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ABSTRACT

The emergence of the strain of coronavirus
SARS-CoV-2 (severe acute respiratory syndrome
coronavirus 2) and its impact on global health
have made imperative the development of
effective and safe vaccines for this lethal strain.
SARS-CoV-2 now adds to the list of coronavirus
diseases that have threatened global health,
along with the SARS (severe acute respiratory
syndrome) and MERS (Middle East respiratory
syndrome) coronaviruses that emerged in
2002/2003 and 2012, respectively. As of April
2020, no vaccine is commercially available for
these coronavirus strains. Nevertheless, the
knowledge obtained from the vaccine develop-
ment efforts for MERS and SARS can be of high
value for COVID-19 (coronavirus disease 2019).
Here, we review the past and ongoing vaccine
development efforts for clinically relevant
coronavirus strains with the intention that this
information helps in the development of effec-
tive and safe vaccines for COVID-19. In addi-
tion, information from naturally exposed
individuals and animal models to coronavirus
strains is described for the same purpose of

helping into the development of effective vac-
cines against COVID-19.

Keywords: Coronavirus; COVID-19; MERS;
SARS; Vaccine

Key Summary Points

Current and past vaccine development
efforts for SARS and MERS coronaviruses.

Current vaccine development for COVID-
19 (SARS-CoV-2).

Correlates of protection and other
immunologic features surrounding
coronavirus strains.

Implications for developing effective
vaccines for clinically relevant
coronaviruses.

INTRODUCTION

Coronaviruses are a group of viruses that belong
to the family Coronaviridae [1, 2]. These are
enveloped viruses with a positive-sense single-
stranded RNA genome and a nucleocapsid of
helical symmetry. Their genome size is
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relatively large for RNA viruses, between 27 and
34 kB [3]. Coronaviruses infect mammals and
birds causing varied symptoms such as respira-
tory tract disease and diarrhea. In humans,
coronavirus infections have been shown to be
potentially lethal. This is the case of severe
acute respiratory syndrome (SARS) and the
Middle East respiratory syndrome (MERS)
coronaviruses.

In 2002–2003, the world experienced what
would become the first of a series of lethal
coronavirus infections. The disease denomi-
nated severe acute respiratory syndrome (SARS)
would be characterized by high fever, eventu-
ally developing into shortness of breath and
pneumonia [4]. Originating in southern China,
the disease later would cause 8096 cases,
resulting in 774 deaths in 26 countries [5].
Despite efforts from the scientific community,
no vaccine became commercially available and
SARS cases ceased to be reported from 2004 [4].

In September 2012, the world experienced
the emergence of the Middle East respiratory
syndrome (MERS) coronavirus. Originated in
Saudi Arabia, the infectious disease is charac-
terized by mild respiratory symptoms, but these
could develop into acute respiratory distress
syndrome and death [6]. The disease has affec-
ted 27 countries, resulting in 2494 cases and 858
deaths [7]. MERS cases are still being reported
but no major outbreak has been declared since
2015 [8]. As in the case of SARS, no commercial
vaccine is available for MERS.

Reasons for the lack of commercial and
effective vaccines for SARS and MERS are varied.
In the case of MERS, it is likely that the vaccine
development was delayed because of the scar-
city of suitable and cost-effective small animal
models during pre-clinical experimentation. In
addition, it is probable that a vaccine has not
been delivered because of the low interest in
investing in a vaccine for a disease that has
produced relatively low and geographically
centralized cases (compared with other more
global and persistent infectious diseases such as
influenza, HIV and tuberculosis). This last factor
might have also contributed to the lack of a
vaccine for SARS, in the sense that it was con-
sidered pointless to continue investing in a

vaccine for a disease whose cases ceased to be
reported in 2004.

