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ABSTRACT

Introduction: Serum neurofilament light chain
(sNfL) is an emerging biomarker of neuronal
damage in several neurological disorders. Its
association with cognitive function in the gen-
eral US population aged 60 years and above is
unknown. The aim of this study was to inves-
tigate the correlation between sNfL and cogni-
tive function in the general US population aged
60 and above.
Methods: The data were obtained from the
2013–2014 National Health and Nutrition
Examination Survey (NHANES), which include
506 individuals aged 60 or older who met our
search criteria. In our study, sNfL levels were
divided into two groups based on
dichotomization (19.0 pg/mL). After adjusting

for multiple covariates, it was found that the
high sNfL group (C 19.0 pg/mL) had lower
cognitive performance than the low sNfL group
(\19.0 pg/mL). This relationship was also
stable in subgroup analysis.
Conclusion: In this sample of an American
elderly population, higher sNfL levels are cor-
related with lower cognitive performance. Our
findings suggest that sNfL may become a
potential screening tool for early prediction and
confirmation of cognitive damage.
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Key Summary Points

Why carry out this study?

Cognitive disorders are increasing
annually, placing a significant burden on
society and families. The presence of a
prolonged latency period prior to the
manifestation of cognitive impairment
highlights the need for reliable screening
indicators to facilitate early diagnosis.

Serum neurofilament light chain (sNfL)
has emerged as a potential biomarker for
neuronal damage in various neurological
conditions, such as multiple sclerosis
(MS), Parkinson’s disease, and Alzheimer’s
disease.

What was learned from the study?

The implication of this study is that
elevated levels of sNfL are associated with
low cognitive performance in the general
US population aged 60 and above. In the
future, for the identification of specific
neurological conditions, sNfL can serve as
a potential screening biomarker for early
diagnosis and intervention.

Drawing from previous research
conducted on populations with
neurodegenerative disease, our hypothesis
posits a correlation between sNfL levels
and cognitive function in the general US
population aged 60 and above.

INTRODUCTION

Aging is a normal physiological process that
involves degenerative changes in the function
and structure of organs throughout the body as
individuals grow older. Of these changes, cog-
nitive decline or development of dementia are
particularly noticeable. Any cognitive decline
may eventually progress to dementia, which is
best described as a syndrome rather than a

specific disease, severe enough to interfere with
independent daily activities. The causes of
dementia are varied and include primary neu-
rological, neuropsychiatric, and medical condi-
tions. Neurodegenerative dementias, such as
Alzheimer’s disease (AD) and dementia with
Lewy bodies, are most common in the elderly,
while traumatic brain injury and brain tumors
are common causes in younger adults [1]. AD is
the most common neurodegenerative disease,
accounting for an estimated 60–70% of all
dementia cases worldwide [2]. Due to an aging
population and an increase in chronic comor-
bidities, global estimates suggest that dementia
will continue to rise [3–5], placing a significant
burden on both society and families [6, 7]. By
2050, it is projected that the number of people
with dementia will triple to 152 million [8].

Biomarkers associated with pathological
processes are believed to indicate disease pro-
gression prior to the appearance of clinical signs
of cognitive decline [9, 10]. Some core markers,
such as Ab42, total tau (t-tau), and phosphory-
lated tau (p-tau) in cerebrospinal fluid (CSF)
[10], as well as newer markers like amyloid
positron emission tomography (PET) [11, 12],
the soluble form of trigger receptor expressed
on myeloid cells 2 (sTREM2) [13], CSF neuro-
granin (Ng) [10], and neurofilament light chain
(NfL) [14, 15], have been identified. NfL is
considered to be a novel marker of neurode-
generation. It is one of the three subunits of
neurofilaments, which are specific cytoskeletal
proteins of neurons and are particularly abun-
dant in extensively myelinated axons. Axonal
damage releases NfL into the cerebrospinal fluid
(CSF) and eventually into the blood. Higher
levels of NfL are thought to indicate more sev-
ere cerebral axonal degeneration [16] and have
been found to be elevated in CSF and blood in
several neurodegenerative diseases [17]. Neu-
rodegenerative disease is defined as a progres-
sive decline in the function of the nervous
system due to degenerative changes in nerve
cells, which may cause changes in cognitive
function. Many previous studies have explored
the relationship between NfL levels and cogni-
tive function in neurodegenerative disease. The
majority of studies have found a negative cor-
relation between NfL level and cognitive
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performance [18]. However, this relationship is
not universal due to the nature of neurological
disorders, individual differences between par-
ticipants, or inconsistencies in testing methods
[18].

