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ABSTRACT

Introduction: Urinary tract infections (UTIs)
are common infections for which initial
antibiotic treatment decisions are empirically
based, often without antibiotic susceptibility
testing to evaluate resistance, increasing the risk
of inappropriate therapy. We hypothesized that
models based on electronic health records
(EHR) could assist in the identification of
patients at higher risk for antibiotic-resistant
UTIs and help guide the selection of antimi-
crobials in hospital and clinic settings.
Methods: EHR from multiple centers in North-
Central Florida, including patient

demographics, previous diagnoses, prescrip-
tions, and antibiotic susceptibility tests, were
obtained for 9990 patients diagnosed with a UTI
during 2011–2019. Decision trees, boosted
logistic regression (BLR), and random forest
models were developed to predict resistance to
common antibiotics used for UTI management
[sulfamethoxazole-trimethoprim (SXT), nitro-
furantoin (NIT), ciprofloxacin (CIP)] and mul-
tidrug resistance (MDR).
Results: There were 6307 (63.1%) individuals
with a UTI caused by a resistant microorganism.
Overall, the population was majority female,
white, non-Hispanic, and older aged
(mean = 60.7 years). The BLR models yielded
the highest discriminative ability, as measured
by the out-of-bag area under the receiver-oper-
ating curve (AUROC), for the resistance out-
comes [AUROC = 0.58 (SXT), 0.62 (NIT), 0.64
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(CIP), and 0.66 (MDR)]. Variables in the best
performing model were sex, history of UTIs,
catheterization, renal disease, dementia, hemi-
plegia/paraplegia, and hypertension.
Conclusions: The discriminative ability of the
prediction models was moderate. Nonetheless,
these models based solely on EHR demonstrate
utility for the identification of patients at higher
risk for resistant infections. These models, in
turn, may help guide clinical decision-making
on the ordering of urine cultures and decisions
regarding empiric therapy for these patients.

Keywords: Antimicrobial resistance; Clinical
decision support; Electronic health records;
Machine learning; Urinary tract infections

Key Summary Points

Why carry out this study?

UTIs are common bacterial infections that
are often treated inappropriately,
consequently resulting in treatment
failures and the development of
antimicrobial resistance.

Machine learning algorithms applied to
large, curated electronic health records
(EHR) data can permit the development of
highly predictive models to aid diagnosis
of resistant infections to guide treatment
decisions more rapidly.

What was learned from the study?

Machine-learning algorithms predicted
resistance to the antibiotics (SXT, NIT,
and CIP) most prescribed for their
treatment in this study population using
variables easily accessible in patients’ EHR.

Factors such as prior antibiotic use, renal
disease, and diabetes were highly
predictive of resistance phenotypes.

These models can inform decision-making
in settings where resistance testing is not
possible or rapid enough for patients with
declining health status.

INTRODUCTION

Urinary tract infections (UTIs) are among the
most frequent bacterial infections occurring in
the USA [1]. UTI is an umbrella term for multi-
ple syndromes; however, antibiotic therapy is
typically only indicated for two syndromes,
cystitis (UTIs confined to the bladder) and
pyelonephritis, referring to UTIs that progress
to involve the kidneys [2]. Among adult
patients suffering acute pyelonephritis, hospi-
talization occurs in 10–30% [2]. As such, UTIs
account for a significant economic burden, with
direct and indirect costs projected at $2.9 bil-
lion annually [2, 3]. These infections are often
treated inappropriately, consequently resulting
in treatment failures and the development of
antimicrobial resistance [4]. Levels of UTIs
resistant to some of the most common antibi-
otics used for their treatment, including sulfa-
trimethoprim (SXT) and the fluoroquinolone
ciprofloxacin (CIP), have risen substantially in
the US [5]. Between 2000 and 2010, resistance
levels rose from 17.9 to 24.2% for SXT and from
3.0 to 17.1% for CIP among outpatients suffer-
ing UTIs caused by Escherichia coli, the most
prevalent UTI pathogen [5]. Another study
reported similar levels of SXT resistance (25.2%)
and even higher levels of resistance to fluoro-
quinolones (29.5%) in E. coli UTI isolates as of
2013 [6]. Resistance to nitrofurantoin (NIT) and
fosfomycin (FOF), frontline antibiotics for
treatment of uncomplicated UTI, has not
noticeably increased since they were introduced
[7]. The gold standard for testing for a resistant
UTI is a urine culture and antibiotic suscepti-
bility test. However, this test takes, on average,
24–48 h before results are available. Thus, deci-
sions regarding diagnosis and treatment are
typically empirically based on symptoms and
results of simple assays such as a dipstick or
urinalysis with microscopy [8, 9].

