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ABSTRACT

Evaluating therapy efficacy is crucial for
patients with tuberculosis (TB), especially those
with drug-resistant tuberculosis (DR-TB). The
World Health Organization currently recom-
mends sputum smear and culture as the stan-
dard methods for evaluating pulmonary
tuberculosis (PTB) therapy efficacy. However,
these approaches have limitations including
low sensitivity, lengthy culture periods, and
susceptibility to contamination. There is an

urgent need for dependable biomarkers to
evaluate therapy efficacy in patients with PTB.
Numerous new biomarkers of Mycobacterium
tuberculosis (MTB) and the host have been used
in recent studies to evaluate PTB therapy effi-
cacy. A systematic review and update of these
biomarkers can facilitate the discovery of novel
biomarkers and assessment models, as well as
provide a solid scientific basis for alternative
indicators of evaluating therapy efficacy. In this
review we summarize the recent advancements
and limitations of biomarkers used to monitor
therapy efficacy, highlighting the importance of
utilizing a combination of biomarkers.
Although some biomarkers have potential in
evaluating the efficacy of therapy in patients
with PTB, they also have some limitations.
Further research, validation, and optimization
are required to identify the most reliable and
effective alternative biomarkers and apply them
to clinical practice.
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Key Summary Points

Evaluating the efficacy of pulmonary
tuberculosis (PTB) therapy is vital for
treatment decision-making, improving
the cure rate, and preventing the
transmission of tuberculosis.

The conventional methods for evaluating
efficacy of therapy for PTB have
limitations, including low sensitivity and
a long culture period.

Host biomarkers, especially a combination
of biomarkers, serve as valuable tools for
evaluating the efficacy of PTB therapy,
although certain biomarkers may have
inherent limitations.

The changes in certain host immune
markers vary between patients with drug-
sensitive PTB and patients with drug-
resistant PTB, and even within the same
patient group, the same type of immune
marker may exhibit different changes
under different Mycobacterium tuberculosis
(MTB) antigen stimuli.

Further studies are needed to identify the
most reliable and effective alternative
biomarkers and apply them to clinical
practice.

INTRODUCTION

The COVID-19 pandemic has adversely affected
the progress of tuberculosis (TB) prevention and
control programs [1]. The World Health Orga-
nization (WHO) 2022 report estimated that
about 10.6 million people were living with PTB
in 2021, a 4.5% increase from 10.1 million in
2020, and that the total number of deaths
among HIV-negative and HIV-positive people
rose to 1.6 million, up from 1.5 million in 2020.
The period from 2015 to 2021 is only halfway to
the first milestone of the End TB strategy.
Moreover, the burden of drug-resistant

tuberculosis (DR-TB) has also increased between
2020 and 2021 and has become a major public
health concern [2]. Therefore, there is an urgent
need for more effective interventions to prevent
the further development of TB into DR-TB in
the prevention and control of TB.

Conventional treatment for drug-sensitive
TB (DS-TB) requires 6 months of therapy
(2 months of isoniazid, rifampicin, pyrazi-
namide, and ethambutol followed by 4 months
of isoniazid and rifampicin), while treatment
for DR-TB is much longer [3]. Prolonged therapy
imposes a heavy burden on patients and health
workers and increases the risk of poor adherence
or treatment failure [4]. Poor adherence or
treatment failure can lead to incomplete clear-
ance of Mycobacterium tuberculosis (MTB),
resulting in replication, transmission, and drug
resistance mutations [5]. Therefore, early eval-
uation of TB therapy efficacy is beneficial for
timely adjustment of therapy and improvement
of cure rates, which can help control the spread
of TB. Evaluating treatment outcomes, deter-
mining therapy efficacy, and adjusting treat-
ment plans earlier are important steps in the
course of therapy to prevent disease
progression.

Currently, the conventional methods used to
evaluate the efficacy of anti-tuberculosis (ATTB)
treatment rely on monitoring the tubercle
bacilli within sputum specimens by smear
microscopy and mycobacterial culture. Sputum
smear is a quick and cost-effective technique,
but its sensitivity is limited to detecting 104

bacteria per milliliter of sputum, and it cannot
differentiate between live and dead bacteria
[6, 7]. Sputum culture is considered the gold
standard for evaluating ATTB therapy efficacy.
Two consecutive negative sputum culture
results in patients previously testing positive for
MTB after intensive treatment are indicative of
a favorable treatment outcome. However, spu-
tum culture is prone to contamination, has a
long culture time for MTB, and may take longer
to determine a positive culture, especially for
samples that are negative on sputum smear [8].
Traditional evaluation methods have certain
drawbacks, which have led to the investigation
of new biomarkers and imaging techniques for
monitoring the efficacy of ATTB treatment.
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These include studies focused on MTB and host
biomarkers and imaging changes [9–11]. These
novel biomarkers and imaging techniques can
predict ATTB therapy efficacy earlier and faster,
thereby improving clinical outcomes and con-
trolling pulmonary tuberculosis (PTB)
outbreaks.

In this review, we discuss and summarize the
latest advancements in the application of novel
biomarkers for evaluating the efficacy of ATTB
therapy. This article does not require ethical
approval because it is based on published
research and does not involve any research
conducted by the authors on humans or labo-
ratory animals.

