in the lives of
individuals. Early medical research failed to
include Black individuals in experiments [18],

and it was not until the shift in civil rights that
racial differences in pain were first documented
by Chapman and Jones in 1944 [19]. Since that
time, racial disparities have been documented
in many works, revealing that Black individuals
disproportionately carry the burden of chronic
pain in comparison to their non-Hispanic
White (White) counterparts [20–24]. Although
the underlying mechanisms for the disparity are
unclear, the fact that clinical pain is more
prevalent in the Black population is well
beyond doubt.

Racial differences in pain are thought to exist
for many reasons: genetic predispositions [25];
differences in psychosocial and cultural factors
between the two groups [26]; reported differ-
ences in coping strategies between races [27];
disparities in healthcare systems and providers
[4]; and finally, differences in diet [28]. We
[29–31] and others [32–36] have shown that
diets varying in nutritional quality affect the
outcome of the pain experience. For example, a
high-carbohydrate diet can result in systemic
inflammation, immune cell activation, and
prolonged recovery from injury [29, 37]. On the
other hand, a diet low in carbohydrates can
promote recovery from injury [29] and reduce
daily and evoked pain [38]. Knowing that
nutritional quality affects pain and that there
are reported differences in dietary consumption
of food [39] and documented differences in
inflammatory processes (including oxidative
stress) between racial groups [40], it is possible
that the differences in the diet between Black
and White individuals is a major contributing
factor to the differences seen in the rates of
chronic pain. This article is based on previously
conducted studies and does not contain any
new studies with human participants or animals
performed by any of the authors.

RACIAL DIFFERENCES IN PAIN

Differences in pain between racial groups have
been documented in clinical and experimental
research [41, 42] and overwhelmingly report
that Black individuals are indeed at an increased
risk for developing a chronic pain condition,
consistently reporting higher incidence rates
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and greater burden [43]. Common types of pain
conditions are outlined below.

Emergency Medicine and Postoperative
Pain

Pain is one of the most common complaints
seen in emergency departments (EDs) across the
United States [44]. Over the past two decades,
several reports have documented that Black
individuals are at risk for undertreatment of
pain compared to White individuals. Even
when medical conditions are equated, Black
individuals are less likely to receive adequate
pain medication [45]. It should be noted that
these data are often based on ED and postop-
erative analgesic administration to patients, as
opposed to functional pain measures. Using
analgesic administration as the primary mea-
sure can be problematic, as it is possible that
internal bias of the provider may directly affect
the amount of medication administered to the
patient. Many investigations, including the
National Hospital Ambulatory Medical Care
Survey (NHAMCS), report evidence suggesting
racial differences in pain medication adminis-
tration by physicians in the ED for specific
painful conditions [46–49], while others have
reported no differences [50–54]. In studies
examining pain after surgery, Black individuals
report more pain and pain-related symptoms
than White individuals after surgeries to correct
scoliosis [55] and dental issues [56] and to
manage breast cancer [57]. Despite the expres-
sed need for analgesics, Black patients experi-
enced more severe pain and more pain-related
interference, but were less likely to be prescribed
pain medication despite their pain rating com-
pared to White patients [58–60]. In an attempt
to eliminate the provider bias, researchers have
sought to examine patient-controlled analgesia
(PCA). However, there are limited studies that
report powerful results. Unequal treatment of
pain between Black and White individuals can
result in significant disparities between groups,
but it is possible that there are racial differences
in the experience of pain that are independent
of medication use/availability. Studies with
reasonable sample sizes of patients and better

study quality are needed to truly understand
differences in this area and provide possible
mechanisms.