Age is thought to be somewhat related to NfL
level. The normal maximum reference value for
NfL levels in CSF increases by 2.5-fold between
the ages of 20 and 50 years, and subsequently
doubles by the age of 70 years [19]. Research on
cognitive aging has consistently demonstrated a
pervasive decline in cognitive abilities as indi-
viduals grow older [20]. A strong correlation
between age and NfL blood levels has also been
observed, indicating a significant increase in
NfL levels in the blood of healthy controls by
2.2% per year between the ages of 18 and 70.
The utilization of the ultrasensitive single-
molecule array (Simoa) technique facilitated
this finding [21, 22].

The general population aged 60 years and
older in the United States was the target popu-
lation for this study. Drawing from previous
research conducted on neurodegenerative dis-
eases, we conducted this cross-sectional study,
aimed to explore the relationship between sNfL
and cognitive performance in the general US
population aged 60 and above.

METHODS

Data Sources

The cross-sectional data utilized in this study
were obtained from the National Health and
Nutrition Examination Survey (NHANES)
2013–2014. The NHANES was authorized by the
National Center for Health Statistics (NCHS)
Ethics Review Committee, and all participants
completed written informed consent forms
before participation. The NCHS Research Ethics
Review Board (protocol #2011-17) approved
these studies. The secondary analysis did not
require additional Institutional Review Board
approval and the Yancheng Third People’s
Hospital opted to waive ethical review. All data
in this study were accessible on the following
website: https://wwwn.cdc.gov/nchs/nhanes/

continuousnhanes/default.aspx?BeginYear=
2013.

This study adhered to the STROBE
(Strengthening the Reporting of Observational
Studies in Epidemiology) statement.

Participants and Study Design

The NHANES is a program of studies conducted
by the NCHS, which is a part of the Centers for
Disease Control and Prevention (CDC). The
CDC is responsible for providing crucial health
statistics for the United States. This study uti-
lized cross-sectional data from NHANES
2013–2014, conducted by the CDC and the
NCHS. The study population consisted of
10,175 individuals who underwent interviews
and physical examinations. To ensure data
quality, certain exclusion criteria were applied.
Individuals younger than 60 years of age and
those with missing data for sNfL or cognitive
score were excluded. Ultimately, a total of 506
subjects were included in the study. The
flowchart of subject enrollment is presented in
Fig. 1.

Data Collection and Measurements

Demographic, health status, and lifestyle data
were collected through household interviews
and mobile examination center (MEC) ques-
tionnaires administered by trained interviewers.
The demographic information gathered
includes age, gender, race, and body mass index
(BMI). Race categories include Mexican Ameri-
can, other Hispanic, non-Hispanic White, non-
Hispanic Black, and other races. BMI is calcu-
lated by dividing weight (in kilograms) by
height (in meters squared) and is derived from
anthropometric measurements taken during
NHANES. Marital status is categorized as either
married or living with a partner, or living alone.
Educational attainment is classified as less than
9 years of education, 9–12 years of education, or
more than 12 years of education. Household
income is classified into three categories based
on the poverty income ratio (PIR) as defined by
a US government report: low (PIR B 1.3), med-
ium (PIR[ 1.3 to 3.5), and high (PIR C 3.5).
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Health status data include self-reported history
of hypertension, diabetes mellitus (DM), coro-
nary heart disease, and stroke. Participants were
asked if their doctor or other healthcare pro-
fessional had diagnosed them with any of these
conditions. Lifestyle data include smoking sta-
tus and alcohol consumption. Smoking status is
defined as having smoked at least 100 cigarettes
in one’s lifetime. Alcohol consumption is
assessed by asking participants if they have
consumed alcoholic beverages at least 12 times
per year. Laboratory tests were conducted to
measure glycohemoglobin, creatinine, esti-
mated glomerular filtration rate (eGFR), and
albumin levels.

sNfL Examination

Serum samples collected between 2013 and
2014 were subjected to NfL testing using a
highly sensitive immunoassay developed by
Siemens Healthineers. All steps are seamlessly
executed on the fully automated Attelica
immunoassay system. For further information
and more detailed protocols, please refer to the
following link: https://wwwn.cdc.gov/Nchs/
Nhanes/2013-2014/SSSNFL_H.htm.