Coronavirus disease 2019 (COVID-19) is a
current pandemic caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-
2). The first cases were reported from Wuhan,
China, in December 2019 [9, 10]. According to
the World Health Organization (WHO), the
disease has been reported in 213 countries and
territories as of April 11, 2020, with evidence of
ongoing local transmission [11]. According to
the same organization, there are 1,669,595
confirmed cases and 106,138 deaths associated
with the disease. Symptoms of COVID-19 are
mild and include fever, cough and shortness of
breath. Nevertheless, the disease might progress
into severe pneumonia and multi-organ failure
predominantly in elders and people with other
underlying diseases [9, 12].

Although no vaccines are commercially
available for SARS and MERS, past and current
vaccine development efforts against these dis-
eases might be of high value for the develop-
ment of an effective vaccine for COVID-19. The
present review aims to describe these efforts.
Furthermore, we describe the possible implica-
tions of creating an effective vaccine against
COVID-19 taking as a starting point results
obtained from other clinically relevant coron-
avirus strains. We focused our review on active
immunization approaches as this offers the
possibility of a longer-term prevention for these
diseases. This article is based on previously
conducted studies and does not contain any
studies with human participants or animals
performed by any of the authors.

VACCINES FOR SEVERE ACUTE
RESPIRATORY SYNDROME (SARS)
CORONAVIRUS

After the SARS epidemic in 2002–2003, several
laboratories around the world started to con-
duct vaccine development studies for prevent-
ing the disease. The majority of the subunit
vaccines (vaccines based on a specific protein
constituting the virus [13]) targeted the spike
(S) glycoprotein of the virus. SARS-CoV uses this
glycoprotein to bind and enter the host cells
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[14]. Therefore, a vaccine that induces strong
immune responses against this protein will have
a significant effect on the deterrence of virus
entry to the host cells during natural infection.

Vaccines based on a live-attenuated or inac-
tivated virus, recombinant viral vectors, DNA,
virus-like particles (VLPs) and soluble proteins
were studied, mainly in pre-clinical studies.
Live-attenuated and inactivated viruses are
based on the use of the whole SARS-CoV as a
vaccine. The virus has been rendered non-
replicating, and infectivity has been greatly
reduced by means of deleting components of
the virus genome or by using physical or
chemical methods [15]. In the case of recombi-
nant viral vectors, viruses different from the
SARS-CoV that are capable of host cell infection
have been genetically engineered to express
components of the SARS-CoV [16]. VLPs are
non-infectious multiprotein structures formed
from viral proteins that self-assemble into virus-
like structures [17]. Table 1 summarizes these
vaccines and the outcome from pre-clinical and
clinical studies.

To our knowledge, only vaccines based on an
inactivated SARS virus, DNA and soluble pro-
teins based on the SARS S glycoprotein reached
a clinical stage (phase I) [18–20]. It is desired in
the field of vaccine development to know for
certain if a vaccine can provide protection from
virus infection and clinical signs. This is usually
performed by exposing (challenging) vacci-
nated individuals and animal models to the
virus in question. Due to the virulence of the
SARS coronavirus, challenge studies in humans
were not performed; therefore, the protective
efficacy of the vaccines was not assessed.

VACCINES FOR THE MIDDLE EAST
RESPIRATORY SYNDROME (MERS)
CORONAVIRUS

Several vaccines have been developed for MERS
coronavirus since its emergence in 2012. As in
the case of the SARS vaccines, most of the sub-
unit vaccines for MERS are based on the S gly-
coprotein. Vaccines based on inactivated and
live attenuated viruses, recombinant viral vec-
tors, nanoparticles (conglomerate of antigenic

proteins of ‘‘nano’’ size [57]), DNA and soluble
proteins have been developed and tested pre-
dominantly in animal models (Fig. 1; Table 2).
To our knowledge, only a DNA-based vaccine
has already been tested in clinical trials (phase I)
[58] with other vaccines such as MVA (modified
vaccinia virus Ankara) and adenoviruses being
currently under study at that clinical stage
[59, 60].