Under these circumstances, there is potential
utility in the development of clinical prediction
and decision support systems that can improve
the culture-independent diagnosis and man-
agement of antimicrobial-resistant UTIs. Prior
studies have identified several predictors of
resistant UTI that are routinely collected and
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captured in patients’ electronic health records
(EHR) including demographic factors, comor-
bidities (e.g., diabetes, immune deficiency),
clinical history of UTI, and past antibiotic pre-
scriptions [10–13]. However, many of these
studies were conducted on relatively small
datasets, in non-US populations, or using data
not typically available at the point of care (e.g.,
infecting organism). The availability of large,
structured, and curated datasets— in terms
ofboth sample size and measurement space—
from EHR, together with the ability of machine
learning to fit models on big data and approxi-
mate complex outcome surfaces, permits the
development of diagnostic models for a variety
of diseases. The objective of this study was to
develop a culture-independent diagnostic
model of resistance to antimicrobial agents
commonly used in the treatment of UTIs and
multidrug-resistant (MDR) UTIs.

METHODS

As part of this study, we compared the perfor-
mance of linear and nonlinear methods, using
EHR data collected over a 2-decade-long period
at a large, multi-center academic health system
in the southeastern US. The models were fit to
accommodate realistic data availability and aid
clinicians in point-of-care decision-making in
ambulatory and hospital settings. This article
adheres to the Transparent Reporting of a mul-
tivariable prediction model for Individual
Prognosis or Diagnosis (TRIPOD) statement
(Supp. Fig. 1).

Ethics Statement

The study protocol for secondary data analysis
and a waiver of informed consent were
approved by the University of Florida (UF)’s
Institutional Review Board (#IRB201900652).

Data Source

Deidentified EHR data were obtained from the
UF Health and Shands Hospital (UF Health).
The UF Health network includes two main

hospital systems and approximately 45 affili-
ated outpatient practices. The clinics are located
primarily in Gainesville and Alachua County,
Florida, with additional health centers in Jack-
sonville, Florida. UF Health EHRs have been
collectively managed as an integrated data
repository (IDR) since 2011. Clinical diagnoses
and procedures are encoded using the Interna-
tional Classification of Diseases (ICD) codes,
versions 9–11 depending on the year. Medica-
tions are encoded using RxNorm and laboratory
tests via LOINC. In this work, diagnostic codes
across all years were harmonized by converting
to the ICD version nine (ICD-9). To be included
in the study population patients had to be aged
18 years or older, diagnosed with a UTI (ICD-9:
595.*-‘Cystitis’ or 599.0-‘Urinary tract infection,
site not specified’) at a UF health inpatient or
outpatient center between January 1, 2011, and
July 1, 2019, resided in a zip code sharing the
same first three digits as the health network and
had an antibiotic susceptibility test for their
infection. Only the most recent UTI observation
was considered for patients with multiple UTI
diagnoses with an antibiotic susceptibility test
present. The bacterial identification and
antibiotic susceptibility test results were pulled
from PDF reports through in-house scripts
developed and maintained by IDR staff.

Antibiotic-resistant UTI

Infections were determined to be antibiotic-re-
sistant based on the susceptibility test results.
Antibiotic resistance was defined cumulatively
as any infection with C 1 ‘‘resistant’’ suscepti-
bility findings for all antibiotics tested and by
major drug (SXT, CIP, or NIT). Infections with
resistance to all three major drug types were
categorized as MDR. Antibacterial agents were
abbreviated using standard American Society
for Microbiology conventions (https://aac.asm.
org/content/abbreviations-and-conventions).