BACTERIOLOGICAL BIOMARKERS

Surveillance of MTB

Direct bacteriological test is the most reliable
evidence to evaluate the efficacy of PTB therapy.
The traditional monitoring techniques are spu-
tum smear and sputum culture. Sputum smear
monitoring is based on the conversion of acid-
fast stain of MTB in sputum, indicating the
clearance of PTB bacilli and predicting good
treatment outcomes [12, 13]. However, sputum
smear has low sensitivity and requires a high
concentration of bacilli in sputum ([ 104

bacilli/ml) to achieve a positive result [14–16].
For patients with poorly treated PTB, sputum
culture is more predictive of treatment out-
comes than sputum smear [17]. Sputum culture
includes solid culture and liquid culture. Solid
culture evaluates the efficacy by observing the
change of colony numbers on the medium,
while liquid culture evaluates the efficacy by
measuring the time of conversion, which can
predict the colony numbers in solid culture
[18, 19]. It has been found that the sputum
culture status at month 2 can predict treatment
outcomes well [20]. For patients with mul-
tidrug-resistant tuberculosis (MDR-TB), some
studies suggest that sputum culture conversion
at month 2 of treatment can predict treatment
success [21–23]. However, other studies show
that the predictive effect of sputum culture
conversion at different time points varies in

different populations [24], which may be rela-
ted to the composition of MDR-TB treatment
regimen [25]. Nevertheless, the results of spu-
tum culture conversion after 3, 6, and
24 months of treatment have a good predictive
effect on the cure of MDR-TB [22, 26]. The
drawback of sputum culture is that it has a long
cycle and is prone to contamination [27], so it
cannot reflect the treatment effect of PTB in a
timely and rapid manner, and cannot prevent
the further development and transmission of
PTB effectively. To overcome the limitations of
traditional sputum smear and sputum culture,
fluorescence microscopy has been developed to
detect MTB in sputum [28, 29], but its sensitiv-
ity is still very low [30], and its detection rate in
patients with PTB and positive culture is only
68.7% [31]. Recent studies have shown that
direct and rapid quantitative observation of
viable MTB through fluorescent staining can be
used to reflect the treatment effect of PTB [32],
suggesting that this method has great potential
for evaluating the treatment effect of PTB by
detecting live MTB, but its accuracy needs to be
further verified.

Early bactericidal activity (EBA) is the value
of the average rate of decline of colony forming
unit (CFU) per milliliter of sputum in the first
2 days of ATTB treatment, which is used to
evaluate the efficacy of new ATTB drugs [33].
The current extension of EBA measurements to
14 days is mainly because some ATTB drugs,
such as pyrazinamide, ethambutol, and beda-
quiline, exhibit their bactericidal activity only
after longer periods of administration [34–36].
EBA testing also relies on solid and liquid cul-
tures of MTB, and studies have shown that early
sustained rapid bactericidal activity is associated
with treatment outcomes [37]. However, EBA
has many limitations, such as frequent sam-
pling, complex operation, high contamination
risk, and low sensitivity for drugs with delayed
bactericidal activity.

Surveillance of Nucleic Acid of MTB

DNA
DNA detection of MTB is a rapid method to
reflect the effect of PTB treatment. The Xpert
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MTB/RIF technique recommended by WHO
guidelines is a semi-nested real-time fluorescent
PCR in vitro diagnostic technique that reflects
the MTB load by outputting cycle threshold (Ct)
value [38–40]. Recent studies have shown that
Xpert MTB/RIF technology can be used to
monitor the efficacy of PTB therapy [41–43],
and that the Ct value of Xpert MTB/RIF tech-
nology output has a strong correlation with the
sputum culture time of PTB treatment [44], with
the correlation reaching 86.0% and 90.2% at
week 8 and week 24, respectively [45]. It has
been shown that sputum conversion at
month 2 and month 6 of treatment has a good
predictive effect on the success of PTB treatment
[20, 26]. Therefore, Ct value can be used as a
marker to predict treatment success and cure.
Compared to Xpert MTB/RIF, the recently
developed Xpert MTB/RIF Ultra offers further
improvements in the detection sensitivity of
PTB [46], However, it is important to note that
Xpert MTB/RIF Ultra has a higher false positive
rate compared to the gold standard sputum
culture. This higher false positive rate can be
attributed to the inclusion of DNA from dead
MTB in the Xpert MTB/RIF Ultra detection [47],
as well as the high sensitivity of the probe-based
Taqman real-time quantitative PCR (RT-qPCR)
in detecting MTB DNA [48]. In addition, the
transrenal DNA (trDNA) of MTB in urine can
also be detected by RT-qPCR to reflect the
treatment effect. During the course of treat-
ment, MTB trDNA will gradually decrease and
become almost undetectable after 2 months of
treatment. This biomarker has potential to be
used as a prognostic marker for patients with
PTB, especially for those with low bacterial load
and extrapulmonary PTB [49]. Although DNA
testing can quickly indicate MTB clearance and
predict treatment effects, it cannot distinguish
between dead and live MTB [50, 51], which may
lead to false positive results in cured patients
due to residual DNA.