VACCINE FOR CORONAVIRUS
DISEASE 2019 (COVID-19)

Vaccines for COVID-19 are in pre-clinical
development, and no clinical stage has been
completed because of the recent emergence of
the disease (as of April 13, 2020). Several entities
from the globe have declared their intentions to
develop a vaccine for COVID-19. According to
the WHO, 41 candidate vaccines are being
developed for COVID-19 as of March 13, 2020
[93]. Information about the nature of these
vaccines under development is publicly scarce.
Table 3 summarizes these current development
efforts with information supplemented from
other public sources. As of March 13, 2020, only
one vaccine has started clinical trials (phase I).
This vaccine is being developed by Moderna
(USA), and it uses an mRNA-based vaccine
expressing the SARS-CoV-2 S glycoprotein [94].

TOWARD PROTECTIVE VACCINES
FOR CLINICALLY RELEVANT
CORONAVIRUS STRAINS

The vaccine development efforts for SARS and
MERScoronavirus shouldhelp in thedevelopment
of effective vaccines for COVID-19. This section
aims to describe important information obtained
from these experiments and to explore areas of
opportunity for the development of effective vac-
cines for clinically relevant coronaviruses.

Animal Models

The development of effective vaccines for SARS
and MERS was slowed down by the lack of
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suitable animal models for testing these vac-
cines. Even though animal models develop
immunologic responses to SARS and MERS
coronaviruses, these animals show limited viral
replication and clinical manifestations of dis-
ease (fever, cough, runny nose, shortness of
breath, viremia, pneumonia), usually not lead-
ing to death [95]. This has produced certain
limitations for evaluating protection conferred
by the vaccines.

Several studies addressed the issue of the lack
of a suitable animal model by using transgenic
animal models that rendered these animals
more permissive to coronavirus infection. By
these means, the animal models allowed sys-
temic virus replication and the analysis of more
severe and clinically relevant symptoms of theT
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Fig. 1 Scheme of the structure of the spike (S) glycopro-
tein of the MERS coronavirus used in vaccine develop-
ment (modified from [61]). The MERS coronavirus S
glycoprotein is used predominantly in vaccine development
for coronaviruses. The S glycoprotein induces high titers of
neutralizing antibodies, and the protein has been fre-
quently exploited in subunit vaccination. In nature, the S
glycoprotein binds to the host cell receptor DPP4
(dipeptidyl peptidase 4) through the receptor-binding
domain (RBD) of the S glycoprotein [62]. The S
glycoprotein can be divided into two subunits, S1 and
S2. The subunit S1 contains the RBD. The subunit S2
contains heptad repeat regions (HR1 and HR2) that the
virus uses for membrane fusion and entry to the host cell.
The S glycoprotein is a class I fusion protein, and it exists
as a trimer, as depicted. DPP4 dipeptidyl peptidase 4, S1
S1 subunit of S, S2 S2 subunit of S, RBD receptor binding
domain. TMD transmembrane domain
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Table 2 Vaccine platforms for MERS-CoV

Vaccine Target Outcome Reported side
effects

Status References

Live attenuated

MERS-CoV (E

envelope-

deleted)

All virus

genome

components

(except E)

Not yet tested in vivo Not yet tested in vivo In vitro [63]

Chemically or

physically-

Inactivated

virus (MERS-

CoV, rabies

virus)

S glycoprotein

and S1

subunit

Induction of high titers of

neutralizing antibodies,

protection from lung

viral loads and lung

pathologic damage in

humanized mice

Enhanced lung

eosinophil

infiltrations after

challenge

Pre-clinical [64–66]

Replication-
deficient viral-
vectored vaccines
(poxvirus,
adenovirus,
measles, rabies)

S glycoprotein or
S1 subdomain
(containing
the receptor-
binding
protein)

Induction of both
neutralizing antibody
responses and long-term T
cell responses in animal
models

Protection from lung viral
replication and MERS-
CoV lethal dose in
humanized mice

Protection from viral
shedding in camels

Use of S1 subunit in
an adenovirus-
based vaccine
induced lung
pathology in mice
after challenge

Phase I [59, 67–76]