Covariates

Data were collected on patient demographics,
including age, sex at birth, race (categorized as
Black, White, or other/unknown), ethnicity
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(Hispanic or non-Hispanic), and three-digit zip
code of residence. Prior diagnoses obtained
from the EHR included components of the
Charlson’s comorbidity index, in addition to
other factors that were previously identified as
predictors of antimicrobial-resistant UTIs
[11, 12, 14, 15] including diabetes, congestive
heart failure, renal, peripheral vascular, cere-
brovascular, chronic pulmonary, rheumatic,
peptic ulcer, and liver diseases, hemiplegia or
paraplegia, any malignancy except malignant
neoplasm of skin, metastatic solid tumor, HIV/
AIDS, and dementia. Additional comorbidities
included hypertension, pregnancy, immune
deficiency (non-HIV infection-related), nicotine
dependence, birth control usage, history of UTI,
vaginal infection, and urinary tract abnormali-
ties. Symptoms/clinical features of the UTI that
were collected included dysuria, frequency,
urgency, hematuria, and pyelonephritis. ICD-9
code categorization schemes for all comorbidi-
ties were based on works by Glasheen (2019)
[16] and Menendez (2014) [17] (Supplementary
Material Table 1).

Dates of admission and discharge were
obtained to determine hospitalization and
intensive care unit (ICU) status at the time of
the infection and urinary catheterization in the
past year. Patients with at least two consecutive
dates under hospital observation were consid-
ered hospitalized. Past antibiotic prescriptions
for previous encounters were categorized by
drug type, either as ‘‘cognate,’’ defined as the
same drug type to which the infection is resis-
tant, or as ‘‘non-cognate,’’ defined as a different
drug type from the resistant infection as done in
a previous study [11]. Organism identification
from the susceptibility test was also extracted
and categorized by the most common isolates
(Citrobacter species, Enterobacter species, Entero-
coccus faecalis, E. coli, Klebsiella pneumoniae,
Proteus mirabilis, Pseudomonas aeruginosa, Sta-
phylococcus aureus) or other.

Statistical Analysis

All variables were considered for model inclu-
sion. We did not attempt to distinguish
between variables that were confounders

(versus colliders) as the goal of this analysis was
the prediction of resistance rather than causal
inference [18]. We fit the following linear and
nonlinear multivariable models: (1) main
effects boosted logistic regression (BLR), (2)
random forest (RF), and (3) decision tree (DT).
The BLR models used 100 iterations; the RF
models were fit with 500 trees, while different
pruning strategies were used for the DTs. We
assessed models’ performance through boot-
strap validation (n = 25) and assessed the out-
of-bag average sensitivity, specificity, and area
under the receiver-operating characteristic
(AUROC) curve with corresponding standard
deviations. To externally validate the models,
we trained them using data from patients living
in the predominant three-digit zip code (‘326’,
accounting for 78.9% of the population) region
where the main UF Health hospital is located
and tested them on data from patients living in
the greater-Jacksonville, Florida, region (three-
digit zip code ‘322’, accounting for 21.1% of the
population) where a secondary UF Health hos-
pital is located. Predictors’ importance was
assessed using odds ratios for the logistic model,
with p-values, and of split-rank with a stratified
p-value of node purity for the DTs. All analyses
were performed in R [19], version 4.0.2, using
the following packages: mboost, randomForest,
rpart, party, caret, and ROCR [20–25].

RESULTS

Study Population

There were 9990 patients who met the study
criteria. The overall study population was
majority female (76.4%), white (67.7%), and
non-Hispanic (96.1%) with a mean age of 60.7
(SD = 19.8) years (Table 1). The proportion of
infections resistant to at least one antibiotic was
63.0%, ranging between 58.8 and 67.1%
throughout the study period (2011–2019). The
prevalence of all-cause resistant UTIs remained
stable throughout the study period, with no
clear upward/downward trend (Fig. 2). The
most common uropathogens were E. coli
(59.1%), K. pneumoniae (14.6%), and E. faecalis
(5.5%), which was also consistent throughout
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Table 1 Characteristics of the study population diagnosed with a urinary tract infection (UTI) stratified by antibiotic
resistance status, 2011–2019

Non-resistant UTI Resistant UTI Unadjusted OR

Age (years); mean (SD) 59.2 (20.3) 61.5 (19.5) 1.01 (1.00–1.01)

Age category (years)

18–29 400 (10.9) 484 (7.7) Referent

30–39 411 (11.2) 652 (10.3) 1.31 (1.09–1.57)