Chronic Non-Cancer Pain

There are well-documented studies involving
racial disparities between Black and White
individuals in chronic pain populations
[61–64]. White individuals are more likely to
report temporomandibular joint (TMJ) and
neck pain [65], and facial and jaw pain symp-
toms than Black individuals, but they appear to
have an earlier onset [66]. Although Black
individuals report fewer TMJ symptoms, the
pain has a greater impact on their daily func-
tioning/tasks [67]. Fibromyalgia appears to
affect both Black and White individuals [68].
However, White individuals tend to report sig-
nificantly increased tenderness in specific areas,
while Black individuals report more widespread
pain and depressive symptoms [69], once again
supporting the notion that the experience of
chronic pain conditions differs between races.
Black individuals also report more pain and
disability thanWhite patients related to chronic
low back pain [70] and angina [71]. It has been
reported that Black individuals are more likely
to express increased pain severity, depression
and anxiety, pain-related fear and pain-related
disability [72], and a greater sense of suffering
and loss of control compared to White indi-
viduals [4, 18, 61–64, 73]. Black individuals with
chronic knee or hip pain also report a lower
quality of life [74]. Regardless of the condition,
research suggests that the Black population is at
greater risk for increased pain severity, pain-re-
lated disability, and inadequate pain manage-
ment [4, 72].

Arthritis Pain

Arthritis is one of the most common manifes-
tations of chronic pain and one of the leading
causes of disability in the United State [75, 76].
According to the National Health Interview
Survey, although Black and White individuals
had similar rates of arthritis, Black individuals
reported much more severe pain in the affected
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joint [77]. Research has also revealed that Black
individuals demonstrate more severe pain and
disability due to osteoarthritis than their White
counterparts [78, 79]. One non-biological factor
that has been considered to underlie differences
in the rates of arthritis-related pain between
races is the differences in the rates of knee and
hip replacements. Studies on large populations
of patients, as well as data from national sur-
veys, show that Black individuals are less likely
to receive a joint replacement despite demon-
strating a need for the procedure [80, 81]. In
individuals with rheumatoid arthritis, Black
individuals are likely to have a higher score
than White individuals on the Clinical Disease
Activity Index, a common tool used to assess
rheumatological disease severity and symptoms
[82]. There is no clear link between increased
disease activity and subsequent increases in
pain. However, those with higher disease
activity were more likely to be physically
debilitated by rheumatoid arthritis [83].

Cancer Pain

A large number of those being treated for cancer
live with pain [84], often caused by an injury to
the nerves during surgery [85–88] and
chemotherapeutic agents that are neurotoxic
[89–91], as well as radiation-induced nerve
damage [92] and radiation-induced inflamma-
tion [93–95]. According to the World Health
Organization (WHO), 62% of racial minorities
were undertreated for pain in accordance with
the WHO standard for cancer-free pain [96, 97].
The same pattern was evident in studies ana-
lyzing quality of care:; cancer patients who were
treated in settings that cared mainly for
minorities were more likely than White indi-
viduals to receive inadequate analgesics
[98, 99].

Experimental Pain

It is very possible that differences in sensitivity
to noxious stimuli can underlie racial differ-
ences in pain. Several studies have demon-
strated differences in pain sensitivity between
Black and White individuals, as reviewed by

Edwards et al. [18]. Generally, evoked pain rat-
ings are of greater magnitude in Black individ-
uals [100, 101], and this same group shows
lower tolerance for experimental pain [102].
When completing heat pain tasks, Black indi-
viduals demonstrate significantly lower pain
tolerances and thresholds and report pain at
lower temperatures than White individuals [19].
Black individuals are also more likely to rate the
thermal pain as more unpleasant [103] and
report lower tolerance to ischemic pain (pain
due to a lack of blood oxygen in the extremities)
[104] and lower thresholds and tolerance to
cold stimuli compared to White individuals
[105]. In two studies examining mechanical
pressure pain, Black individuals demonstrated
lower pain threshold and tolerance compared to
White individuals [101, 104]. Black research
participants also report reduced pain tolerance
to electrical stimulation pain, and increased
temporal summation of noxious stimuli [106].
Taken together, results of experimental pain
studies have demonstrated consistent evidence
regarding racial differences in pain sensitivity
between Black and White individuals.