Soluble protein

vaccines/

adjuvant

S glycoprotein

and

fragments

Induction of neutralizing

antibodies and T cell

responses in animal

models

Protection from lung viral

loads and from lethal dose

in humanized mice

Protection from virus

shedding in camels and

alpacas

Partial protection in rhesus

macaques (vaccine did not

completely prevent

pneumonia)

Not reported Pre-clinical [77–87]
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SARS and MERS diseases [31, 43, 68, 69, 76, 96].
For example, transgenic mice were created to
express the human cell receptor of SARS-CoV
(human angiotensin-converting enzyme 2).
This allowed the enhancement of infection
sensitivity and the evaluation of protection
from lethal doses of the virus [31]. Other
approaches involved the use of mouse-adapted

coronavirus strains that could replicate and
induce health conditions that resemble human
infection (e.g., severe pneumonia, viremia
leading to death) [30–32, 47]. Transgenic mouse
models for SARS and MERS are now commer-
cially available.

Non-human primates have also been used
for testing protection in coronavirus

Table 2 continued

Vaccine Target Outcome Reported side
effects

Status References

Nanoparticles S glycoprotein Induction of neutralizing

antibody titers and

reduction of viral

replication in lungs of

mice

Not reported Pre-clinical [88, 89]

DNA-based
vaccines

S glycoprotein
and subunits

Humans:

Induction of neutralizing
antibodies (48% of
participants) and T cell
responses (76% of
participants) after three
doses (phase I clinical trial)

Animal models:

Partially protective in non-
human primates
(observance of lung viral
loads and pneumonia)

Induction of neutralizing
antibodies and T cell
responses in mice. Also,
protective from lung viral
loads

Moderate and mild
symptoms in phase I
clinical trial

Phase I/IIa
(South
Korea)
and phase
II
(Middle
East)

[58, 76, 90–92]

Combination

vaccines

(protein and

DNA)

S glycoprotein

and subunits

Induction of long-lived

neutralizing antibodies

and protection from

pneumonia in non-

human primates

Not reported Pre-clinical [78]

The table summarizes the vaccine development efforts (past and current) for MERS-CoV and the results obtained from the
pre-clinical and clinical studies. Vaccine platforms that have reached clinical trials are highlighted in italics. ‘‘Not reported
side effects’’ means that side effects studies were not performed or did not result in moderate or severe effects
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Table 3 Vaccines under development for COVID-19 according to the WHO as of March 13, 2020 (adapted from [93])

Vaccine Target Producing entity (country)

Inactivated virus/alum All structural

proteins of the

virus

Sinovac Biotech (China)

Virus-like particle (VLP) Unknown Medicago (Canada), ExpreS2ion Biotechnologies ApS

(Denmark), Griffith University (Australia)

Protein nanoparticles/Matrix-M S glycoprotein Novavax/Emergent Biosolutions (USA)

Non-replicating viral vector

(adenovirus, chimeric

chimpanzeeadenovirus, MVA*)

*Vaccine expressing a VLP

S glycoprotein/

unknown

Altimmune (USA), University of Oxford (UK), CanSino

Biologics/Beijing Institute of Biotechnology (China),

Vaxart (USA), Greffex (USA), Janssen Pharmaceutical

(Belgium), GeoVax/BravoVax (USA/China)

RNA-based vaccine, RNA vaccine

encoding VLP

S glycoprotein/

unknown

Moderna/NIAID (USA), CureVac (Germany), Imperial

College London (UK), Arcturus Therapeutics/Duke-

NUS Medical School (USA), Fudan University/Shanghai

JiaoTong University/RNACure Biopharma (China),

China CDC/Tongji University/Stermina (China),

BioNTech/Fosum Pharma/Pfizer (Germany/China/

USA)

DNA-based vaccine S glycoprotein/

unknown

Inovio Pharmaceuticals (USA), Zydus Cadila (India), Takis

Biotech/Applied DNA Sciences/Evvivax (USA/Italy),

Sanofi Pasteur/BARDA (France/USA)