RNA
RNA detection from sputum can be used as an
alternative marker to reflect the viability of MTB
[52, 53], as mycobacterial RNA can rapidly
respond to bacterial cell death [54, 55]. Studies
have shown that the mRNA detection of MTB

antigen 85B after ATTB treatment has 87.1%
agreement with sputum culture, indicating that
mRNA detection can quickly indicate the
clearance of active MTB during ATTB treatment
[56]. In addition, Stephen et al. used molecular
bacterial load assay (MBLA) to detect 16S rRNA
of MTB, which can quickly and accurately
quantify the MTB load in sputum during treat-
ment [57]. Compared with sputum culture,
MBLA performed better in quantifying live MTB
during treatment than GeneXpert and micro-
scopy. It can be used to monitor bacterial load
during PTB treatment, facilitating early detec-
tion of treatment failure and improving treat-
ment outcomes [58, 59]. Many studies have
used this method to evaluate the changes in
viable bacterial counts during PTB treatment
and the early efficacy of PTB therapy [59–62],
and MBLA can also monitor the efficacy of PTB
treatment by testing the stool of patients with
sputum-negative PTB [63]. Recent studies have
optimized RNA detection methods for MTB,
including RNA extraction protocols and 16S
rRNA primers, which have greatly improved the
detection efficiency of MTB [64]. Although 16S
rRNA detection can quickly reflect the effect of
ATTB treatment, whether the measurement of
16S rRNA in the early stage of treatment can be
used to predict the prognosis of PTB needs to be
confirmed by more studies [57].

Surveillance of Antigen Components
of MTB

Detection of the cell wall lipoarabinomannan
(LAM) component of MTB in urine can indicate
the presence of MTB and has been commer-
cialized. The LAM level in the urine of patients
with culture-positive PTB decreases gradually
after ATTB treatment, and the survival proba-
bility of patients with rapid LAM decline within
2 months of ATTB treatment is higher [65]. In
addition, LAM can be used not only to predict
the co-infection of PTB and HIV, with a positive
predictive value of up to 80% for co-infected
patients, but also to predict mortality, especially
for patients with advanced HIV [66]. However,
the sensitivity of LAM detection is very low
(13–93%) [67, 68], and more studies are needed
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to improve the sensitivity of LAM detection.
Moreover, detection of MTB Ag85 antigen in
sputum can reflect the early bactericidal effect
of ATTB drugs, and its continuous presence in
sputum indicates treatment failure or relapse
[69–71]. Although the diagnostic accuracy of
PTB is high [72, 73], the sensitivity of detecting
Ag85 antigen in filtrate after 2 weeks of culture
of MTB is only 80%. Interestingly, MPT64, a
secreted protein of MTB, was found to be only
secreted by viable MTB, with a sensitivity and
specificity of 86.9% and 92.0%, respectively,
which was similar to the diagnostic perfor-
mance of GeneXpert for PTB [74] and was con-
sistent with the 1? positive predictive value of
sputum smear [75]. Therefore, it is very
promising to detect the expression of MPT64
secreted protein of MTB to monitor drug effi-
cacy and ATTB therapy effect. Reduced or
undetectable levels of serum culture filtrate
protein-10 (CFP-10) and early secretory antigen
target-6 (ESAT-6) concentrations after treatment
can be used to monitor the efficacy of PTB
therapy [76]. Studies have shown that the sen-
sitivity and specificity of detection of MTB
antigens CFP-10 and ESAT-6 in serum can be
improved by using antibody-labeled and
energy-focused porous disk silicon nanoparti-
cles (nanodisks) and high-throughput mass
spectrometry during ATTB treatment. However,
this method is only preliminary at present, and
more large-scale prospective studies are needed
to verify and simplify the experimental process.
Table 1 provides a summary of MTB pathogen
and its components as biomarkers for evaluat-
ing the efficacy of PTB therapy.

MTB-Specific Host Biomarkers

Cytokines
Host biomarkers for assessing the response to
ATTB treatment largely rely on cytokine balance
[77], with cytokines being the most extensively
studied biomarkers for monitoring treatment
response. The most commonly used cytokine-
specific assay for assessing the response to ATTB
treatment is interferon gamma (IFNc), which
can be detected through T cell-based interferon-