40–49 392 (10.6) 574 (9.1) 1.21 (1.01–1.46)

50–59 485 (13.2) 887 (14.1) 1.51 (1.27–1.80)

60–69 672 (18.2) 1272 (20.2) 1.56 (1.33–1.84)

70–79 678 (18.4) 1240 (19.7) 1.51 (1.29–1.78)

80? 645 (17.5) 1198 (19.0) 1.54 (1.30–1.81)

Sex

Male 786 (21.3) 1568 (24.9) Referent

Female 2897 (78.7) 4739 (75.1) 0.82 (0.74–0.90)

Race

White 2508 (68.1) 4165 (66.0) Referent

Black 953 (25.9) 1752 (27.8) 1.11 (1.01–1.22)

Other/unknown 222 (6.0) 390 (6.2) 1.06 (0.89–1.26)

Ethnicity

Not Hispanic 3514 (95.4) 6024 (95.5) Referent

Hispanic 148 (4.0) 243 (3.9) 0.96 (0.78–1.18)

Other/unknown 21 (0.6) 40 (0.6) 1.11 (0.66–1.92)

Diabetes 1255 (34.1) 2634 (41.8) 1.39 (1.28–1.51)

Hypertension 2108 (57.2) 4220 (66.9) 1.51 (1.39–1.64)

Renal disease 789 (21.4) 1762 (27.9) 1.42 (1.29–1.57)

Myocardial infarction 403 (10.9) 862 (13.7) 1.29 (1.14–1.46)

Congestive heart failure 221 (6.0) 464 (7.4) 1.24 (1.06–1.47)

Peripheral vascular disease 672 (18.2) 1302 (20.6) 1.17 (1.05–1.29)

Cerebrovascular disease 362 (9.8) 655 (10.4) 1.06 (0.93–1.22)

Chronic pulmonary disease 115 (3.1) 233 (3.7) 1.19 (0.95–1.50)

Rheumatic disease 130 (3.5) 205 (3.3) 0.92 (0.74–1.15)

Peptic ulcer disease 81 (2.2) 170 (2.7) 1.23 (0.95–1.62)

Liver disease 587 (15.9) 1115 (17.7) 1.13 (1.02–1.26)

Hemiplegia or paraplegia 196 (5.3) 497 (7.9) 1.52 (1.29–1.81)
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Table 1 continued

Non-resistant UTI Resistant UTI Unadjusted OR

Any malignancy (except skin) 371 (10.1) 649 (10.3) 1.02 (0.90–1.17)

Metastatic solid tumor 127 (3.4) 203 (3.2) 0.93 (0.74–1.17)

HIV/AIDS 53 (1.4) 125 (2.0) 1.38 (1.01–1.93)

Dementia 213 (5.8) 387 (6.1) 1.06 (0.90–1.27)

Pregnancy 60 (1.6) 80 (1.3) 0.78 (0.55–1.09)

History of UTI 679 (18.4) 1423 (22.6) 1.29 (1.16–1.43)

Immunodeficiency (non-HIV) 99 (2.7) 260 (4.1) 1.56 (1.23–1.98)

Vaginal infection 128 (3.5) 226 (3.6) 1.03 (0.83–1.29)

Catheterization 140 (3.8) 308 (4.9) 1.04 (0.81–1.34)

Hospitalization 2544 (69.1) 4513 (71.6) 1.13 (1.03–1.23)

ICU 243 (7.3) 631 (10.8) 1.57 (1.35–1.84)

Nicotine dependence 1197 (32.5) 2098 (33.3) 1.04 (0.95–1.13)

Birth control usage 496 (13.5) 680 (10.8) 0.78 (0.69–0.88)

Urinary tract abnormality 14 (0.4) 35 (0.6) 1.46 (0.80–2.81)

Dysuria 610 (16.6) 857 (13.6) 0.79 (0.71–0.89)

Frequency 202 (5.5) 321 (5.1) 0.92 (0.77–1.11)

Urgency 56 (1.5) 101 (1.6) 1.05 (0.76–1.47)

Hematuria 419 (11.4) 693 (11.0) 0.96 (0.85–1.09)

Pyelonephritis 412 (11.2) 742 (11.8) 1.06 (0.93–1.20)