Protein subunit S glycoprotein and

peptides/

unknown

WRAIR/USAMRIID (USA), Clover Biopharmaceuticals

Inc./GSK (China/UK), Vaxil Bio (Israel), Generex/

EpiVax, EpiVax/University of Georgia (Canada/USA),

Sanofi Pasteur (France), University of Queensland

(Australia), Baylor College of Medicine/New York Blood

Center (USA), Fudan University (China), iBio Pharma/

CC-Pharming (USA/China), AJ Vaccines (Denmark),

Heat Biologics/University of Miami (USA)

Live attenuated virus All proteins of the

virus

Codagenix/Serum Institute of India (USA/India)

Replicating viral vector (measles,

horsepox)

Unknown Zydus Cadila (India), Pasteur Institute/Themis/University

of Pittsburg (France/USA), Tonix Pharma/Southern

Research (USA)

Unknown Unknown University of Pittsburgh (USA), University of Saskatchewan

(Canada), MIGAL Galilee Research Institute (Israel),

Peter Doherty Institute (Australia), Academy of Military

Medical Sciences (China), Tulane University (USA),

Flinders University/Vaxine Pty Ltd (Australia)

264 Infect Dis Ther (2020) 9:255–274



vaccination. In the case of MERS, rhesus maca-
ques allow virus replication but they do not
seem to develop severe clinical symptoms (in-
creased respiratory rate, fever, cough) [97, 98].
Common marmosets have been shown to dis-
play severe symptoms of disease, leading to
death [99, 100], but information about their use
in active vaccination experiments is scarce. In
the case of SARS, the virus shows varied lung
pathologies and limited clinical symptoms in
cynomolgus macaques and African green mon-
keys [101, 102]. This symptomatology,
although limited, has allowed analyzing the
conferring of protection from vaccine
candidates.

Correlates of Protection

It is generally accepted that neutralizing anti-
bodies against the SARS and MERS S glycopro-
teins play a predominant role in the protection
against these coronaviruses [103, 104]. Neu-
tralizing antibodies are antibodies that bind and
neutralize virus infection of host cells [105].
Vaccinated animals and passive immunization
approaches focusing on the MERS and SARS S
glycoproteins induced high titers of neutraliz-
ing antibodies that correlated with protection
[39, 43, 45, 49, 53, 106, 107]. Nevertheless, it is
still in doubt whether adaptive T cell responses
(another arm of the immune system) can also
play a role in conferring protection, with few
studies addressing this issue. As an example, a
group of researchers demonstrated that specific
CD4? and CD8? T cell peptides against SARS-
CoV could be exploited to provide protection in
mice [37, 108, 109]. Another study pointed out
that the protection against SARS-CoV in mice
induced by a DNA vaccine was due only to
antibody responses (depletion of CD4/CD8? T
cells and adoptive T cell transfer did not have an
effect on protection) [45]. In MERS, vaccination
efficacy in non-human primates has been cor-
related to the induction of CD8? T cell
responses (in addition to neutralizing antibod-
ies) when using DNA-based vaccines [78]. It is
then likely that protection induced by vacci-
nation might be dependent on different factors
such as the selected vaccination platform,

antigens, animal models and routes of
vaccination.

Few animal experiments have addressed the
question of whether a certain vaccination regi-
men could induce long-term protection. In the
case of SARS, viral vectors and protein-based
vaccines employing the S glycoprotein have
shown a certain level of protection from infec-
tion (in at least 75% of mice) after 4–12 months
of vaccination [34, 35, 49]. In the case of MERS,
protein-based vaccines and a combination of
DNA and protein-based vaccines have been
shown to induce a certain level of long-term
protection in mice and macaques [78, 79]. In
general, these studies focus on the induction of
persistent neutralizing antibodies during vacci-
nation, while the contribution of T-cell
responses is not frequently addressed.

Natural Infection of Coronavirus Strains

Exposure to SARS and MERS coronaviruses can
also shed light on the possible mechanisms of
protection. In humans, rapid and strong neu-
tralizing antibody responses are highly corre-
lated to the severity of the disease and the
recovery of the patient. Nevertheless, T cell
responses might also play a role in the elimi-
nation of the virus during infection, therefore
also likely supporting the recovery of the
patient [110–114]. From these studies, the
induction of both arms of the immune response
is likely necessary for the effective elimination
of the virus and recovery from the disease.