RACIAL DIFFERENCES IN DIET

There is evidence that nutritional intake varies
substantially between racial groups, and there
are a variety of factors that are known to
underlie the relationship between race and
dietary habits. Geographic residence is one such
factor thought to play a significant role in
dietary behaviors. In many cities, a higher per-
centage of Black individuals live in low-income
environments compared to their White coun-
terparts [107]. Neighborhood disadvantage is
associated with poorer diet quality [108] and is
correlated with excess meat intake and limited
consumption of fruits, vegetables, and fish
[109]. For those individuals living in low-in-
come environments, access to supermarkets
may be limited compared to those living in
high-income environments. This notion of food
deserts—areas where residents have little to no
access to healthy and affordable food options—
is also more often reported in Black neighbor-
hoods [110]. In addition, these areas are more
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likely to report lower quality and a limited
selection of foodstuffs [111]. As a result, indi-
viduals in low-income neighborhoods are likely
to increase their consumption of energy-dense,
low-cost items in order to ensure adequate food
intake [112, 113]. In addition to the lack of fresh
produce, the proportion of fast food restaurants
to residents is higher in Black neighborhoods
[110]. Research has shown that even wealthy,
college-educated Black individuals may feel
marginalized and live in neighborhoods with
30% less income compared to White neighbor-
hoods, creating a barrier even today [114].

The REasons for Geographic and Racial Dif-
ferences in Stroke (REGARDS) study provides
further evidence that an individual’s racial
group may be an influential factor in deter-
mining food choice. Adherence to plant-based
dietary habits (i.e., vegetables of many types,
fish, soups) were positively associated with
socioeconomic status (SES), showing that White
individuals were more likely to stick to a plant-
based diet. By contrast, stronger adherence to a
‘‘Southern dietary pattern’’ (i.e., fried food, soda,
and processed meats) was reported more among
Black respondents [39]. We recently reported a
cross-sectional study of the REGARDS data in
which we demonstrate that higher adherence to
poor-quality diets (including the ‘‘Southern’’
dietary pattern) was associated with an
increased relative risk of reporting pain, whereas
high adherence to the plant-based dietary pat-
tern was associated with reduced risk for pain
[115]. Together, these data support the notion
that racial differences in dietary patterns may
contribute to racial differences in the risk for
and expression of chronic pain in an American
sample.

Taste perception is another important factor
that appears to vary between races. Current data
suggest that there are differences in taste
responsiveness, which can alter the perceived
taste of foods such as vegetables. Genetics plays
a major role in the perception of taste and was
first studied in terms of taste blindness [116].
Individuals with variations in the genes that
code for structures responding more intensely
to bitter tastes are more likely to avoid fruits and
vegetables [117–119]. Variation in sweet taste is
also known to correlate with

vegetable preference [120, 121]. Although there
are limited studies of taste differences among
racial groups, it has been reported that Black
individuals rate taste sensations such as sweet,
salty, and bitter at a higher intensity than
White individuals [122]. Taken together, it is
possible that genetic differences in taste
responsiveness alter the intake of certain foods
and may explain differences in food/veg-
etable intake among these racial groups. Rec-
ognizing that there is a difference in sensory
experience is important, as it may contribute to
an individual’s ability to comply with a diet and
explain why people gravitate toward or away
from certain types of foods, which can have
both beneficial and detrimental effects on
health through inflammatory pathways.