gamma release assays (IGRAs) using CFP-10 or
ESAT-6 as stimulants. The number of spots
produced by IFNc-secreting T cells reflects the
response of MTB-specific T cells to these anti-
gens, and this number decreases after 2 months
of ATTB treatment [78]. There are two forms of
IGRA, including the ELISA-based QuantiFERON
TB Gold test and the ELISPOT-based T-SPOT test
[79]. While the number of spots produced by
CFP-10- and ESAT-6-stimulated IFNc-secreting
T cells can be used to monitor the efficacy of
ATTB treatment [80–83], and ELISPOT has
shown potential as a surrogate marker of PTB
treatment outcome [84], the utility of IGRA as a
monitoring tool for therapy efficacy is limited.
Most patients still test positive for IGRA even
6 months after they finish their treatment
[85–88], primarily because MTB-specific T cells
induced by MTB infection persist in the body
after successful treatment of patients with active
PTB, and these T cells can produce IFNc upon
stimulation with CFP-10 and ESAT-6. Owing to
differences in study design, the results regarding
MTB-specific IFNc after ATTB treatment are
inconsistent. Some studies have shown that
CFP-10- and ESAT-6-stimulated whole blood
IFNc and interleukin-4 (IL-4) increase, while
tumor necrosis factor-a (TNFa), IL-6, and IL-10
decrease after 2 months of ATTB treatment,
with significant changes in IFNc [89]. Moreover,
IFNc also increases under recombinant 32-kDa
Mycobacterium bovis stimulation after 6 months
of ATTB treatment [90]. However, other studies
have shown that peripheral blood mononuclear
cells (PBMCs) stimulated by CFP-10/ESAT-6
[91, 92] or CFP-10 [93] produce less IFNc after
6 months of ATTB treatment. Some studies have
also indicated that CFP-10/ESAT-6-stimulated
whole blood IFNc does not change after
3 months [94] and 6 months [95] of ATTB
treatment, but IFNc decreases under selected
RD1 peptide stimulation [95]. Therefore, further
investigation is needed to evaluate the use of
extracellular MTB-specific IFNc as a sole bio-
marker for assessing the efficacy of ATTB
treatment.

Other MTB-specific cytokines, such as TNFa
[91, 96], IL-1 receptor antagonist (IL-1ra) [97],
IL-4 [89], IL-6 [91], IL-10, ratios of IFNc to IL-10
[90], and IL-2/IFNc ratios [98], have been
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Table 1 Bacteriological biomarkers for evaluating therapy efficacy of pulmonary tuberculosis

Biomarkers Specimen Index changes Monitoring Limitations

Surveillance of

MTB

MTB Sputum AFB conversion from positive to

negative

Treatment

response,

treatment

outcome

Low sensitivity ([ 104

bacilli/ml)

Not distinguishing between

live and dead bacteria

(conventional sputum

smear microscopy)

Not distinguishing between

MTB and NTM

Culture conversion Treatment

response,

treatment

outcome,

recurrence

Long turnaround time

Expensive

Easy to pollute

Requires containment

facilities
Culture time to positivity Treatment

response,

treatment

outcome

CFU/ml declining rate Sterilizing

activity

Long turnaround time

Cumbersome operation

Easy to pollute

Surveillance of

nucleic acid

of MTB

DNA Sputum Xpert MTB/RIF or Xpert Ultra

or Taqman RT-qPCR Ct

value higher than threshold

(e.g.,\ 35)

Treatment

response,

treatment

outcome

Not distinguishing between

live and dead bacteria

trDNA Urine Ct value higher than threshold

(e.g.,\ 35)

Treatment

response,

treatment

outcome

Low sensitivity

Not distinguishing between

live and dead bacteria

Ag85B

mRNA

Sputum Ct value higher than threshold

(e.g.,\ 35)

Treatment

response

16S rRNA Sputum,

stool

Ct value higher than threshold

(e.g.,\ 35)

Sterilising

activity,

treatment

response

Larger longitudinal studies

are needed to confirm the

reliability

2670 Infect Dis Ther (2023) 12:2665–2689



associated with PTB treatment response. How-
ever, the results regarding certain cytokines
after ATTB treatment are inconsistent. For
example, MTB-specific TNFa and IL-10 have
shown varying results. Some studies have
reported an increase in TNFa and IL-10 after
ATTB treatment in patients with MDR-TB
stimulated with CFP [93], while other studies
have shown a decrease in TNFa and IL-10 after
ATTB treatment stimulated with CFP-10/ESAT-6
[89, 91, 97]. Additionally, stimulation with
Bacillus Calmette–Guérin (BCG) or its recom-
binant 32-kDa antigen has been found to reduce
IL-10 and increase IL-12 [99]. In cases of adverse
treatment outcomes, low levels of TNFa, IL-1b,
and IL-7 have been observed in whole blood
stimulated with H37Rv [100]. MTB-specific IL-
1ra (stimulated with CFP-10 and purified pro-
tein derivative (PPD)) [97] and IL-6 (stimulated
with CFP-10 and ESAT-6) [89] have been shown
to decrease after ATTB treatment, while MTB-

specific IL-4 (stimulated with CFP-10 and ESAT-
6) has been found to increase.

Chemokines
MTB-specific chemokines have not been exten-
sively studied for monitoring PTB treatment.
One of the most commonly studied chemokines
is IFNc inducible protein 10 (IP-10), which
belongs to the CXC class of chemokines. IP-10
has been found to decrease in whole blood
stimulated with QuantiFERON TB Gold In-Tube
(QFT-GIT) antigens after ATTB treatment [101].
Some studies have shown that IP-10 decreases
in whole blood stimulated with CFP-10 or ESAT-
6 after 9 months of ATTB treatment [97], and
with QFT-GIT antigens after 6 months of ATTB
treatment, although the results were not statis-
tically significant. However, IP-10 has been
found to decrease significantly when stimulated
with selected RD1 peptide [95]. Therefore, fur-
ther studies are needed to determine whether

