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ABSTRACT

Alzheimer’s disease (AD) is the leading cause of
dementia worldwide. Early detection is believed
to be essential to disease management because
it enables physicians to initiate treatment in
patients with early-stage AD (early AD), with
the possibility of stopping the disease or slow-
ing disease progression, preserving function and
ultimately reducing disease burden. The pur-
pose of this study was to review prior research
on the use of eye biomarkers and artificial
intelligence (AI) for detecting AD and early AD.

The PubMed database was searched to identify
studies for review. Ocular biomarkers in AD
research and AI research on AD were reviewed
and summarized. According to numerous stud-
ies, there is a high likelihood that ocular
biomarkers can be used to detect early AD: tears,
corneal nerves, retina, visual function and, in
particular, eye movement tracking have been
identified as ocular biomarkers with the poten-
tial to detect early AD. However, there is cur-
rently no ocular biomarker that can be used to
definitely detect early AD. A few studies that
used AI with ocular biomarkers to detect AD
reported promising results, demonstrating that
using AI with ocular biomarkers through mul-
timodal imaging could improve the accuracy of
identifying AD patients. This strategy may
become a screening tool for detecting early AD
in older patients prior to the onset of AD
symptoms.
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Key Summary Points

Why carry out this study?

Alzheimer’s disease (AD) is an impactful
neurodegenerative disease associated with
cognitive decline and functional
impairment, necessitating early detection
and accurate diagnosis for effective
intervention and management.

Ocular biomarkers present a non-invasive
and potentially accessible approach for
the detection of AD and early-stage AD
(early AD). Exploring the application of
artificial intelligence (AI) in analyzing
these biomarkers offers a promising
avenue for early AD detection and
monitoring.

The study aimed to assess the feasibility
and accuracy of ocular biomarkers in
detecting AD and early AD, and to
investigate the use of AI algorithms for the
analysis of systemic and ophthalmology
biomarkers for early AD detection.

What was learned from the study?

The results indicated a high potential for
utilizing ocular biomarkers in identifying
AD-related changes in ocular structure,
supporting the feasibility of using
ophthalmology biomarkers and AI for
early AD detection. However, strong
evidence supporting the use of ocular
biomarkers for early AD detection was not
found.

Despite the limited number of AI models
applied to ocular biomarkers currently
available, this review provides valuable
insights. Further investigation into the
factors underlying suboptimal
performance and the refinement of AI
algorithms could enhance their accuracy
and applicability in future research and
clinical settings.

INTRODUCTION

Dementia is characterized by progressive cog-
nitive deterioration, most often found in the
elderly aged [ 85 years. Because of longer life
expectancies, the rate of dementia is expected
to increase from 46.8 million in 2010 to 131.5
million in 2050. Alzheimer’s disease (AD) is the
most common type of dementia worldwide and
is characterized by a spectrum of cognitive and
neuropsychiatric symptoms, including memory
loss, behavioral changes, disorientation and loss
of the ability to perform daily activities [1]. AD
is associated with a specific pattern of patho-
logical changes in the brain that result in neu-
rodegeneration and the progressive
development of dementia [2].

The World Alzheimer Report indicated that
dementia is among the top chronic diseases
with the highest economic impact globally [3].
There is currently no treatment modality that
can cure AD; therefore, efforts have focused on
identifying reliable biomarkers of AD, especially
in the preclinical stages of the disease. Abun-
dant evidence supports the likelihood that the
pathophysiological process of AD begins years
before the individual exhibits any clinical
symptoms. The ability to detect this asymp-
tomatic phase will enable physicians to initiate
treatment in patients with early-stage AD (early
AD), with the possibility of stopping the disease
or slowing disease progression, preserving
function and ultimately reducing disease bur-
den [4].

Pathologic hallmarks of AD are the presence
of amyloid B-protein (Ab) plaques and neu-
rofibrillary tangles (NFT), both of which are
related to local inflammation, ganglion cell
degeneration and functional deficits [5].
Biomarkers provide supporting evidence to dif-
ferentiate AD from other forms of dementia and
to diagnose mild cognitive impairment (MCI)
due to AD. While a definitive diagnosis of AD
requires post-mortem evaluations of brain tis-
sues, cerebrospinal fluid (CSF) analysis and
positron emission tomography (PET) are used in
combination with new clinical criteria of AD in
living patients [6]. PET scans detect the deposi-
tion of amyloid in the brain following the
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injection of a radiolabeled tracer. This tool
therefore offers a non-invasive diagnostic
approach but its high cost is a barrier to general
use. In comparison, CSF examinations for Ab42
costs less but are more invasive that PET scans
[5]. Less invasive investigations, such as elec-
troencephalogram (EEG) and brain imaging can
also facilitate the diagnosis and early detection
of AD, but the results are currently not compa-
rable to those of more invasive investigations
[5]. (Fig. 1).