DIET AND OXIDATIVE STRESS

Oxidative stress is a biological phenomenon
that occurs when there is an imbalance between
free radical compounds, such as reactive oxygen
species (ROS) or reactive nitrogen species (RNS),
and antioxidant defense systems in the body
[123–125]. This imbalance leads to the destruc-
tion of cells and molecules, impacting the
whole system [126]. ROS are a normal bypro-
duct of cellular metabolism of molecular oxy-
gen [127, 128], have important roles in many
signaling pathways, and aid in the response to
change in internal and external environmental
conditions [127–130]. Sustained stress creates
excessive ROS, creating an environment with
high levels of free radicals causing damage to
cellular components that can ultimately lead to
apoptosis [131]. Oxidative stress and free radi-
cals have been implicated in a host of degener-
ative conditions including Alzheimer’s disease
[132], Parkinson’s disease [133, 134], cardio-
vascular disease [135, 136], cancer [137, 138],
chronic inflammation [139, 140], and diabetes
[131, 141]. Oxidative stress can be triggered by
many sources and is heavily influenced by
dietary quality.

Diet types such as the standard American
diet (SAD) [29, 30] that are rich in processed
carbohydrates and saturated fats contribute to
increased postprandial oxidative stress and a
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chronically elevated state of oxidative stress
[142–146]. A poor-quality diet creates an envi-
ronment of oxidative stress by increasing the
presence of free radicals, reducing antioxidant
status and resulting in cell damage [147]. Glu-
cose oxidation is thought to be the main source
of free radicals via the diet [131]. Glucose can be
oxidized to a superoxide anion radical leading
to the production of extremely reactive ROS and
RNS if it is not degraded by an antioxidant
[148–153]. ROS and other free radicals have also
been linked to metabolic imbalances in neural
tissues leading to impaired neurotropism
[154–156], changes in neurotransmission
[157–159], Schwann cell injury [160, 161], and
axonopathy [162, 163]. Excess carbohydrates
are also known to promote lipid peroxidation of
low-density lipoprotein (LDL cholesterol) via
superoxide-dependent pathways, which also
participates in the generation of free radicals
[164, 165]. Finally, a high-carbohydrate diet can
lead to the production of advanced glycation
end products (AGEs) [166] through glycation: a
reaction between excess carbohydrates in the
body and other nutrients like lipids, proteins,
and nucleic acids [167–171]. These compounds
exert their deleterious effects by binding to the
receptor for AGEs (RAGE) [167, 172] and stim-
ulating various intracellular signaling pathways
[173], which leads to apoptosis, inflammation
[174, 175], and cell differentiation. This activa-
tion can also inhibit a number of enzymes by
altering their structures and functions [176],
promote free radical formation [177, 178], and
prevent antiproliferative effects of nitric oxide
from occurring [179, 180].

In addition to increasing the presence of free
radicals in the body, excess carbohydrates also
impair the innate antioxidant defense system.
Under normal conditions, antioxidants are able
to neutralize free radicals and prevent them
from creating cellular damage and oxidative
stress [181–183]. For example, vitamin E pre-
vents the progression of lipid peroxidation;
vitamin C alongside vitamin E prevents
hydroperoxides from forming; transition met-
als, such as copper and zinc, are involved in the
inhibition of lipid peroxidation; and vitamins A
and E are also considered ‘‘scavengers’’ as they
seek out and neutralize free radicals

[151, 178, 184–187]. A summary of the most
common antioxidants and their sources can be
seen in Table 1. A diet with excess carbohy-
drates can create a surplus of free radicals that
overwhelm the innate antioxidant system,
increasing oxidative damage. Furthermore,
many poor-quality diets that are high in car-
bohydrates tend to be vitamin-deficient [188],
further reducing the ability of the body to
control free radicals.