Diagnosis of Cognitive Impairment

The digit symbol substitution test (DSST) has
been widely used to evaluate cognitive function
in individuals aged 60 years and older [23, 24].
It is considered to be highly sensitive in
detecting cognitive impairment in individuals

Fig. 1 Flowchart of the present study. NHANES National Health and Nutrition Examination Survey. sNfL serum
neurofilament light chain
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with a good baseline level of cognition [4]. The
DSST may be a more sensitive measure of
dementia than the Mini-Mental State Exami-
nation [25], as it assesses processing speed, sus-
tained attention, and working memory. Given
the existence of previous studies that have sin-
gled out DSST for detection of cognitive per-
formance, the same method was applied to our
study [26]. During this exercise, participants
were provided with a paper table containing
nine numbers and symbols. They were given
2 min to match the symbols to the 133 boxes of
adjacent numbers. The score is determined by
the total number of correct pairs. Prior to the
main test, participants were given a sample
practice test. In the NHANES study, participants
who were unable to correctly match symbols
and numbers on their own during the practice
test were not allowed to proceed.

The data file for this study can be obtained
from the National Health and Nutrition Exam-
ination Survey, 2013–2014 Data Documenta-
tion, Codebook, and Frequencies, Cognitive
Functioning (CFQ_H), Data File: CFQ_H.xpt
available at https://wwwn.cdc.gov/Nchs/
Nhanes/2013-2014/CFQ_H.htm.

There is no gold standard threshold for
identifying low cognitive ability, so the lowest
unweighted quartile (DSST 34) in the study
population was used to define cognitive
impairment or low cognitive function, in line
with the previously used method [4, 26–29].

Statistical Analysis

All normally distributed and skewed continuous
variables were expressed as mean (SD) or med-
ian (interquartile range [IQR]). Categorical
variables were presented as frequencies (%).
Missing information on family income and
marital status was imputed using the median.
Baseline characteristics were presented based on
an sNfL level of 19.0 pg/mL. Multiple logistic
regression models were utilized to examine the
relationship between sNfL and cognitive func-
tion, employing both unadjusted and multi-
variate adjusted models. Subgroup analyses
were conducted using stratified logistic regres-
sion models. Modifications and interactions of

subgroups were assessed using likelihood ratio
tests. Potential confounders were selected based
on previous scientific literature or if they resul-
ted in a change in effect estimates of more than
10%. All analyses were performed using the
statistical software packages R (http://www.R-
project.org, The R Foundation) and Free Statis-
tics software version 1.7.1.

RESULTS

Study Population

There were a total of 10,725 participants in the
entire 2013–2014 cycle, out of which 1841 were
over the age of 60. We excluded individuals
with missing data for sNfL (n = 1299) and cog-
nitive score (n = 36). Ultimately, this cross-sec-
tional study included 506 participants from
NHANES during 2013–2014. The detailed
inclusion and exclusion process is presented in
Fig. 1.

Baseline Characteristics

The participant characteristics are presented in
Table 1, which illustrates the baseline charac-
teristics of all subjects based on the dichotomies
of sNfL. Among the 506 participants, 116
(22.9%) exhibited low cognitive performance.
The average age of the participants was
66.5 years (SD 4.4), with women accounting for
269 (53.2%) of the total. It was observed that
individuals with higher sNfL levels tended to be
older and had a higher prevalence of low cog-
nitive performance. In the high sNfL group, the
mean glycohemoglobin level was 6.1 (SD 1.1),
while the mean albumin level was 41.7 g/L (SD
3.1). Table 1 provides a stratification of the
baseline characteristics of participants based on
sNfL (19.0 pg/mL).

Relationship Between sNfL Levels
and Cognitive Impairment

Table 2 presents the results of the univariate
analysis. Several risk factors were found to be
associated with low cognitive performance,
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Table 1 Baseline characteristics of participants from NHANES 2013–2014 by categories of sNfL levels

Characteristic Total sNfL, pg/mL p

Q1 (< 19.2) Q2 (‡ 19.2)

Participants (n) 506 253 253

Cognitive function, n (%) 0.002

Normal 390 (77.1) 210 (83) 180 (71.1)

Low 116 (22.9) 43 (17) 73 (28.9)

Gender, n (%) 0.423

Male 237 (46.8) 114 (45.1) 123 (48.6)

Female 269 (53.2) 139 (54.9) 130 (51.4)