Recently, there has been an emerging inter-
est in the development of artificial intelligence
(AI) in the identification of systemic biomarkers
for AD, particularly during the preclinical
stages. AI algorithms can extract both known
and unknown features from images and provide
a reliable diagnosis without the need for manual
feature identification, as has been shown for eye
diseases where AI has been used on retinal
images to identify such eye diseases as age-re-
lated macular degeneration [7], glaucoma [8],
papilledema [9] and diabetic retinopathy [10].

AI approaches can also recognize systemic ill-
nesses based on eye examination [11].

The aim of this study was to review prior
research on the use of eye biomarkers and AI for
detecting AD and early AD, and make recom-
mendations for potential applications of these
technologies in the future.

METHODS

This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors. No specific ethical
approval was required for this article.

To identify ocular biomarkers in AD, we
searched the PubMed databases using the fol-
lowing search terms: ‘‘ocular’’ OR ‘‘eye’’ AND
‘‘Alzheimer’s disease.’’ All relevant English-lan-
guage reviews and systematic reviews published
in 2021 and 2022 and identified using these
search terms—86 papers in total— were
reviewed, summarized and discussed. For the

Fig. 1 Diagnostic tools for the detection of Alzheimer’s
disease. Ab Amyloid beta, AD Alzheimer’s disease, CSF
cerebrospinal fluid, EEG electroencephalogram, MRI

magnetic resonance imaging, p-tau phosphorylated tau,
PET positron emission tomography, SPECT single-pho-
ton emission computerized tomography, t-tau total tau
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application of AI in the diagnosis of AD, we
systematically searched PubMed databases
using the following search terms: ‘‘Alzheimer’s
disease’’ AND ‘‘artificial intelligence’’ OR ‘‘deep
learning.’’ We initially retrieved 224 titles,
abstracts and/or full texts of studies published
in 2022 and subsequently screened for relevant
studies for further meticulous review. The find-
ings from all relevant studies are summarized
and discussed in this review.

Definition of Terms

In this article, we will define ‘‘preclinical AD’’ as
patients who have no clinical symptoms, ‘‘early
AD’’ as patients who have some cognitive
impairment but do not fully meet the criteria in
the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM V) [12]. For the
diagnosis of ‘‘AD’’ or ‘‘AD dementia’’, patients
had to have cognitive impairment that meet the
complete DSM V criteria for AD.

RESULTS

Overview of Ocular Biomarkers in Early
Alzheimer’s Disease

In the past few years, research in AD has
increasingly focused on ocular biomarkers to
facilitate the detection of early AD. Numerous
structural and functional ocular biomarkers
have been studied for their correlation with AD
(Fig. 2; Table 1). The results show that the eye
could provide potential biomarkers to detect
early AD [13]. In this section, we discuss in
detail ocular biomarkers according to their
classification into structural biomarkers or
functional biomarkers’’.

Structural Biomarkers
Tears Several studies have found that many
body fluids have the potential to be biomarkers
for the detection of early AD by differentiating
proteome components and identifying the
presence of Ab and tau proteins [14]. Due to the
accessibility and convenience of a tear sample,
tears may serve as a unique source of biomarkers
for AD. Some neurodegenerative and

Fig. 2 Ocular biomarkers that can be used to detect Alzheimer’s disease
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Table 1 Ocular biomarkers for detecting Alzheimer’s disease and early Alzheimer’s disease

Ocular
biomarkers

Specific description Detecting
ADa

Early
ADa

Structural biomarkers

Tears Proteomics components [14, 18, 19] 4 x

Elevated levels of t-tau and Ab42 [20] 4 4

microRNA-200b-5p, higher level of total microRNA [25] 4 ±

Corneal nerves Reductions in corneal sensitivities [26] 4 x

Different morphology of corneal nerve fibers in CCM. Progressive reduction in [27–29]:

Corneal nerve fiber length

Density

Branch density

4 ±

Pupil Increased pupillary size [33]

Decreased latency and amplitude of the pupillary light reflex [33]

4 x

Lens Aggregates of misfolded, insoluble proteins (not highly specific; also found in aging process) [37] ± x