Any antibiotic use 1398 (38.0) 2944 (46.7) 1.43 (1.32–1.55)

SXT use 138 (3.7) 460 (7.3) 2.02 (1.67–2.46)

NIT use 66 (1.8) 177 (2.8) 1.58 (1.20–2.12)

CIP use 271 (7.4) 733 (11.6) 1.66 (1.43–1.92)

Organism

E. coli 2564 (69.6) 3340 (53.0) Referent

Citrobacter spp. 111 (3.0) 93 (1.5) 0.64 (0.49–0.85)

Enterobacter spp. 11 (0.3) 319 (5.1) 22.26 (12.81–43.31)

E. faecalis 310 (8.4) 226 (3.6) 0.56 (0.47–0.67)

K. pneumoniae 121 (3.3) 1340 (21.2) 8.50 (7.04–10.36)

P. mirabilis 26 (0.7) 348 (5.5) 10.27 (7.02–15.73)

P. aeruginosa 251 (6.8) 99 (1.6) 0.30 (0.24–0.38)

S. aureus 74 (2.0) 120 (1.9) 1.24 (0.93–1.68)
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the study period (Fig. 1). Resistance to CIP and
SXT was highest for all-cause UTIs and UTIs
caused by E. coli throughout the full study per-
iod, whereas resistance to NIT was highest for
UTIs caused by K. pneumoniae in 2011–2015
only (Fig. 2). MDR UTIs were observed in 159
patients. Missing data were problematic for
three of the outcome variables: status of SXT
resistance (12.3% missing), NIT resistance (5.9%
missing), and CIP resistance (6.3% missing) due
to omission from the antibiotic susceptibility
screening—likely deemed unnecessary upon
organism identification. This was remedied by
subsetting three new datasets for which the
outcome status was non-missing, resulting in a
final population count of 9072 for SXT, 9726 for
NIT, 9688 for CIP, and 10,340 for MDR and
‘any’ resistance.

Strongest Predictors of Antibiotic-
Resistant UTI

Increased age, presence of diabetes, hyperten-
sion, renal disease, myocardial infarction, con-
gestive heart failure, peripheral vascular disease,
liver disease, hemiplegia or paraplegia, HIV/
AIDS, history of UTI, immunodeficiency (non-
HIV), hospitalization, ICU status, and antibiotic
use were all positively associated with having an
all-cause resistant UTI (Table 1). Compared to
infection with E. coli, infection with Enterobacter
spp., K. pneumoniae, or P. mirabilis was associ-
ated with significantly greater odds of all-cause
resistant UTI. Conversely, infection with
Citrobacter spp., E. faecalis, or P. aeruginosa was
associated with reduced odds of all-cause resis-
tant UTI compared to infection with E. coli.
Additionally, being female, using birth control,
and having the symptom of dysuria at the time

of the encounter were also associated with
reduced odds of all-cause-resistant UTI.

Model Performance

The BLR models yielded the highest discrimi-
native performance as compared to the DT and
RF models for all five outcomes: AUROC = 0.57
(SD = 0.01) for AMR-UTI, AUROC = 0.58 (SD =
0.01) for SXT-resistant UTI, AUROC = 0.62
(SD = 0.01) for NIT-resistant UTI, AUROC =
0.64 (SD = 0.01) for CIP-resistant UTI, and
AUROC = 0.66 (SD = 0.02) for MDR UTI
(Table 2, Fig. 3). The BLR model performed
similarly on the external validation population
(Supplementary Table 2). The best fit clinical
decision support system was for MDR UTI and
included the variables sex, history of UTI, his-
tory of catheterization, renal disease, dementia,
hemiplegia or paraplegia, and hypertension
(Supplementary Fig. 2).

