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ABSTRACT

Ceftaroline is a novel cephalosporin with a

favorable tolerability profile and broad in vitro

activity against many resistant Gram-positive

and common Gram-negative organisms.

Ceftaroline fosamil is the first cephalosporin to

be approved by the United States Food and Drug

Administration (FDA) for the treatment of

adults with acute bacterial skin and soft

tissue infections, including those caused by

methicillin-resistant Staphylococcus aureus

(MRSA). It is also approved by the FDA for the

treatment of adults with community-acquired

bacterial pneumonia, including cases caused by

Streptococcus pneumoniae (with or without

concurrent bacteremia), although there are no

data at this time to support the use of ceftaroline

fosamil for the treatment of pneumonia caused

by MRSA. Ceftaroline fosamil is likewise

approved by the European Commission for the

treatment of adults with complicated skin and

soft tissue infections or community-acquired

pneumonia. This review summarizes the

pharmacokinetic and microbiologic properties

of ceftaroline, as well as the safety and efficacy

data that led to its approval by the FDA in 2010

and the European Commission in 2012. Future

directions to be addressed are also highlighted.

Keywords: Avibactam; Ceftaroline;

Cephalosporin; Community-acquired

infection; Bacterial infection; Methicillin-

resistant S. aureus; Pneumonia; Skin infection;

S. aureus; S. pneumoniae

D.-A. T. Shirley
Department of Pediatrics, Center for Vaccine
Development, University of Maryland School of
Medicine, Baltimore, USA

E. L. Heil
Department of Pharmacy, University of Maryland
Medical Center, Baltimore, USA

J. K. Johnson (&)
Departments of Pathology and Epidemiology and
Public Health, University of Maryland School of
Medicine, 655 W. Baltimore Street, Baltimore, MD
21201, USA
e-mail: jkjohnson@som.umaryland.edu

J. K. Johnson
Microbiology and Virology Laboratories, University
of Maryland Medical Center, 22 S Greene St,
Baltimore, MD 21201, USA

Enhanced content for this article is

available on the journal web site:

www.infectiousdiseases-open.com

123

Infect Dis Ther (2013) 2:95–110

DOI 10.1007/s40121-013-0010-x



INTRODUCTION

Several authorities have called attention to the

morbidity, mortality and excess health costs

associated with antibiotic-resistant pathogens

and the need to prioritize development of

antibacterial agents that can safely and

effectively treat these pathogens [1–4].

Ceftaroline fosamil is a novel cephalosporin,

with bactericidal in vitro activity against

pathogens associated with licensed indications,

including resistant organisms, such as

methicillin-resistant Staphylococcus aureus

(MRSA), multidrug-resistant Streptococcus

pneumoniae (MDRSP) and penicillin-resistant S.

pneumoniae (PRSP) [5]. Supported by preclinical

in vitro and animal model studies [6–10] and

clinical trials [11–15], ceftaroline fosamil

(TeflaroTM; Forest Laboratories, Inc., New York,

USA) was approved by the United States Food

and Drug Administration (FDA) in October 2010

for the treatment of adults with community-

acquired bacterial pneumonia (CABP) and acute

bacterial skin and skin structure infections

(ABSSSI) caused by susceptible organisms [5].

Ceftaroline fosamil is the newest of only three

systemic antibiotics approved for human use by

the FDA over the past 5 years and the only one of

these approved for the treatment of CABP.

Similarly, the European Commission granted

marketing authorization for ceftaroline fosamil

(ZinforoTM; AstraZeneca, Södertälje, Sweden) in

August 2012 for the treatment of community-

acquired pneumonia and complicated skin and

soft tissue infections following favorable

opinion from the Committee for Medicinal

Products for Human Use [16]. This report

reviews the recent literature published on

ceftaroline fosamil, including the pivotal

clinical trials that led to its approval, and

highlights areas that need to be addressed in

the future.