Table 1 continued

Biomarkers Specimen Index changes Monitoring Limitations

Surveillance of

antigen

components

of MTB

LAM Urine Gradually reducing to

undetectable levels

Treatment

response,

treatment

outcome

Low sensitivity

Ag85

antigen

Sputum,

culture

medium

Gradually reducing to

undetectable levels

Sterilising

activity,

treatment

outcome,

recurrence

Low sensitivity

MPT64 Sputum Gradually reducing to

undetectable levels

Treatment

response

Need to exclude the

influence of blood in

sputum on test results

CFP-10,

ESAT-6

Serum Gradually reducing to

undetectable levels

Treatment

response

Larger randomized

prospective studies are

needed to verify results

Complex operation process

AFB acid-fast bacilli, NTM nontuberculous mycobacteria
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extracellular MTB-specific IP-10 is associated
with the outcome of ATTB treatment.

T Cell Features

The differentiation of T cell subsets upon com-
pletion of PTB treatment has been associated
with a cure [102]. A study on PBMCs from
patients with PTB undergoing ATTB treatment
found that IFNc?CD4? T cells (stimulated with
CFP10/ESAT-6) increased after 2 weeks of treat-
ment, while IFNc?CD8? T cells (stimulated with
CFP10/ESAT-6) [103] and total TNFa?CD8?

T cells (stimulated with Ag85) decreased.
IFNc?TNFa?CD4? T cells (stimulated with
CFP10/ESAT-6) also decreased. Additionally,
regulatory T cell (Treg) subsets CD25hiC-
D127low?, CD25hiCD147??, and CD25hiC-
D27lowCD161? expanded significantly after
in vitro PTB antigen stimulation, while
CD25hiCD127lowCD39? Treg remained
unchanged [104]. After 8 weeks of treatment,
the proportion of CD4?CD25hiCD127low Treg
cells and CD4?CD25hiCD127lowCD147? Treg
cells increased [105]. At 9 weeks of treatment,
PPD stimulation-induced IFNc?CD4 ? T cells
decreased in HLA-DR?, CD38?, and Ki-67?

subsets [106]. Moreover, 1 month into treat-
ment, the expression of CD45RA-CCR7? cen-
tral memory T cells (TCM) in PBMCs of patients
with PTB increased and correlated with sputum
conversion [107]. After 2 months of treatment,
the expression levels of CD27?CD38?CD4?,
CD27?HLA-DR?CD4?, and CD27-HLA-
DR?CD4? T cells increased, while the expres-
sion levels of CD27-IFNc?CD8?,
CD27-TNFa?CD8?, and CD27-Ki-67?CD4?

T cells decreased. CD27-IFNc?CD4? T cells
(stimulated with PPD) increased in patients
with a rapid response to ATTB treatment [108].
Therefore, changes in these T cell subpopula-
tions can serve as early and rapid indicators for
monitoring PTB treatment. Another study by
Young et al. showed that stimulation of PBMCs
from patients’ peripheral blood with CFP-10/
ESAT-6 and PPD after completing PTB treatment
led to a decrease in the expression of
TNFa?CD4?/CD8? T cells (stimulated with
PPD) and CD107a?CD4?/CD8? T cells

(stimulated with CFP-10/ESAT-6 or PPD) [109].
Additionally, after stimulation of PBMCs with
PPD, the expression of the CD25 marker and the
percentage of T cell subsets CD4?CD25? and
CD4?CD25?CD39? were significantly reduced
[110]. The study also found that a significant
decline in CD4?CD25?FoxP3? Treg cells is a
biomarker of a good outcome after treatment of
PTB with extensive lung damage. Other studies
have shown that a decline in MTB-specific
CD38?IFNc?, HLA-DR?IFNc?, and Ki-
67?IFNc?CD4? T cells is a characteristic of
treatment success [111]. Analysis of CD8?

T cells showed a decrease in CD95?IFNc?, Ki-
67?IFNc?, and CD127?IFNc?CD8? T cells,
while an increase was observed in other subsets
[112]. Additionally, the co-expression of HLA-
DR/CD38 and PD-1/CD38 on CD4? and CD8?

T cells decreased in patients with successful
treatment [105]. Studies have also shown that
patients with cured PTB exhibit high expression
of killer cell lectin-like receptor G1 (KLRG1),
PD-1, and cytotoxic T lymphocyte (CTLA-4) in
CD4? T cells after in vitro BCG stimulation of
PBMCs [113]. These changes and expression
levels of biomarkers have the potential to serve
as indicators of a cure.

Antibodies

The plasma of patients with PTB contains sev-
eral MTB-specific antibodies, including anti-
ESAT-6, Rv2626c, 38 kDa antigen, LAM and
FdxA antibodies. Studies have demonstrated
that during ATTB treatment, levels of anti-
ESAT-6 and Rv2626c antibodies decrease, while
levels of anti-38 kDa antigen and LAM anti-
bodies increase. However, levels of anti-FdxA
antibodies remain unchanged. These antibody
levels are also correlated with disease severity
and lung lesions [114]. Additionally, the study
found that alanine dehydrogenase and malate
synthetase antibodies were higher in patients
who failed treatment compared to those who
were cured at the start of treatment. After
6 months of ATTB treatment, co-incubation of
CFP-10/ESAT-6 with patient serum revealed a
decrease in serum IgG antibodies [91], while
patients with cured PTB exhibited high

2672 Infect Dis Ther (2023) 12:2665–2689



expression of serum IgG antibodies in response
to PTB antigen Ag85 [115]. Therefore, these
antibody titers have the potential to serve as
biomarkers for monitoring treatment efficacy.