OXIDATIVE STRESS AND PAIN

There is emerging evidence suggesting that
oxidative stress is involved in the development
and maintenance of pain. Although oxidative
stress can be caused by many factors such as
smoking, excess alcohol consumption, air pol-
lution, and UV light, it is also sensitive to
foodstuffs and is directly affected by the meal
components [143]. There are studies attributing
poor-quality diet to increased pain sensitivity
[29–31, 38], possibly through increased oxida-
tive stress. Black individuals are at higher risk
for elevated oxidative stress levels [189] and, as
previously discussed, are more likely to adhere
to a diet pattern that includes excess carbohy-
drate consumption [39]. Additionally, oxidative
stress has been linked to many types of painful
conditions, which are often reported at higher
rates in Black populations [40]. It may be pos-
sible that diet variability influences the differ-
ences seen in the prevalence and severity of
painful conditions amongst Black and White
patients. However, the direct link between
oxidative stress and pain is not clearly under-
stood. It is important to note that oxidative
stress may contribute to pain in different
pathological modalities, all of which are
important in the pain experience.

Inflammation

Inflammation is induced by many biochemical
and physical factors such as infection, injury,
allergens, and radiation, as well as diet-induced
oxidative stress [126, 190, 191]. Chronic
inflammation predisposes an organism to vari-
ous chronic illnesses [192], including chronic
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Table 1 A summary of the most common antioxidants, their reported mechanism of action, sources, and citation(s)

Antioxidant Mechanism
of action

Food sources References

Vitamin C Nonenzymatic Broccoli, oranges, Brussels sprouts, tomatoes, and leafy

green vegetables

Block et al. [214], Levine

et al. [215], Padayatty et al.

[216]

Vitamin A Nonenzymatic Eggs, spinach, carrots, cod liver oil, and leafy green

vegetables

Block et al. [214], Block

[217]

Vitamin E Nonenzymatic Wheat germ, nuts, seeds, avocado, fish, leafy green

vegetables

Murphy et al. [218], Reboul

et al. [219]

Glutathione Nonenzymatic Endogenous Meister [220], Sies [221]

Superoxide

dismutase

Enzymatic Endogenous Halliwell [222], Clarkson

et al. [223]

Glutathione

peroxidase

Enzymatic Endogenous Flohe [224], Clarkson et al.

[223]

Catalase Enzymatic Endogenous Betteridge [225], Chelikani

et al. [226]

Glutathione

reductase

Enzymatic Endogenous Halliwell [222], Clarkson

et al. [223]

Lipoic acid Nonenzymatic Nuts, seeds, Brussels sprouts, organ meats, red meat Shay et al. [227], Rochette

et al. [228]

Carotenoids Nonenzymatic Carrots, plums, apricots, mangoes, cantaloupe, and

sweet potatoes

Clarkson et al. [223], Rao

et al. [229]

Coenzyme Q10 Enzymatic Endogenous, organ meats, pork, beef, chicken, fish, leafy

green vegetables, strawberries, beans, nuts, and seeds

Pravst et al. [230]

Bioflavonoids Nonenzymatic Oranges, lemons, apples, and legumes Cook [231]

Copper Nonenzymatic Whole grains, green beans, nuts, potatoes, shellfish, and

organ meats

Keis [232]

Zinc Nonenzymatic Whole grains, milk and milk products, red meat,

chicken, beans, and nuts

Solomons [233]

Manganese Nonenzymatic Beans, seeds, nuts, whole grains, leafy green vegetables,

and soybeans

Black et al. [234]

Selenium Nonenzymatic Whole grains, milk and milk products, pork, beef,

turkey, fish, chicken, shellfish, eggs, and mushrooms

Rayman [235]

Folic acid Nonenzymatic Whole grains, rice, oranges, leafy green vegetables, and

beans

Dietrich et al. [236], Looman

et al. [237]

B Vitamins (B1,

B2, B6 and

B12)

Nonenzymatic Pork, chicken, turkey, fish, whole grains, eggs, leafy

green vegetables, and soybeans

Scott [238], Banjari et al.

[239], Mielgo-Ayuso et al.