MECHANISM OF ACTION
AND SPECTRUM OF ACTIVITY

Similar to other b-lactam antibiotics,

ceftaroline, the active metabolite of the

prodrug ceftaroline fosamil, mediates its

bactericidal effect by binding to membrane-

bound enzymes known as penicillin-binding

proteins (PBPs), thereby interfering with

bacterial cell wall synthesis and leading to cell

lysis and death [17]. Distinguishing it from

other b-lactam antibiotics, however, is its

unique high binding affinity for PBP 2a (which

confers resistance to MRSA) and PBP 2b, 2x and

1a (which confer resistance to PRSP) [18, 19].

The favorable activity of ceftaroline against

clinical isolates, including potent activity

against Gram-positive bacteria, such as MRSA,

vancomycin-intermediate S. aureus (VISA) and

PRSP, has been demonstrated in isolates

collected worldwide [20] with corroboration

from a number of in vitro and in vivo studies

[6, 10, 21–26], and maintained during in vitro

attempts to generate resistant strains [27, 28].

Activity against Enterococcus faecalis and

Enterococcus faecium is limited [6, 20].

Ceftaroline’s spectrum of activity against

Gram-negative bacteria is comparable to that

of many other cephalosporins, and it has no

activity against extended-spectrum b-lactamase

(ESBL) and carbapenemase-producing strains

(e.g., Klebsiella pneumonia carbapenemase) or

strains with stable de-repressed AmpC b-

lactamase production [20, 27, 29]. In vitro

activity against Gram-positive anaerobes is

similar to that of amoxicillin–clavulanate, with

good activity against Propionibacterium spp. and

Actinomyces spp. [30, 31]. Ceftaroline is inactive

against most b-lactamase-producing Gram-

negative anaerobes, including Bacteroides

fragilis and Prevotella spp. [30, 31].
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Ceftaroline minimal inhibitory

concentrations (MICs) and disk diffusion

breakpoints have been defined by the FDA,

and more recently by the Clinical Laboratory

Standards Institute (CLSI) and the European

Committee on Antimicrobial Susceptibility

Testing (EUCAST) (Table 1) [5, 32, 33]. Due to

the scarcity of resistant Gram-positive isolates at

the time of licensing, only susceptible

interpretations for Gram-positive strains are

available from the FDA [5]. Target attainment

analysis using Monte Carlo simulations support

the FDA susceptible interpretative criteria for

S. aureus (MIC B1 lg/mL) when the

recommended ceftaroline fosamil dosing

regimen is used [34]. In vivo murine thigh

infection models suggest that human simulated

exposures of ceftaroline 600 mg every 12 h may

have efficacy in the treatment of S. aureus

infections with MICs as high as 4 lg/mL [35],

but more data on clinical outcomes associated

with higher ceftaroline MICs are needed.

Results from the 2010 Assessing Worldwide

Antimicrobial Resistance Evaluation (AWARE)

program (Table 2) [36–42], a global ceftaroline

surveillance study, showed that ceftaroline is

highly active against S. aureus and MRSA among

isolates collected from medical centers in nine

United States census regions [36]. These high

rates of S. aureus susceptibility were

independent of patient age group [36]. Among

respiratory pathogens, 98.7% of S. pneumoniae

strains were inhibited by 0.25 lg/mL or less of

ceftaroline, exhibiting potency 16 times greater

than that of ceftriaxone [37]. During

2008–2010, there was sustained potency and

activity against MRSA and MDRSP [defined as a

S. pneumoniae isolate with resistance to at least

two of the following antimicrobial agents:

penicillin (C8 lg/mL), ceftriaxone,

erythromycin, tetracycline, levofloxacin, and

trimethoprim–sulfamethoxazole) and the

frequency of non-susceptibility of respiratory

pathogens to ceftaroline did not vary

significantly [37, 38]. Geographic differences

in activity among staphylococci, streptococci,

Haemophilus spp., and Moraxella catarrhalis were

minimal [39]. Susceptibility patterns to

Table 1 Food and Drug Administration (FDA), Clinical Laboratory
Standards Institute (CLSI) and European Committee on
Antimicrobial Susceptibility Testing (EUCAST) interpretive

minimum inhibitory concentration breakpoints (lg/mL) for
ceftaroline [5, 32, 33]