Effect estimates for the remaining outcomes
from the BLR models are in Supplementary
Table 3. Given that the model performances
were similar for each method, multiple decision
paths may be considered. Based on the best-fit,
pruned DTs, the most important feature for
prediction of all-cause resistant (AMR)-UTI was
past antibiotic use, followed by hypertension,
sex, and birth control in the low antibiotic use
category, and age and nicotine use in the high
antibiotic use category (Supplementary Fig. 3).
For SXT-resistant UTIs, the most important
factors were cognate antibiotic use and renal
disease (* 60% resistant) or history of UTI and
congestive heart failure (* 40% resistant)
(Supplementary Fig. 4). Female sex, renal dis-
ease, and other/unknown race/ethnicity were
associated with NIT-resistant UTIs * 30% of

Table 1 continued

Non-resistant UTI Resistant UTI Unadjusted OR

Other 215 (5.8) 422 (6.7) 1.51 (1.27–1.79)

Values are presented as frequency (percentage) unless otherwise stated
UTI urinary tract infection, OR odds ratio, SD standard deviation, HIV/AIDS human immunodeficiency virus/acquired
immune deficiency syndrome, ICU intensive care unit, SXT sulfa-trimethoprim, NIT nitrofurantoin, CIP ciprofloxacin, Dx
diagnosis
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the time, whereas male sex and catheter use
were associated with NIT-resistant UTIs * 26%
of the time (Supplementary Fig. 5). For CIP-re-
sistant infections, the most important predictor
was age followed by renal disease (* 25%
resistant) or HIV/AIDS (* 35% resistant) in
the\50 years old age group versus CIP use and
hospitalization (* 50% resistant) or history of
UTI (* 30% resistant) in the 50 ? years old age
group (Supplementary Fig. 6). The most impor-
tant risk factors for MDR UTIs were
age C 60 years old, SXT use, and black race
(* 60% resistant) (Supplementary Fig. 7).

DISCUSSION

Appropriate management of UTIs is a key
component of antimicrobial stewardship in
ambulatory and hospital settings. Despite this,
there continues to be inappropriate selection of

antibiotics for empiric and definitive therapies
for UTIs. The increasing availability of EHR,
combined with the ability to quickly scan and
utilize these data to guide clinical practice,
motivated us to develop algorithms that would
provide clinicians with an ‘‘early warning’’ that
a UTI might be being caused by a microorgan-
ism with a single drug or multidrug-resistant
phenotype. Our data suggest that, although not
perfect, such algorithms can be of value to
clinicians and persons involved with antimi-
crobial stewardship programs. Predictability of
resistance and guidance toward a reasonable
choice of first-line antibiotic could be valuable
to a treating clinician. This predictability can
prompt optimal resource utilization by con-
sulting the infectious diseases specialist or
stewardship team in guiding the use of non-s-
tandard oral or intravenous antibiotics as nee-
ded. Rather than asking clinicians to input
multiple data with the use of practice alerts or

Fig. 1 Proportions of the most common uropathogens identified in this study population are plotted by year of diagnosis
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order sets, these algorithms could automatically
incorporate factors such as creatinine clearance
or allergies, which preclude the use of certain
antibiotics in addition to prediction of
resistance.

In the development of such algorithms, this
study was among the first to fit and compare the
performance of both linear and nonlinear
models developed to predict antibiotic-resistant
UTIs using large, structured, and curated EHR
data. The clinical decision support systems
developed in this study were moderately

predictive of antibiotic-resistant UTIs—with the
highest performances (as measured by AUROC
values) ranging from 0.57 to 0.66. These models
performed similarly to those developed in
another US-based population in the Northeast
(AUROC = 0.56 for NIT, 0.59 for SXT, and 0.64
for CIP), although that study population was
younger on average and excluded males [26]. In
contrast, Yelin et al.’s algorithms using nation-
ally representative data from Israel outper-
formed those in the current study
(AUROC[ 0.70 for all resistant outcomes) [11].

Fig. 2 Prevalence of (i) all-cause resistant urinary tract
infections (UTIs) (top), (ii) resistant UTIs due to
infection with Escherichia coli (bottom left), and (iii)
Klebsiella pneumoniae (bottom right) by diagnosis year,
grouped by major drug type: SXT sulfamethoxazole-

trimethoprim, NIT nitrofurantoin, CIP ciprofloxacin, or
multidrug resistance (MDR) to all three major drug types