Other Biomarkers

The neutrophil to lymphocyte ratio (NLR) has
been observed to decrease after ATTB treatment,
which can be used to assess the effectiveness of
drug treatment [98]. Furthermore, MMP-8 levels
at 2 months after ATTB treatment have been
found to be associated with persistent positive
sputum culture in patients, making it a poten-
tial biomarker for predicting poor response to
ATTB treatment [116].

The results of these in vitro experiments
suggest that monitoring changes in MTB-speci-
fic immune factors, intracellular immune fac-
tors, and T cell subsets during ATTB treatment
can be useful for assessing therapy efficacy and
predicting prognosis in the early stages. How-
ever, it should be noted that these in vitro PTB
stimulation experiments require meticulous
operations and some flow experiments can be
expensive. Furthermore, the existing research
findings have certain limitations. Therefore,
further investigations with larger sample sizes
are needed to gain a more comprehensive
understanding.

MTB-Nonspecific Host Biomarkers

Cytokines
IFNc is widely used as a non-specific cytokine to
assess the effectiveness of ATTB treatment. IFNc
levels decrease significantly in patients who
experience sputum conversion [117–120], and
these levels are also correlated with treatment
success [121]. Other cytokines have also shown
promising results in studies. For instance, sol-
uble TNF (solTNF) and IL-12 levels decrease in
patients with drug-sensitive PTB, while trans-
forming growth factor-beta 1 (TGFb1) and IL-35
levels increase in patients with DR-TB [120].
After 6 months of ATTB treatment, IL-1b, IL-9,
IL-10, and IL-15 levels decrease in the saliva of
patients with DR-TB [122]. IL-6 levels decrease
and IL-1b levels remain unchanged after

treatment, but IL-1b levels can differentiate
between smear-positive and smear-negative
patients after 6 months of treatment [123].
Furthermore, high levels of IL-10 and low levels
of IL-8 after ATTB treatment indicate poor PTB
treatment response and suggest a possible
recurrence of the disease [124].

Chemokines
Serum levels of CXCR3 ligands (CXCL9,
CXCL10 (IP-10), CXCL11) significantly decrease
in patients who achieve sputum conversion to
negative after 2 months of ATTB treatment
[125]. Studies have also demonstrated that
plasma levels of CXCL8, CXCL9, CXCL10, and
CCL5 decrease after 6 months of ATTB treat-
ment [126]. Among these, IP-10 has been
extensively studied as a biomarker and has been
found to decrease in plasma [127, 128] and
urine [129, 130] after treatment. Furthermore,
significantly lower levels of IP-10 have been
observed in the plasma of patients with suc-
cessfully cured PTB [131]. In patients with DR-
TB, baseline plasma IP-10 levels have been
positively associated with delayed sputum cul-
ture conversion [132]. Therefore, IP-10 is closely
linked to PTB treatment success [121] and serves
as a reliable biomarker for predicting treatment
outcomes. In cohort studies, pre-treatment
levels of CCL2, CCL3, CCL4, CXCL8, CXCL10,
and CX3CL1 have been identified as risk factors
for poor PTB treatment, while CXCL1 has
shown the opposite effect [133]. Validation
cohorts have also shown that CCL3, CXCL8,
and CXCL10 are associated with an increased
risk of adverse treatment outcomes [133].
Additionally, serum overexpression of eotaxin
has been significantly observed in well-treated
patients [134], indicating its importance as an
efficacy monitoring indicator. Therefore, the
combined use of chemokines may provide a
better prediction of PTB treatment outcomes.

T Cell Features

After 6 months of ATTB treatment, there is an
increase in the number of CD3? cells and CD4?

cells, while the number of CD8? cells decreases.
Further analysis reveals that the number of
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IFNc? and IL-2?CD4? T cells also increases
[123], whereas the number of IL-10?CD4?

T cells decreases. A high Th1/Th2 ratio is iden-
tified as a biomarker for poor treatment out-
comes [135]. Additional studies demonstrate a
decrease in the frequency of CD25? markers
and CD4?CD25?, CD4?CD25?FoxP3-, and
CD4?CD25?CD39? Treg cells in patients with
PTB who have completed treatment, indicating
their potential for monitoring treatment suc-
cess. However, in the treatment failure group,
there is a sharp increase in the frequency of the
CD4?CD25?FoxP3? Treg subgroup, suggesting
its potential for predicting treatment failure
[136]. Other studies indicate that low PD-1
expression on CD25-CD4? T cells and
CD25?Foxp3-CD4? T cells during treatment is
a positive indicator of ATTB treatment [137].
Additionally, studies show differences in the
changes of T cell subsets between patients with
drug-sensitive PTB and drug-resistant PTB after
ATTB treatment. The expression of conven-
tional Treg cells (cTreg), transmembrane form
(tm) TNFR1?, and tmTNFR2?CD4? T cells
decreases in both patients with drug-sensitive
and patients with drug-resistant PTB after ATTB
treatment. However, the decrease in uncon-
ventional tmTNFR2? Treg cells is observed only
in patients with drug-sensitive PTB, and the
decrease in tmTNFR2? activated CD4?