Age (years), mean ± SD 66.5 ± 4.4 65.5 ± 4.1 67.5 ± 4.6 \ 0.001

Race, n (%) 0.184

Mexican American 60 (11.9) 28 (11.1) 32 (12.6)

Other Hispanic 53 (10.5) 33 (13) 20 (7.9)

Non-Hispanic White 240 (47.4) 110 (43.5) 130 (51.4)

Non-Hispanic Black 100 (19.8) 52 (20.6) 48 (19)

Other race 53 (10.5) 30 (11.9) 23 (9.1)

BMI (kg/m2), mean ± SD 29.5 ± 6.9 29.5 ± 6.7 29.5 ± 7.0 0.993

Education level (years), n (%) 0.222

\ 9 54 (10.7) 25 (9.9) 29 (11.5)

9–12 191 (37.8) 88 (34.8) 103 (40.9)

[ 12 260 (51.5) 140 (55.3) 120 (47.6)

Family income, n (%) 0.257

Low 141 (30.1) 67 (27.9) 74 (32.5)

Medium 177 (37.8) 88 (36.7) 89 (39)

High 150 (32.1) 85 (35.4) 65 (28.5)

Marital status, n (%) 0.877

Married or living with a partner 307 (70.6) 156 (70.9) 151 (70.2)

Living alone 128 (29.4) 64 (29.1) 64 (29.8)

Drink, n (%) (had at least 12 alcoholic drinks/

1 year?)

0.855

No 350 (69.2) 174 (68.8) 176 (69.6)

Yes 148 (29.2) 74 (29.2) 74 (29.2)

Missing or unknown 8 (1.6) 5 (2) 3 (1.2)

Smoking status, n (%) 0.306
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including sNfL, age, race, education level, fam-
ily income, marital status, alcohol consump-
tion, DM, glycohemoglobin, and albumin
levels.

Table 3 presents the prevalence of cognitive
impairment and the correlation between sNfL
levels and low cognitive performance. The
prevalence of low cognitive performance was
22.9% (116 subjects). The unadjusted odds ratio
(OR) for the high group compared to the low
group was 1.98 (95% CI 1.29–3.03; p = 0.002).

After adjusting for various factors in the multi-
variable analysis (Table 3), sNfL levels were
found to be significantly associated with the
prevalence of low cognitive performance. The
incidence of low cognitive performance was
higher in the high sNfL group ([ 19.0 pg/mL)
compared to the low sNfL group (\19.0 pg/
mL). Moreover, adjusting for age, gender, BMI,
race, education level, marital status, family
income, hypertension, DM, smoking status,
alcohol consumption, coronary heart disease,

Table 1 continued

Characteristic Total sNfL, pg/mL p

Q1 (< 19.2) Q2 (‡ 19.2)

No 247 (48.9) 129 (51.2) 118 (46.6)

Yes 258 (51.1) 123 (48.8) 135 (53.4)

Hypertension, n (%) 0.325

No 244 (48.4) 128 (50.6) 116 (46.2)

Yes 260 (51.6) 125 (49.4) 135 (53.8)

DM, n (%) 0.017

No 365 (72.1) 193 (76.3) 172 (68)

Yes 110 (21.7) 42 (16.6) 68 (26.9)

Borderline 31 ( 6.1) 18 (7.1) 13 (5.1)

CHD, n (%) 0.007

No 463 (91.5) 240 (94.9) 223 (88.1)

Yes 43 ( 8.5) 13 (5.1) 30 (11.9)

Stroke, n (%) 0.421

No 480 (94.9) 242 (95.7) 238 (94.1)

Yes 26 ( 5.1) 11 (4.3) 15 (5.9)

Glycohemoglobin (%) 6.1 ± 1.1 5.9 ± 0.8 6.2 ± 1.4 \ 0.001

Creatinine (lmol/L) 96.0 (61.0,

147.0)

98.0 (60.0,

144.0)

94.5 (64.2,

148.0)

0.519

Albumin (g/L) 41.7 ± 3.1 41.9 ± 3.0 41.5 ± 3.3 0.136

eGFR (mL/min/1.73 m2) 67.2 (39.6,

116.1)

67.2 (40.4,

127.1)

66.9 (38.6,

110.7)

0.443

Data are shown as mean ± SD, median (IQR), or n (%)
sNfL serum neurofilament light chain, BMI body mass index, DM diabetes mellitus, CHD coronary heart disease, eGFR
estimated glomerular filtration rate
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stroke, glycohemoglobin, creatinine, albumin,
and eGFR did not significantly alter the results.
The adjusted ORs (95% CI) for the prevalence of
low cognitive performance were 1.75
(1.13–2.72), 3.17 (1.54–6.45), 2.78 (1.29–6.02)
in models II–IV.