[240]
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pain. During the peripheral inflammatory
response, mast cells and leukocytes are recrui-
ted, leading to a subsequent increase in the
uptake of oxygen and an increased release and
accumulation of ROS. Accumulation of ROS can
result in a cellular cycle of events producing
pro-inflammatory mediators such as arachi-
donic acid, cytokines, and chemokines, which
recruit more inflammatory cells and molecules
that subsequently create more reactive species
[189]. In the context of AGEs, interaction with
RAGE causes the induction of intracellular ROS
production through activation of NF-jB (nu-
clear factor kappa-light-chain-enhancer of acti-
vated B cells) and leads to the further
production of inflammatory mediators [193].
Many signal transduction cascades and tran-
scription factors have been implicated in
oxidative stress pathways, including NF-jB,
signal transducer and activator of transcription
3 (STAT3), hypoxia-inducible factor-1a (HIF-
1a), activator protein 1 (AP-1), nuclear factor of
activated T cells, NF-E2 related factor-2 (Nrf2),
cyclooxygenase-2 (COX-2), inducible nitric
oxide synthase (iNOS), inflammatory cytokines
such as tumor necrosis factor (TNF), inter-
leukin-1b (IL-1b), IL-6, chemokine IL-8, and
CXC chemokine receptor 4 (CXCR4), as well as
alterations in the expression of specific micro-
RNAs [126]. These compounds can directly
stimulate nociceptors and other afferent neu-
rons, resulting in pain. It has been reported that
Black individuals have exaggerated levels of
basal oxidative stress and inflammation [189]
even in the absence of injury [194]. Taken
together, this suggests that dietary makeup may
have a greater negative impact on oxidative
stress and subsequent pain in this group.

Neuropathy and Neuropathic Pain

Neuropathy—often referred to as peripheral
neuropathy—refers to a group of conditions
characterized by abnormal function of the
nerves in the peripheral nervous system due to
damage or disease. Symptoms can range from
numbness/tingling to intense neuropathic pain
and loss of function [195]. While there are other
noted risk factors for neuropathy, such as

repetitive movements and injuries or
chemotherapy, diet-induced oxidative stress
can also exert deleterious effects on the struc-
ture and function of nerve cells. In fact, it has
been shown that poor glycemic control is an
independent risk factor for the development of
diabetic neuropathy [196]. At a cellular level,
neuronal apoptosis has been shown to occur
from exposure to both ROS and RNS [197].
Lipids that are present in various organelles
such as the mitochondria, endoplasmic reticu-
lum, and cytoplasm are major targets of ROS
damage, and the resulting lipid peroxides can
be neurotoxic upon accumulation. Axonal
transport of important neurotransmitters,
growth factors, and other intermediates can also
be slowed in such an environment, which can
result in induced apoptosis of the neuron [198].
Resulting increases in AGEs can induce a feed-
forward cascade of progressive neuronal dys-
function and impaired neurotropic support in
the short term, and can cause apoptosis of the
whole neuron or injury to supporting cells, such
as Schwann cells, that are important in the
conduction of nerve signals [199]. Upon neu-
ronal injury, macrophages respond by infiltrat-
ing the injured site. Here, they express many
surface cell markers and secrete cytokines and
chemokines. Macrophages in the periphery
work similarly to microglia in the central ner-
vous system [200] to remove cellular debris and
dead neurons through Wallerian degeneration,
allowing for regrowth of the injured axon (in
the periphery) [201]. This process of degenera-
tion and regeneration of the injured cell is
hypothesized to be a part of the pathogenesis of
neuropathic pain and sclerosis, in addition to
the actual dysfunction and neuronal death as a
result of oxidative stress [202]. AGEs can act as a
‘‘danger signal,’’ much like pathogens or inter-
mediates produced from neuronal apoptosis,
activating macrophages without any actual
damage [203]. Following priming of peripheral
immune cells, it has been observed that, upon
stimulation by other danger signals, these
macrophages display an exacerbated response,
which may contribute to the development of
neuropathic pain [204]. According to a 2017
study exploring the prevalence of neuropathic
pain in the United States, there was significant
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racial variation amongst those who reported
these symptoms, with Black individuals repre-
senting a much larger percentage of the sample
than White individuals, despite being a smaller
proportion of the overall population [205]. It is
possible that the variation in glycemic load as a
result of differing dietary carbohydrate intake
could play a significant role in this difference.
While neuropathies are known to have hetero-
geneous etiologies, the acknowledgement of
diet-induced oxidative stress is a critical factor
to advance our understanding of these
conditions.