(actCD4?) cells is observed only in patients with
drug-resistant PTB [120]. Therefore, the changes
in T cell immune characteristics after ATTB
treatment differ between patients with drug-
sensitive and drug-resistant PTB, and further
exploration is needed to study biomarkers for
predicting therapy efficacy separately.

Other Biomarkers

Serum C-reactive protein (CRP), intracellular
adhesion molecule-1 (sICAM-1), urokinase-type
plasminogen activator receptor (suPAR), and
pentraxin 3 (PTX3) all decreased after treatment
[138]. Additionally, Heslop’s team discovered
that high levels of fibroblast growth factor (FGF)
in sputum after treatment were negatively cor-
related with reduced bacterial load [139], and a
low expression of the antioxidant enzyme heme

oxygenase-1 (HO-1) is also indicative of suc-
cessful treatment [140]. Furthermore, plasma
levels of extracellular matrix protein 1 (ECM1)
are associated with rapid conversion of sputum
to negative after 2 months of treatment, while
levels of L-selectin (SELL) and CD14 decline
after completion of treatment. These biomark-
ers can be used as indicators for therapeutic
monitoring [141]. The failure of serum globulin
levels to return to normal after 2 months of
treatment can be used as a biomarker to predict
the need for prolonged PTB treatment
[131, 142].

Some immune molecules in other immune
cells (monocytes and B cells) also change during
ATTB treatment. For example, the high expres-
sion of PD-L1 in monocytes of patients with
PTB after treatment is associated with worse
treatment outcomes [143], while the increase of
activated B cells is related to the success of PTB
treatment, as indicated by the high expression
of a proliferation-inducing ligand (APRIL), Fas-
ligand (FASLG), IL-5 receptor alpha (IL5RA), and
CD19 mRNA in B cells after ATTB treatment
[144]. Moreover, the high expression of FASLG
and IL5RA mRNA in B cells is a marker of suc-
cessful ATTB treatment. Although there are few
studies on the changes of immune molecules in
other immune cells after ATTB treatment, these
studies suggest that there are some immune
molecules in other immune cells that can be
used to predict the efficacy of PTB therapy.
Table 2 provides a summary of the host
biomarkers for evaluating the efficacy of PTB
therapy, and Supplementary Table S1 presents a
summary of the changes and monitoring out-
comes of each host biomarker after ATTB
treatment.

Host-nonspecific immune factor changes
after ATTB treatment are widespread, so recent
studies have begun to conduct multi-immune
factor screening to identify representative
biomarkers. Vladyslav et al. conducted a multi-
center cohort study and discovered significant
changes in Toll-like receptor (TLR) and aptamer
gene expression, along with cytokine and che-
mokine levels, in patients with PTB following
2 months of ATTB treatment [145]. It was found
that the changes of Toll interaction protein
(TOLLIP), TLR9, TLR7, Toll-like receptor
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adaptor molecule 1 (TICAM1), IL-1 receptor-as-
sociated kinase 4 (IRAK4), CD14, and cytokines
vascular endothelial growth factor (VEGF),
macrophage inflammatory protein (MIP)-1b, IL-
7, IFNc, and granulocyte colony-stimulat-
ing factor (G-CSF) after 2 months of ATTB
treatment were statistically significant. TOLLIP,
lymphocyte antigen 96 (LY96), and nine
cytokines, including TNFa, MIP-1a, monocyte
chemoattractant protein-1 (MCP-1/CCL2), IL-8,
IL-5, IL-15, IFNa, granulo-
cyte–macrophage colony-stimulating factor
(GM-CSF), and G-CSF, were found to be associ-
ated with successful treatment outcomes. Serum
TLR2 levels decreased in successful patients,
while failed patients showed the opposite trend.
Another clinical trial screening 70 host
biomarkers associated with PTB severity and
treatment response demonstrated that most
biomarkers decreased after 8 weeks of treat-
ment, with serum amyloid A1 (SAA1), procal-
citonin (PCT), IL-1b, IL-6, CRP, PTX3, and
MMP-8 showing strong associations with dis-
ease severity [146]. In the case of patients with
DR-TB, plasma levels of CRP, SAA, VEGF-A,
soluble interleukin-2 receptor alpha (sIL-2Ra),
and IP-10 at baseline treatment were positively
correlated with delayed sputum culture con-
version and a combination of MCP-1, sIL-2Ra,
and SAA could distinguish patients with PTB
with a fast response to ATTB treatment [132].
Additionally, significant changes were observed
in the concentrations of granzyme A, MCP-1,
IL-1b, IL-9, IL-10, IL-15, MIP-1b, ferritin, and
serum amyloid A in the saliva of patients with
drug-resistant PTB after 2 or 6 months of treat-
ment [122]. Among these, only MCP-1
increased after treatment, while the others
decreased. These findings suggest that a com-
bination of multiple immune factors may be
useful for monitoring PTB treatment, but fur-
ther research is needed to determine the opti-
mal combination for predictive purposes.