Stratified Analysis Based on Additional
Variables

In order to determine the stability of the asso-
ciation between sNfL and cognitive impairment
in various subgroups, stratified analysis was
performed in this study (Fig. 2). None of the
variables, including age (65–70 years
and C 70 years), BMI (\25 and C 25 kg/m2),

Table 2 Univariate analysis of risk factor associated with
cognitive decline

Variable OR (95% CI) p value

sNfL 1.01 (1–1.02) 0.019

Gender

Male Reference

Female 0.81 (0.54–1.23) 0.323

Age 1.08 (1.03–1.13) 0.002

BMI (kg/m2) 1.01 (0.98–1.04) 0.73

Race

Mexican American Reference

Other Hispanic 1.23 (0.57–2.62) 0.598

Non-Hispanic White 0.21 (0.11–0.41) \ 0.001

Non-Hispanic Black 1.1 (0.57–2.14) 0.769

Other race 0.26 (0.1–0.68) 0.006

Education level (years)

\ 9 Reference

9–12 0.14 (0.07–0.28) \ 0.001

[ 12 0.02 (0.01–0.05) \ 0.001

Family income

Low Reference

Medium 0.33 (0.2–0.55) \ 0.001

High 0.1 (0.05–0.2) \ 0.001

Marital status

Married or living with a

partner

Reference

Living alone 2.19 (1.37–3.5) 0.001

Drink, n (%) (had at least 12 alcoholic drinks/1 year?)

No Reference

Yes 1.64 (1.05–2.56) 0.029

Unknown 12.44 (2.46–63) 0.002

Smoke

No Reference

Yes 1.33 (0.87–2.02) 0.185

Hypertension

Table 2 continued

Variable OR (95% CI) p value

No Reference

Yes 1.05 (0.7–1.6) 0.806

DM

No Reference

Yes 1.77 (1.1–2.85) 0.018

Borderline 0.73 (0.27–1.97) 0.535

CHD

No Reference

Yes 1.34 (0.66–2.69) 0.418

Stroke

No Reference

Yes 1.25 (0.51–3.06) 0.619

Glycohemoglobin (%) 1.51 (1.25–1.81) \ 0.001

Creatinine (mg/dL) 1.002

(0.999–1.005)

0.318

Albumin (g/L) 0.91 (0.85–0.97) 0.004

eGFR (mL/min/1.73 m2) 0.999

(0.997–1.001)

0.284

sNfL serum neurofilament light chain, BMI body mass
index, DM diabetes mellitus, CHD coronary heart disease,
eGFR estimated glomerular filtration rate
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education (\12 and C 12 years), and DM (yes/
no), had a significant impact on the association
between sNfL and cognitive decline (all p for
interaction[0.05).

DISCUSSION

The results of this study revealed a significant
association between high sNfL levels and the
development of cognitive decline in the elderly
population sample in the United States. This
association remained consistent even after
adjusting for various models, indicating its
robustness. Stratified analyses based on demo-
graphic and clinical factors further supported
the stability of this association.

In our experiments, the high sNfL group of
people with diabetes showed a more pro-
nounced cognitive decline than people without
diabetes. The relationship between diabetes and
cognitive function has been widely studied
[30, 31]. More than 50% of individuals with
diabetes develop neuropathy, the main form of
which is diabetic peripheral neuropathy (DPN)
[31]. This affects individuals with diabetes or
impaired glucose tolerance and/or impaired
fasting glucose and is characterized by
demyelination and axonal loss of peripheral
sensory and motor nerves [32]. Axonal damage
releases NfL into the cerebrospinal fluid (CSF)
and eventually into the blood.

This is consistent with previous studies
which have shown that patients with peripheral
neuropathy have elevated sNfL [33, 34]. Other
studies have shown that diabetes increases the
risk of mild cognitive impairment (MCI) and
dementia [30, 35]. In conclusion, sNfL may play
an important role in mediating the relationship
between diabetes and cognitive functioning,
and we are able to assess neuronal damage and
cognitive function in patients with diabetes by
monitoring changes in sNfL levels.