Infect Dis Ther (2022) 11:1869–1882 1877



Among the most important features selected for
the prediction of resistant-UTI types in both
studies were past antibiotic use and prior resis-
tant infections. In the current study, variables
most predictive of antibiotic-resistant UTIs were
past cognate and non-cognate antibiotic use,
renal disease, and diabetes. Previous antibiotic
exposure was consistently proven to be one of
the strongest predictors of future antibiotic-re-
sistant UTIs, except for NIT-resistant UTIs. Prior
cognate antibiotic use was not a significant
predictor for NIT resistance. The effects of prior
antibiotic use on the risk of CIP and SXT-resis-
tant UTIs were stronger for cognate (same-drug)
exposures as compared to non-cognate (differ-
ent drug) exposures, also observed by Yelin et al.
[11]. This finding underscores the importance of
taking cumulative antibiotic exposures into
consideration when assessing the risk for future
resistance. Yelin and colleagues [11] also
observed fewer UTIs resistant to NIT than to CIP
and SXT as did we in the present study. NIT has
consistently performed better than SXT and CIP
in previous studies, including for the treatment
of MDR E. coli UTIs [27].

The BLR (linear) models performed better
than the RF and DT (non-linear) models in the
current study, similarly observed by Kanjilal
et al. [26]. AUROC values were 0.57–0.66 for the
best performing models, indicating that these
prediction systems may be a feasible option to
support antibiotic decisions in outpatient set-
tings, where the majority of antibiotics are
prescribed in the US [28]. However, the AUROC
values for these models are moderate, even if
always[ 0.55, indicating there is a portion of
data variance that cannot be explained by the
current covariate sets. One suggestion for future
studies is to build separate models by age
bracket to achieve better discrimination.

This study had limitations. Our population
was relatively older with more comorbidities
than may be prevalent in the general popula-
tion at risk for UTI. Study of alternative antibi-
otics used in this population is needed.
Additionally, information on prior healthcare
exposures, such as in-patient stays, and previous
drug-resistant infections were not included in
this study but may be considered in future
studies to improve models’ predictiveT
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performances. Furthermore, EHR data from
only one healthcare provider were used, which
limits the generalizability of our findings to
other populations; however, we did attempt to
externally validate these models on a popula-
tion that was geographically separate from the
main study population (primarily located in
Alachua County, Florida) by running the mod-
els using equivalent EHR data from the Jack-
sonville population (located in Duval County,
Florida) with similar results. Application of
these models to populations outside of Florida
or the US will require additional studies. The use
of variables such as race and ethnicity are
readily available proxies to adjust for societal
forces contributing to disease likelihood, but
they by no means imply a biological/genetic

mechanism for these relationships, and future
research could incorporate direct socioeco-
nomic factors. Lastly, relying on ICD codes for
comorbidity and symptom collection may have
led to exposure misclassification and measure-
ment error, which are common in studies using
EHR.

Equipped with information on past antibi-
otic prescriptions, demographics, and comor-
bidities, the models presented in this study can
better aid a clinician’s decision-making to pre-
vent a potential mismatched therapy in ambu-
latory and hospital settings. The models
developed to predict antimicrobial-resistant
UTIs in this study performed similarly to those
published in previous studies [26]. Additionally,
to enhance replicability and future work in this

Fig. 3 Receiver-operator characteristic curves for model
prediction of antibiotic-resistant urinary tract infections.
UTI urinary tract infection, AMR antimicrobial resistance,

SXT sulfa-trimethoprim, NIT nitrofurantoin, CIP cipro-
floxacin, MDR multidrug-resistant
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area, we have proposed several computational
phenotypes for each predictor used in this
study, which will require validation in future
studies. With the antibiotic development pipe-
line slowed—and no other clinically effective
therapeutic options available [29]—improving
the use of existing antibiotics to treat UTIs is of
utmost importance in the battle against
antimicrobial resistance.

CONCLUSION

In this study, we considered a variety of linear
and nonlinear approaches to predict resistance
to the top three antibiotics prescribed to treat
UTIs in the US (SXT, NIT, and CIP) and MDR for
use in both inpatient and outpatient settings.
The variables included in these models are
easily accessible in patients’ EHR and can be
used to inform the personalized prediction of
antibiotic resistance in settings where pheno-
typic and/or genotypic resistance testing is not
routine or prompt enough for patients with
multiple risk factors who could have critical
deterioration in health status. These data high-
light the potential for use of EHR data in guid-
ing clinical decision-making, including, in this
instance, decisions regarding the selection of
antimicrobial agents in UTIs.
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