Organism FDAa CLSI EUCAST

S I R S I R S R

Staphylococcus aureusb B1 – – B1 2 C4 B1 [1

Streptococcus pneumoniae B0.25 – – B0.5c – – B0.25 [0.25

Streptococcus agalactiae B0.03 – – B0.5 d d

Streptococcus pyogenes B0.015 – – B0.5 – – d d

Haemophilus influenzae B0.12 – – B0.5 – – B0.03 [0.03

Enterobacteriaceae B0.5 1 C2 B0.5 1 C2 B0.5 [0.5

I intermediate, R resistant, S susceptible
a Intermediate and resistant results not defined by the FDA for some pathogens
b Includes methicillin-resistant S. aureus
c Non-meningitis
d b-Lactam susceptibility of Streptococcus groups A, B, C and G is inferred from the penicillin susceptibility
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ceftaroline among MRSA isolates from Europe,

South Africa and the Asia–Pacific region were

lower than those seen in the USA, while

consistently high rates of susceptibility to

ceftaroline by methicillin-susceptible S. aureus,

S. pneumoniae, Haemophilus influenzae and

M. catarrhalis were maintained across all these

regions [40–42]. Ongoing surveillance will be

critical to determine whether resistant strains

emerge from selective pressure elicited by more

widespread use of ceftaroline. High rates of

intermediate susceptibility of S. aureus to

ceftaroline have already been noted in vitro

among isolates from a surveillance program in

China; 36.2% of the 315 isolates tested had an

MIC above 1 lg/mL, although the highest MIC

documented was 2 lg/mL [43].

DOSE AND ADMINISTRATION

Following administration, the water-soluble

prodrug, ceftaroline fosamil, is rapidly

dephosphorylated to the active form in plasma

[17]. For adults 18 years and older, the

recommended dose is 600 mg administered

intravenously (IV) over 1 h every 12 h. A

treatment duration of 5–7 days for CABP and

5–14 days for ABSSSI is currently recommended,

guided by the severity of infection and clinical

response [5]. As with other b-lactam antibiotics,

time above the MIC is the pharmacodynamic

(PD) index that correlates best with efficacy [5].

Pharmacokinetic (PK) data in healthy adults

with normal renal function following multiple

doses administered every 12 h over 14 days

show that the elimination half-life is about

2.7 h, the maximum observed concentration

(Cmax) is 21 lg/mL and the area under the

concentration–time curve is 56 lg h/mL, with

no appreciable accumulation [5]. Ceftaroline is

primarily renally excreted and dosage

adjustment is recommended for patients with

creatinine clearance (CRCL) B50 mL/min. For

patients with moderate renal impairment (CRCL

[30 to B50 mL/min), the dose should be

adjusted to 400 mg IV every 12 h. For those

with severe renal impairment (CRCL C15 to

B30 mL/min), the dose should be adjusted to

300 mg IV every 12 h and for patients with end-

stage renal disease, including those receiving

hemodialysis, adjustment to 200 mg IV every

12 h after dialysis should be made [5].

Following a single IV radiolabeled dose,

approximately 88% of radioactivity was

recovered in urine and 6% in feces within 48 h

[5]. Of the radioactivity recovered in urine, 64%

was excreted as ceftaroline and approximately

2% as the microbiologically inactive ceftaroline

M-1 metabolite, suggesting complete

transformation of the prodrug [5]. Ceftaroline

is primarily distributed in extracellular fluid and

binding to plasma proteins is relatively low

(approximately 20%) [5]. In vitro studies

demonstrate that ceftaroline is not a substrate

for the cytochrome P450 system and it does not

inhibit or induce the major cytochrome P450

isoenzymes. Therefore, there is minimal

potential for drug–drug interactions between

ceftaroline and drugs that are cytochrome P450

substrates, inhibitors, or inducers [5].

CLINICAL EFFICACY

The FOCUS Trials

The FOCUS (ceFtarOline Community-acquired

pneUmonia trial vS ceftriaxone in hospitalized

patients) 1 and 2 studies (NCT00621504 and

NCT00509106, respectively) were multinational,

multicenter, phase 3, double-masked,

randomized, active comparator-controlled

trials, designed to evaluate the safety and

Infect Dis Ther (2013) 2:95–110 99
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efficacy of ceftaroline fosamil 600 mg IV every

12 h compared with ceftriaxone 1 g IV every 24 h

for 5–7 days for the treatment of typical CABP in

patients requiring hospital admission [12, 13, 44,

45]. Renal dose adjustments were based on

creatinine clearance. For subjects enrolled in

FOCUS 1 (which included North American

participants), clarithromycin was administered

during the first 24 h based on established

practice guidelines advocating empiric macrolide

use [46].