Recent research has shown that patients with
MCI and Alzheimer’s disease (AD) have higher
levels of NfL in their plasma compared to
patients with subjective cognitive decline (SCD)
[36]. While some studies have found no signif-
icant correlation between sNfL and cognitive
function in adults without cognitiveT
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impairment, higher sNfL levels were associated
with lower overall cognitive scores in the MCI
population [21, 37]. These consistent findings
suggest that the difference in sNfL levels and
cognitive function is more pronounced in the
MCI population than in normal CSF and plasma
neurofilament light-control groups [16, 21, 38].
This makes it easier to detect a correlation
between plasma NfL and cognitive function in
MCI patients. In a recent cross-sectional

analysis, higher sNfL levels were associated with
poorer performance on all three cognitive
functioning tests [39]. However, there is a lack
of further detailed studies exploring the rela-
tionship between sNfL and cognitive function
in the general US population aged 60 and
above. Furthermore, a previous cohort study
examined the relationship between sNfL levels
and cognitive function in a population of
elderly individuals with varying degrees of

Fig. 2 Subgroup analyses of the association between sNfL
levels and cognitive function in the database from
NHANES 2013–2014. Adjusted for age, gender, BMI,
race, education level, marital status, family income,
hypertension, DM, smoking status, drink, CHD, stroke,

glycohemoglobin, creatinine, albumin, eGFR. sNfL serum
neurofilament light chain, NHANES National Health and
Nutrition Examination Survey, OR odds ratio, CI confi-
dence interval, BMI body mass index, eGFR estimated
glomerular filtration rate
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cognitive impairment [21]. The study included
participants with normal cognitive function,
MCI, and AD. The findings revealed that NfL
levels were significantly higher in the AD group
than in the MCI and normal cognitive function
groups. Additionally, within the MCI group,
higher sNfL levels were associated with a greater
decline in cognitive function over a period.

The increase of NfL in cerebrospinal fluid
(CSF) and blood is attributed to axonal damage
that occurs in neurodegenerative diseases. This
leads to an increased release of neuronal NfL
into the interstitial fluid, which then diffuses
into the CSF and blood [17]. Synaptic degener-
ation is widely recognized as a strong contrib-
utor to cognitive decline [40]. The loss of
neurons and synapses throughout the brain
occurs years before the clinical manifestation
[41]. Axons play a critical role in transmitting
impulses and facilitating cellular transport,
making them the primary targets of neurode-
generation [42]. When axonal degeneration or
neuronal loss occurs, the NfL is released into the
cerebrospinal fluid (CSF) and plasma. Since
axonal degeneration typically precedes and
surpasses neuronal loss [42–44], early detection
of CSF or plasma NfL levels may aid in the
prevention of cognitive impairment at an early
stage. In conclusion, there is an increasing cor-
relation between axonal damage, loss of con-
nectivity, and cognitive dysfunction [42].
Neurofilaments, as essential cytoskeletal com-
ponents, regulate axonal caliber and growth,
and facilitate the docking and transport of
organelles. The hyperphosphorylation of the
NfL is believed to lead to aggregation, impaired
docking of motor proteins, and compromised
transport [45]. The degree of phosphorylation
has exhibited a negative correlation with the
rate of axonal transport [46].

This study has several limitations that
should be acknowledged. Firstly, the cross-sec-
tional design of the study prevents us from
establishing a causal relationship between sNfL
and cognitive decline. Secondly, while this
study focused on the association between sNfL
and cognitive function, it is worth noting that
other studies have suggested that cerebrospinal
fluid NfL levels may provide a more accurate
measure of neurodegeneration. However, a

study found a correlation between sNfL and
cerebrospinal fluid NfL levels [47], indicating
that sNfL could potentially serve as a substitute
for detecting changes in axonal disruption.
Thirdly, the DSST can be used as part of an
assessment of cognitive function, but it cannot
be used alone to diagnose MCI, which pre-
vented us from further exploring the relation-
ship between sNfL and varying degrees of
cognitive dysfunction in the general US popu-
lation aged 60 and above.

CONCLUSION

In conclusion, this cross-sectional study pro-
vides evidence supporting the association
between high sNfL levels and low cognitive
function in the older US population sample.
These findings have clinical implications for the
early screening and management of cognitive
decline. Further research is needed to elucidate
the underlying mechanisms and explore
potential therapeutic interventions.
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