It is widely accepted that poor-quality diets
can be detrimental to one’s health, including
potential exacerbation of the pain experience
via oxidative stress and inflammation. There-
fore, it would be efficacious to explore the
effects that higher-quality diets have on the
prevention and possible reversal of chronic
pain. Dietary interventions for chronic pain
have gained traction as a possible alternative
treatment modality, and investigations of diet-
ary intake have shown that many individuals
with chronic pain have an imbalance in the free
radical to antioxidant ratio and that reversing
this imbalance can alleviate pain [206] There is
clinical evidence that vitamin C, a common
antioxidant found in many fruits and vegeta-
bles, may have a protective effect against the
development of complex regional pain syn-
drome (CRPS) through its ability to reduce
oxidative stress [207]. Treatment with vitexin (a
common flavonoid in plants) for inflammatory
injury via phenyl-p-benzoquinone, complete
Freund’s adjuvant, formalin, or capsaicin
inhibited pain-like behavior in mice. This
treatment also lowered oxidative stress and pro-
inflammatory mediators, and increased antiox-
idant capacity and anti-inflammatory com-
pounds [208], demonstrating a potential link
between oxidative stress and pain. Supplemen-
tation with vitamin B12 has been shown to
reduce markers of oxidative stress and inflam-
mation [209], and can lead to reductions in pain
scores and use of analgesics in patients with low
back pain [210]. Furthermore, it has been sug-
gested that consuming 1000 lg/day may
improve symptoms of pain [211]. Curcumin,
the active ingredient in the spice turmeric and

black pepper, has also been shown to act as an
antioxidant, reduce oxidative stress, and
improve pain caused by diabetic neuropathy
[212]. These exploratory studies have expanded
the body of evidence supporting the use of food
for treatment of painful conditions. However,
more work needs to be done to understand the
efficacy of these foods and supplements across
racial groups.

CONCLUSION

Racial differences in chronic pain prevalence
and burden of the pain exist, in that Black
individuals are disproportionately affected
[20–24]. This racial group has higher rates of
most chronic pain conditions, but also report
more severe and intense pain compared to their
White counterparts [106]. There are many pos-
sibilities as to why these differences are
observed—genetics, psychosocial variables, and
unequal care [4, 25–28]. In addition, differences
in diet patterns between the two racial groups
[39] is an important factor that has been over-
looked in this area of research. Of particular
importance is the variability between the
amount of carbohydrates and unhealthy fats
consumed within each racial group [213]. Black
individuals consume significantly more of these
macronutrients, even when controlling for
other factors influencing diet [39, 108, 110].
Carbohydrates can increase oxidative stress
[143–146], perhaps resulting in the observed
elevated levels of systemic inflammation [126]
and oxidative stress [189] in Black populations
when compared to White populations. There-
fore, variability in food intake between racial
groups may underlie racial differences in
chronic pain. We have shown that a diet inter-
vention can reduce pain and oxidative stress
[38], but it is possible that a reduced carbohy-
drate diet has greater benefit based on racial
group. Thus, it is encouraged that future studies
aim to further understand the relationship
between diet, oxidative stress/inflammation,
and pain outcomes across races. Dietary inter-
ventions and nutritional education are safer,
more modifiable treatments with less risk of
negative side effects and other complications,
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which may limit the reliance on opioid anal-
gesics. Most critically, dietary interventions
may provide a means to reduce racial differ-
ences in chronic pain.
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