The primary objective of the studies was to

determine whether the clinical cure rate of

ceftaroline fosamil was non-inferior to that of

ceftriaxone in the co-primary modified intent-

to-treat efficacy (MITTE) and clinically

evaluable (CE) populations at the test-of-cure

(TOC) visit (8–15 days after completion of

therapy). The non-inferiority margin was set at

-10%. The MITTE population included all

participants in the pneumonia risk category

(PORT) III or IV who received any amount of

study drug according to their randomized

treatment group. The CE population included

participants in the MITTE population who

demonstrated sufficient adherence to the

protocol. Baseline characteristics and

demographics were comparable between the

two study arms and between the two studies.

The majority of participants were Caucasian

males over the age of 50 years recruited

from Eastern and Western Europe. The most

common pathogens isolated were S. pneumoniae

(41.7%) and S. aureus (16.5%), followed by

Gram-negative organisms, of which H.

influenzae was the most frequent [44].

Clinical cure rates favored ceftaroline in a

priori-defined integrated analysis of the MITTE

and CE populations (Table 3) [12–15, 44, 47].

Planned secondary analysis of the CE subjects

with at least one typical pathogen identified at

baseline showed clinical cure in 85.1% of

participants compared with 75.5% of

participants in the ceftaroline and ceftriaxone

groups, respectively [difference 9.7%, 95%

confidence interval (CI) 0.7–18.8%] [44]. Cure

rates against S. pneumoniae, MDRSP and S. aureus

favored ceftaroline, and were similar to

ceftriaxone for Gram-negative pathogens [44].

The efficacy of ceftaroline against MRSA could

not be evaluated as patients with suspected

MRSA infection were excluded from enrollment

(due to a lack of activity of ceftriaxone against

MRSA). For bacteremia, cure rates were 71.4%

(15 of 21 subjects) compared with 58.8% (10 of

17 subjects) for the ceftaroline and ceftriaxone

groups, respectively (difference 12.6%, 95% CI

-17.6% to 41.6%) [44]. At the late follow-up

visit (21–35 days after completion of therapy),

relapse rates between the two treatment arms

were similar in the CE population: 1.9% for the

ceftaroline group and 1.2% for the ceftriaxone

group (difference 0.7%, 95% CI -1.4% to 2.9%)

[44]. Pooled post hoc exploratory analysis

requested by the FDA to assess clinical

improvement on day 4 of study therapy in

participants with a confirmed bacterial

pathogen at baseline showed a weighted

difference in clinical response of 11.4% (95%

CI 0.6–21.9%) in favor of ceftaroline [48].

The CANVAS Trials

The CANVAS (CeftAroliNe Versus vAncomycin

in Skin and skin structure infections) 1 and 2

studies (NCT00424190 and NCT00423657,

respectively) were multinational, multicenter,

phase 3, double-masked, randomized, active

comparator-controlled trials designed to

evaluate the safety and efficacy of

monotherapy with ceftaroline fosamil 600 mg

IV every 12 h compared with a combination of

vancomycin 1 g every 12 h plus aztreonam 1 g

every 12 h IV for 5–14 days for the treatment of

100 Infect Dis Ther (2013) 2:95–110
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ABSSSI [14, 15, 45, 47] Dose adjustments for

renal impairment by unblinded pharmacists

were based on creatinine clearance and

institutional guidelines.