In vaccine development, it is ideal that a
vaccine provides long-term protection. Whe-
ther long-term protection can be achieved by
means of vaccination or exposure to coron-
aviruses is under debate, and more information
is needed in this regard. For SARS-CoV, memory
T cells, but not B cells, could be detected 6 years
after infection in human survivors [115]. Nev-
ertheless, a certain level of neutralizing anti-
bodies can be tracked until 24 months after
infection, opening the possibility of a certain
level of protection during this time frame due to
this humoral response [116]. In the case of
MERS, little is known about the generation of
memory B cells, but neutralizing antibodies are
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known to persist for 34 months [117]. In the
case of memory T cells, CD4? and CD8? T cell
responses have been detected 24 months after
infection [114].

Other human coronaviruses can offer some
clues about the induction of long-term protec-
tion. In the cases of human coronaviruses
HCoV-229E and HCoV-OC43, these respiratory
viruses do not cause long-lived protection as
challenge experiments suggest, even when
antibody responses are detected in the long run
[118, 119].

Safety

Studies about the safety of vaccines against
SARS and MERS are relatively scarce. There is a
concern about the induction of antigen-depen-
dent enhancement (ADE) and other adverse
effects derived from vaccination or natural re-
exposure. ADE is a phenomenon that occurs
when non-neutralizing antibodies against pro-
teins of a virus enhance virus entry to host cells,
also enhancing virus infectivity [120]. ADE has
been already observed in cats vaccinated against
a species-specific coronavirus (feline infectious
peritonitis coronavirus) [121]. In the case of
SARS, antibody-dependent enhancement and
other adverse effects induced by vaccination in
animal models have raised some concern.

It has been found that certain vaccine plat-
forms expressing the SARS S glycoprotein or
using a whole inactivated virus induced lung
immunopathology and hepatitis after challenge
in some animal models [23, 29, 38, 40]. Fur-
thermore, MERS coronavirus vaccination has
been shown to induce pulmonary infiltration
after challenge in mice when using an inacti-
vated MERS-CoV vaccine [66]. Of note, some
SARS-CoV-infected animal models are not pro-
tected from MERS-CoV (and vice versa), and
they might develop adverse effects after sec-
ondary infection [96, 122]. Other studies con-
cerning passive antibody transfer in mice and
non-human primate experimentation have not
found evidence of ADE or pathologic effects
[22, 26, 33, 39, 55, 123, 124].

The induction of ADE using the S glycopro-
tein has been tackled by using truncated

versions of the same protein. It is believed that
the use of the receptor-binding domain (RBD)
or the S1 subunit of the S glycoprotein can lead
to the induction of neutralizing antibodies
while avoiding ADE. The idea is to focus the
induction of antibodies to relevant S regions for
efficient virus neutralization and, by doing so,
to avoid the induction of potential non-neu-
tralizing antibodies targeting other regions of
the S protein. Even though there seems to be
little direct evidence proving this idea, vaccines
based on these regions have already been tested,
allowing the induction of high titers of neu-
tralizing antibodies and a certain level of pro-
tection in small animals and non-human
primates [49, 50, 56, 78].

The use of adjuvants has also been consid-
ered for avoiding the potential undesired effects
of coronavirus vaccination. Adjuvants are sub-
stances that potentiate and modify the
immunogenicity and protection efficacy of the
vaccines [125]. A group of researchers found
that by using a chemical adjuvant (a delta inu-
lin-based polysaccharide), lung
immunopathology previously observed in mice
after SARS challenge experiments were no
longer observed [126]. It was hypothesized that
the adjuvant helped to avoid an exacerbated
Th2-polarized response after challenge causa-
tive of the adverse effects. This is a case where
an adjuvant not only enhanced vaccine-in-
duced protection but also helped to minimize
adverse effects due to coronavirus vaccination.