Host Biomarkers for Omics Analysis

Recent study has summarized biomarkers in
omics for monitoring PTB treatment [147].
Transcriptomics revealed that complement
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C1q, C2, BF, and serpin in whole blood, as well
as G1, UCP2 (involved in fatty acid metabo-
lism), IFNa signaling pathway-related molecules
IL15RA, UBE2L6 (a member of the ubiquitin
family), guanylate binding protein 4 (GBP4),
GBP5, dual-specific phosphatase 3 (DUSP3), and
kruppel-like transcription factor 2 (KLF2),
decreased after treatment. Serum miRNAs,
including miR-21-5p, miR-92a-3p, and miR-
148b-3p, also decreased after treatment, and
high expression of Pragmin (Src kinase regula-
tor) after treatment was a risk factor for relapse.
Proteomics showed that the serum complement
C7 and angiotensinogen, innate and adaptive
immune-related proteins, such as coagulation
factor V and serum amyloid protein, decreased
after treatment, while the phosphoserine-tRNA
kinase of infected primary human leukocytes
increased after treatment. In addition, metabo-
lomics showed that pyridoxine and bradykinin
decreased after treatment, and the combination
of L-histidine, arachidonic acid, biliverdin, and
cysteine glutathione disulfide could be used as
markers to cure PTB. Exploring the biomarkers
in the host after ATTB treatment by omics
methods has great application potential, but the
sample size of the current omics studies is lim-
ited. It is necessary to further increase the
sample size and reduce the biological differ-
ences of individuals to verify whether they are
suitable for the monitoring of clinical efficacy.
In addition, the Opti-4TB study, a ‘‘proof of
concept’’ method, may predict the prognosis of
PTB based on multi-omics combined detection
of host immune markers [148]. Although it has
a broad clinical application potential, one still
needs to obtain more accurate biomarkers that
reflect the effect of ATTB treatment and develop
a simple prognostic prediction and evaluation
system to achieve clinical translation.

CONCLUSIONS

Despite the limitations of traditional biomark-
ers, they are still widely used owing to their
simplicity, cost-effectiveness, and suitability for
resource-limited settings. However, the lack of
timeliness and low sensitivity of these
biomarkers has led to the further spread of PTB,

resulting in significant health risks and eco-
nomic losses. Therefore, there is an urgent need
for improved biomarkers that can accurately
reflect therapy efficacy and guide treatment
decisions to control PTB outbreaks. The emer-
gence of new biomarkers, including those
derived from MTB itself and its host, as well as
advancements in detection methods, offer the
possibility of rapid, accurate, and efficient
monitoring of PTB therapy efficacy. However, as
a result of the diversity of these biomarkers,
variations in study designs, small sample sizes,
and inconsistent reports of certain biomarkers
[149], it is necessary to expand the sample size
to identify important biomarkers for monitor-
ing ATTB therapy efficacy.

Cytokines and chemokines play a crucial role
in evaluating the efficacy of PTB therapy [150].
Zimmer et al. conducted a meta-analysis of
biomarkers associated with treatment response
to active PTB, summarizing 81 biomarkers from
77 relevant studies. Despite the heterogeneity in
the design of surveillance studies for PTB treat-
ment, studies involving a large number of
biomarkers have shown that cytokines (IL-6 and
TNFa), chemokine (IP-10), and non-specific
inflammatory marker (CRP) can serve as
biomarkers for early monitoring of ATTB treat-
ment [151]. Moreover, the assessment of ther-
apy efficacy in patients with PTB through the
use of MTB-specific and nonspecific host
biomarkers encompasses a wide range of
cytokines and chemokines. During ATTB treat-
ment, changes in MTB-specific biomarkers pro-
duced through in vitro stimulation can reflect
the therapeutic efficacy in patients with PTB.
These biomarkers can improve the specificity of
prediction, although they may involve complex
procedures and have high requirements. Moni-
toring MTB-nonspecific host biomarkers during
ATTB treatment, including those identified
through omics analysis, is a promising
approach. Although the changes in MTB-non-
specific biomarkers of ATTB treatment are
complex, more accurate prediction models can
be developed by combining multiple immune
factors [152]. Additionally, the alterations in
host immune markers differ between patients
with drug-sensitive PTB and patients with drug-
resistant PTB, and even within the same patient
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group, the same type of immune marker may
display distinct changes in response to different
MTB antigen stimuli. Hence, it is crucial to
investigate and analyze the biomarkers of these
two patient groups separately.

Certain biomarker changes during PTB
treatment can reflect the efficacy of ATTB
treatment (Fig. 1). This review provides an
updated summary of biomarkers for monitoring
ATTB therapy efficacy and suggests new
research directions for further validation stud-
ies. It is hoped that through these biomarkers, a
simple and feasible tool for evaluating therapy
efficacy can be established, thereby reducing
the incidence and mortality of PTB and
achieving the goal of ending tuberculosis as
soon as possible.
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