The primary objective of the studies was to

determine whether the clinical cure rate of

ceftaroline fosamil was non-inferior to that of

vancomycin plus aztreonam in the co-primary

modified intent-to-treat (MITT) and CE

populations at the TOC visit (8–15 days after

completion of therapy). The non-inferiority

margin was set at -10%. The MITT population

included all subjects who received any amount

of study drug according to their randomized

treatment group. The CE population included

subjects in the MITT population who

demonstrated sufficient adherence to the

protocol. Baseline characteristics and

demographics were comparable between the

two study arms in each study. The majority of

participants were Caucasian males with a

median age of 48 years diagnosed with

cellulitis, major abscesses and infected

wounds/ulcers. Of the 76% of subjects with a

pathogen isolated, S. aureus was the most

common; the proportion with MRSA was 40%

in the ceftaroline group and 34% in the

vancomycin plus aztreonam group. Aztreonam

or a saline placebo was discontinued if a Gram-

negative pathogen was not identified.

A priori-defined integrated analysis of the

primary endpoints demonstrated non-

inferiority of ceftaroline in the MITT and CE

populations (Table 3). In a planned secondary

analysis of participants in the CE population

with at least one pathogen isolated, clinical

cure was achieved in 92.7% of the subjects in

the ceftaroline treatment group compared with

Table 3 Summary of clinical cure rate at the test-of-cure visit in the co-primary analysis populations, FOCUS and
CANVAS trials [12–15, 44, 47]
Trial MITTE CE

FOCUSa Clinical cure %
(no. of cured/total no.)

Differenceb

(95% CI)
Clinical cure %
(no. of cured/total no.)

Differenceb

(95% CI)

Ceftaroline Ceftriaxone Ceftaroline Ceftriaxone

1 83.8 (244/291) 77.7 (233/300) 6.2 (-0.2, 12.6) 86.6 (194/224) 78.2 (183/234) 8.4 (1.4, 15.4)

2 81.3 (235/289) 75.5 (206/273) 5.9 (-1.0, 12.7) 82.1 (193/235) 77.2 (166/215) 4.9 (-2.5, 12.5)

1 and 2 82.6 (479/580) 76.6 (439/573) 6.0c (1.4, 10.7) 84.3 (387/459) 77.7 (349/449) 6.7c (1.6, 11.8)

Trial MITT CE

CANVASa Clinical cure %
(no. cured/total no.)

Differenceb

(95% CI)
Clinical cure %
(no. cured/total no.)

Differenceb

(95% CI)

Ceftaroline Vanc/Az Ceftaroline Vanc/Az

1 86.6 (304/351) 85.6 (297/347) 1.0 (-4.2, 6.2) 91.1 (288/316) 93.3 (280/300) -2.2 (-6.6, 2.1)

2 85.1 (291/342) 85.5 (289/338) -0.4 (-5.8, 5.0) 92.2 (271/294)) 92.1 (269/292) 0.1 (-4.4, 4.5)

1 and 2 85.9 (595/693) 85.5 (586/685) 0.3 (-3.4, 4.0) 91.6 (559/610) 92.7 (549/592) -1.1 (-4.2, 2.0)

CE clinical efficacy population, CI confidence interval, MITT modified intent-to-treat population, MITTE modified intent-
to-treat efficacy population, Vanc/Az vancomycin plus aztreonam combination
a Non-inferiority margin was set at -10% for both FOCUS and CANVAS trials
b Treatment difference: cure rate ceftaroline - cure rate comparator group
c Weighted treatment difference
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94.4% receiving combination therapy

(difference -1.7, 95% CI -4.9% to 1.6%) at

TOC [47]. In bacteremic subjects, cure rates

were 84.6% (22 of 26 subjects) in the

ceftaroline group compared to 100% (21 of 21

subjects) in the combination group (difference

-15.4%, 95% CI -33.8% to 1.5%) [47]. In

particular, cure rates among subjects with

S. aureus bacteremia were lower in the

ceftaroline group (88.9%), but not statistically

different from the combination group (100%)

with, notably, twice as many subjects having S.

aureus bacteremia in the ceftaroline group than

in the combination group (18 vs. 9,

respectively). At late follow-up (21–35 days

after completion of therapy), clinical relapse

rates were similar in the CE population: 1.1%

and 0.9% in the ceftaroline and combination

groups, respectively [47]. Post hoc analysis

requested by the FDA to evaluate clinical

response with cessation of lesion spread and

apyrexia on day 3 of study therapy was

conducted in a subgroup of 797 subjects and

showed a weighted difference of 7.7% (95% CI

1.3–14.0%) in favor of ceftaroline [49].