Areas of Opportunity in the Development
of Vaccines for Coronaviruses

Experiments directly comparing vaccine plat-
forms and approaches for coronaviruses are
scarce. A group of scientists discovered that, at a
certain dose, DNA and MVA-based vaccines
encoding the S glycoprotein of MERS develop
similar levels of neutralizing antibodies [106].
In another study, vaccines based on heterolo-
gous prime-boost vaccination (DNA followed by
protein-based vaccination) induced higher
neutralizing antibody titers and protection than
homologous prime-boost vaccination approa-
ches; this is in mice and non-human primates
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[127]. Nevertheless, a different number of
immunizations were performed using different
subunits of the S glycoprotein. Therefore, it is
difficult to determine whether a given vaccine
platform would be more immunogenic and
protective than others solely on terms of the
vaccine platform used. This information could
potentially lead to the selection of ideal vaccine
platforms for coronaviruses.

Although inactivated viruses, DNA and viral
vector-based vaccines have been tested for SARS
and MERS coronavirus in clinical trials, other
vaccine platforms are yet to be tested. An
mRNA-based vaccine, a relatively recent tech-
nology, is being tested for COVID-19 in phase I
clinical trials [128] with other companies start-
ing clinical trials soon as of April 11 of the year
of this publication [129]. Due to the relatively
new emergence of such vaccine platforms, their
performance with coronavirus diseases is still to
be known.

Different routes of vaccination could also
help in the development of effective vaccines
for coronaviruses. Considering that SARS and
MERS-CoV are respiratory viruses, inducing
memory responses in the respiratory tract
would be advantageous. A group of researchers
has found that inducing cellular and antibody
responses in the respiratory tract by means of
intranasal vaccination might induce higher
protection levels in mice [37, 43].

Even though targeting the spike glycopro-
tein in vaccine development could be ideal for
inducing neutralizing antibodies, the selection
of other antigens might also offer some advan-
tages. For example, the nucleocapsid (N) pro-
tein is more conserved between SARS and MERS
coronavirus strains [130]. In addition, the N
protein induces long-lived memory T-cells in
humans [131]. Peptides derived from this pro-
tein have been shown to induce cross-protec-
tion against SARS and MERS in mouse
experiments [37]. Therefore, the N protein
could serve as a potentially viable alternative to
provide cross-protective and long-term T-cell
immunity against coronaviruses.

CONCLUSIONS

The vaccine development efforts for coron-
avirus strains such as SARS and MERS can help
to direct the vaccine development efforts for
COVID-19. The development of highly effective
and safe vaccines for COVID-19 should consider
aspects such as the possibility of ADE and other
adverse effects previously observed with SARS
and MERS. Even though these features have
only been seen in some animal models and
vaccination regimens, the possibility is still
there to be considered for COVID-19. In addi-
tion, these vaccine development efforts should
address the possibility of the short-term
immunogenicity derived from neutralizing
antibodies, as also previously observed for SARS
and MERS-CoV after natural infection.

The possibility of exploiting T cell responses
for coronavirus vaccination should also be
considered (along with B cell responses). These
responses have been shown to be persistent and
protective in animal models. Furthermore,
there is evidence of long-term persistence in
humans. Strategies such as adjuvantation, tai-
loring of the S glycoprotein, different routes of
vaccination and the use of unexplored vaccine
platforms for enhancing immunogenicity and
preventing potential undesired effects should
also be considered. It is worth mentioning that
employing the N protein of the coronavirus for
vaccination could have several benefits. As
previously mentioned, there is the potential of
providing long-term cross-protection when
employing this antigen. Of note, the evidence
of short-term immunogenicity and protection
in coronavirus-exposed individuals does not
mean that an effective vaccine is not possible.
Vaccines for other now eradicated diseases that
lack naturally acquired immunity prove this
point (e.g., smallpox). The emergence of
COVID-19 should also serve for elevating our
comprehension and expertise in the abatement
of pathogenic microorganisms of global health
importance.
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