SAFETY

The safety profile of ceftaroline fosamil was

evaluated in 1,740 participants and no

unexpected safety concerns were identified [5,

48, 50, 51]. In the integrated FOCUS analysis,

the most common adverse events occurring in

greater than 2% of subjects receiving ceftaroline

fosamil were diarrhea (4.2%), headache (3.4%),

insomnia (3.1%) and phlebitis (2.8%) [50]. In

the integrated CANVAS analysis, the most

common adverse events occurring in greater

than 2% of subjects receiving ceftaroline

fosamil were nausea (5.9%), headache (5.2%),

diarrhea (4.9%), pruritus (3.5%), rash (3.2%),

generalized pruritus (2.2%) and dizziness

(2.0%) [51]. Seroconversion to a positive direct

anti-globulin (Coombs) test for the pooled data

was higher in the ceftaroline group than

comparator groups (10.7% vs. 4.4%,

respectively), but was not associated with

clinical hemolytic anemia [48]. Potential

allergic reactions occurred in 5.4% of those

treated with ceftaroline fosamil compared with

8.5% of those treated with a comparator

regimen, 0.2% and 0.4% of these reactions

were assessed as severe, respectively [48] Renal

toxicity occurred in less than 2% and hepatic

toxicity in less than 3% of those treated with

ceftaroline fosamil. Clostridium difficile-

associated diarrhea and seizures were reported,

but were rare [48].

Investigation of the effect of ceftaroline on

human intestinal flora in adults who received

infusions of ceftaroline fosamil IV every 12 h for

7 days revealed moderate decreases in the

numbers of bifidobacteria and lactobacilli,

with converse increases in the numbers of

Clostridium spp., but minimal to no impact on

Bacteroides spp. and aerobic bacteria [52]. Toxin-

producing strains of C. difficile were isolated

from two asymptomatic subjects. No

measurable fecal concentrations of ceftaroline

were found, which may have helped to explain

the limited ecological disruptions observed [52].

At a dose of 1,500 mg, there was no clinically

meaningful effect of ceftaroline fosamil on the

QT interval [53]. There is no evidence of

teratogenicity in animal studies, but controlled

studies in pregnant or lactating women have

not been performed [5]. Recently, isolated cases

of eosinophilic pneumonia [54] and

neutropenia [55] have been reported in

patients receiving prolonged courses of

ceftaroline; both events have been previously

documented with cephalosporin use [56–60].

Overall, the cumulative data to date suggest
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that ceftaroline is well tolerated with a favorable

safety profile, similar to the other drugs in the

cephalosporin class.

DISCUSSION

Current Role

There is a need for alternative antimicrobials that

can safely and effectively treat common but

serious bacterial infections, such as complicated

skin and skin structure infections and CABP

caused by emergent antibiotic-resistant

pathogens. In 2005, there were over 14 million

outpatient visits made in the USA for ABSSSIs

[61], which were among the most rapidly

increasing reasons for hospitalizations between

1997 and 2007 [62–64], correlating with the

rapid increase in the incidence of community-

acquired MRSA infections between the mid-

1990s and 2005 [65]. There has been a great

reliance on the glycopeptide, vancomycin, to

treat MRSA, one of the most common pathogens

associated with ABSSSIs, but resistant strains,

including vancomycin-resistant S. aureus (VRSA)

and VISA, have emerged [66]. In addition, the

rate of treatment failure is higher in strains with

an MIC of 1 lg/mL or greater, which includes

some strains that would be classified as

susceptible using current guidelines [67].

Vancomycin may also be inferior to b-lactam

antibiotics for the treatment of methicillin-

susceptible S. aureus bacteremia [68]. Other

FDA-approved antibiotics for the treatment of

MRSA include linezolid, daptomycin,

tigecycline and telavancin. There have been

reports of S. aureus treatment failures with

daptomycin and linezolid [66] and toxicities

associated with some of these options, such as

myelosuppression myopathy and

nephrotoxicity, are potentially limiting [69–

71]. Ceftaroline is a safe and effective option for

the parenteral treatment of skin and soft tissue

infections, especially in cases where empiric

MRSA and common Gram-negative coverage

are desired.

Pneumonia, another common but

potentially life-threatening infection, together

with influenza, consistently rank among the top

ten leading causes of death for all ages in the

USA each year, and accounted for more than 1.2

million hospitalizations in 2006 [72, 73].

Antibiotic susceptibility of S. pneumoniae, the

most common cause of CABP, has decreased in

the USA over the past decade. In 2009, only

84.1%, 87.5% and 60.8% of surveyed

S. pneumoniae isolates remained susceptible to

penicillin, ceftriaxone and erythromycin,

respectively [74]. Ceftaroline is active against

resistant Gram-positive pathogens and is a safe,

well-tolerated alternative option for the

parenteral treatment of CABP. Recently, the

incidence of pneumonia due to community-

associated MRSA has increased [46].

Ceftaroline’s major important advantage

compared to other b-lactam antibiotics, such

as ceftriaxone, is its activity against MRSA.

Although ceftaroline fosamil is approved for

the treatment of adults with ABSSSI caused by

MRSA, there are no official data to support its

use in the specific treatment of CABP caused by

MRSA. An experimental pneumonia model

demonstrated significantly decreased bacterial

counts in the lungs of neutropenic mice,

suggesting the possible usefulness of

ceftaroline for the treatment of MRSA

pneumonia [6]. A trial of ceftaroline fosamil

compared to ceftriaxone plus vancomycin in

adults with CABP and at risk for MRSA infection

is currently recruiting participants

(NCT01645735) and will hopefully provide the

clinical efficacy data needed to answer this

question.
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No pharmacoeconomic analyses on the cost

effectiveness of ceftaroline compared to other

agents are available. Using average wholesale

prices in US dollars, the approximate cost for a

10-day course of ceftaroline (600 mg IV twice

daily at $119.96/day) in a patient with normal

renal function seems comparable to the range

of costs for a similar course of other

antibiotics with MRSA activity, including

vancomycin (1 g IV twice daily at $9.40/day),

linezolid (600 mg IV twice daily at $288.8/

day), daptomycin (500 mg IV once daily at

$362.51/day) and tigecycline (100 mg IV once

daily or 50 mg IV twice daily at $208.76/day)

[75]. Given the lack of clinical data in specific

patient populations (such as those with MRSA

pneumonia and bacteremia) and the

demonstration of non-inferiority, rather than

superiority, in phase 3 trials [44, 47],

ceftaroline cannot currently be recommended

over other alternative therapies for the

treatment of CABP and ABSSSI, but should at

least be considered in situations where

concerns of resistance or toxicities may limit

the use of other available drugs.

Future Considerations

Although ceftaroline has limited activity

against resistant Gram-negative pathogens,

time–kill experiments suggest extended

coverage against resistant Enterobacteriaceae

when combined with a b-lactamase inhibitor

[76]. In vitro and animal studies demonstrated

that avibactam, a non-b-lactam b-lactamase

inhibitor, has potent synergistic activity with

ceftaroline [29, 77–80]. Avibactam appears to

inhibit ESBLs, including cephalosporinases and

carbapenemases, and so may potentially

enhance ceftaroline’s spectrum of activity

against Gram-negative bacteria. The

development of a combination that offers such

broad coverage is an exciting option for single-

agent treatment of empiric or polymicrobial

infections caused by multidrug-resistant

Enterobacteriaceae and MRSA [81].

Ceftobiprole, another new generation

cephalosporin approved for use in some

countries for the treatment of complicated

skin and soft tissue infections (however,

rejected by the FDA in 2009 and the European

Medicines Agency in 2010) has extended Gram-

positive activity similar to that of ceftaroline,

and Gram-negative coverage similar to that of

ceftazidime, but unlike ceftaroline–avibactam,

ceftobiprole remains susceptible to hydrolysis

by several ESBLs [82, 83]. Ceftaroline–avibactam

was well tolerated in a phase 1 trial without

demonstrating significant PK interaction when

administered concomitantly [84]. A phase 2

trial for the treatment of complicated urinary

tract infections (NCT01281462) has been

completed.

Animal models have been established to

evaluate the in vivo efficacy of ceftaroline in

the treatment of endocarditis, osteomyelitis and

meningitis [8, 9, 24, 85, 86]. Following a 4-day

course of ceftaroline fosamil in a rabbit

endocarditis model, ceftaroline demonstrated

superior bactericidal activity against MRSA and

heterogeneous VISA when compared to

vancomycin and linezolid [9]. Similarly,

ceftaroline fosamil demonstrated significant

bactericidal activity against MRSA and VISA,

with a greater than 5 log10 colony-forming

unit/g reduction of vegetation, which was

comparable to that of daptomycin and

superior to that of tigecycline [24]. When

compared to vancomycin and linezolid,

ceftaroline demonstrated improved bacterial

killing of vancomycin-sensitive and

vancomycin-resistant E. faecalis in both time–

kill experiments and a rabbit endocarditis

model [8]. Significant colony count reductions
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in infected joint and bone tissues were seen

following a 4-day course of ceftaroline in an

experimental rabbit model of acute MRSA

osteomyelitis, which was comparable to that

of linezolid and significantly better than that of

vancomycin, indicating ceftaroline has good

bone and joint penetration [85]. Ceftaroline was

superior to cefepime against Klebsiella

pneumoniae in a rabbit meningitis model; the

penetration of ceftaroline into inflamed and

non-inflamed meninges was estimated to be

15% and 3%, respectively [86].

Reports of off-label use of ceftaroline are also

emerging. Prompt sterilization of blood

following the addition of ceftaroline salvage

therapy was documented in a review of six cases

of persistent or recurrent MRSA bacteremia/

endocarditis being treated with vancomycin or

daptomycin [87, 88]. Interestingly, the five

patients treated with a more aggressive

regimen of ceftaroline 600 mg administered

every 8 h all survived, while the patient who

received ceftaroline every 12 h succumbed to

other complications [87]. A case report

documented clearance of blood within 4 days

of the addition of ceftaroline in a patient with

endocarditis failing daptomycin therapy, and is

supported by an in vitro PK/PD model, which

showed that the addition of ceftaroline

enhances daptomycin susceptibility [88]. A

similar PK/PD model showed that ceftaroline

increases membrane binding and enhances the

activity of daptomycin against daptomycin-

susceptible and non-susceptible strains of

MRSA, suggesting potency of this combination

[89]. Ceftaroline has also been used for the

treatment of prosthetic joint infections [90] and

in a patient with osteomyelitis and endocarditis

[91]. Though clinical data on the use of

ceftaroline for the treatment of infections

other than CABP and ABSSSI are lacking,

cumulatively, these in vivo animal studies and

case reports provide early evidence that

ceftaroline may potentially prove useful in the

treatment of other serious bacterial infections.

Due to insufficient safety, PK and efficacy

data, antibiotic options with MRSA activity in

children are even more limited than in the adult

population [92]. Pediatric trials evaluating the

safety and efficacy of ceftaroline for the

treatment of CABP and complicated skin

infections are currently recruiting patients

(NCT01530763, NCT01669980 and

NCT01400867). A cephalosporin with anti-

MRSA activity may prove valuable, as b-lactam

antibiotics are a popular choice for the

treatment of infections in children, given their

favorable safety profiles. As these and other

post-marketing studies are underway, other

areas to systematically address in the future

include the effectiveness of ceftaroline in the

treatment of immunocompromised patients,

patients with septic shock and those with

necrotizing fasciitis. Ongoing surveillance

studies will also be necessary.

CONCLUSION

Ceftaroline fosamil is a well-tolerated and

welcome addition to the available antibiotic

options for the treatment of the increasing

number of resistant Gram-positive and

common Gram-negative infections. Clinical

trials have demonstrated that the efficacy of

ceftaroline fosamil is similar to that of

comparator agents in the treatment of ABSSSI

and CABP. Its lack of activity against resistant

Gram-negative pathogens limits its current use

as a monotherapeutic agent for the treatment of

hospital-acquired infections, but with the

addition of a b-lactamase inhibitor, such as

avibactam, its activity may prove to be safely

extended. Additional trials to further define the
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efficacy of ceftaroline in the treatment of other

serious bacterial infections will be beneficial, as

will safety and efficacy data in children.
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