Retinal and
choroid

Ab plaques [38] lead to [39]:

Severe ganglion cell degeneration

Tinning of the retinal nerve fiber layers

Loss of optic nerve axonal projections

4 ±

Retinal imaging reflectance scores from hyperspectral imaging (predict the amount of Ab in the brain) [41] 4 4

Retinal vessels from fundus imaging: (suggest changes in the cerebral vasculature associated with early stages of
neurodegenerative diseases) [46, 47]:

Narrowing or widening of vessels

Low complexity

Decreased density of retinal vessels

4 ±

Thinning of peripapillary RNFL [44, 48, 50, 51, 53, 54] (small range of significance [62]; no significant

difference between early AD and AD [44, 50])

4 ±

Thinning of macular RNFL (not specific to AD; may also be from aging and other causes) [60] ± x

Decreased GC-IPL (not specific to AD; may also be from aging and other causes) [60] ± x

Retina inclusion bodies (correlation with cortical amyloid deposits, detected by florbetapir PET imaging) [61] 4 ±

Thinner choroidal thickness [48, 63] 4 x

Widening of the FAZ [44, 55–58] (no difference in AD and healthy controls from meta-analysis [62]) 4 x

Lower whole macular enface superficial and deep vascular density (VD), lower parafoveal superficial VD [56] 4 x

Lower macular vessel density (m-VD) [65] 4 ±

Functional biomarkers

Visual acuity Reduction in low luminance [31, 68] 4 x

Moderate-to-severe vision impairment [69] 4 ±

Stereopsis Less stereopsis [31, 37, 71] 4 x
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inflammatory diseases, such as Parkinson’s dis-
ease [15] and multiple sclerosis [16, 17], have
been linked to differences in the proteomic
composition of tears compared to that of the
tears of healthy controls. The importance of
tears in the diagnosis of multiple systemic dis-
eases, including AD, was demonstrated in a
study published in 2022 [18].

Kalló et al. discovered that change in the
proteome components of tears can lead to the
detection of AD with a sensitivity of 81% and a
specificity of 77% [19]. More recent research by
Gijs et al. suggests that tears with elevated levels
of total tau (t-tau) and Ab peptide 42 (Ab42),
both relatively specific biomarkers of AD, may
be indicative of AD [20].

In the context that Ab is an essential bio-
marker for AD and early AD, Wang et al.
designed a biosensor capable of detecting Ab42
in tear samples that could potentially be used in
the future [21]. A few additional studies have
identified Ab42 and T-tau in tear fluids of AD
patients at levels tenfold higher than those in
serum and CSF, respectively [22, 23]. These
findings suggest that tear biomarkers could
potentially be used for future AD screening.

According to previous reports, microRNAs
(miRNAs) play a crucial role in the etiology of
AD and may be used as biomarkers to detect
early AD [24], making them a topic of interest in
AD research. In one study, total miRNA levels
were higher in the tears of people with AD, with
miRNA-200b-5p being the most promising bio-
marker for the disease [25].

Corneal Nerves Alzheimer’s disease is a neu-
ronal degenerative illness; consequently,
research on the corneal nerves may be related to
AD. One study on patients with AD and other
neurodegenerative diseases uncovered signifi-
cant reductions in corneal sensitivities [26].

Corneal confocal microscopy (CCM) has
been used to examine the cornea at the cellular
level with the aim to assess nerve density in the
cornea. However, we identified only three
studies that looked into the use of CCM in
dementia; all three studies reported that AD
impacts corneal nerve fiber density, branch
density and fiber length [27–29]. In one of these
studies, the corneal nerve fibers in AD were
reported to be morphologically different from
those in healthy controls and that all three
corneal nerve fiber measures were significantly
associated with cognitive function after con-
trolling for confounders [27]. The diagnostic
accuracy of CCM was high and equivalent to
medial temporal lobe atrophy (MTA) rating for
AD, and was superior to the MTA rating for early
AD [28].

Pupil It has been generally acknowledged that
AD patients have low acetylcholine (ACh)
levels, which causes pupillary system abnor-
malities [30]. Compared to the pupils of healthy
individuals, those of AD patients are larger,
respond abnormally to cholinergic antagonists
and have decreased latency and amplitude of
the pupillary light reflex [31]. These alterations
were thought to be connected to the ACh defi-
ciency due to the degeneration of the Edinger-
Westphal nucleus found in AD patients [32].

Table 1 continued

Ocular
biomarkers

Specific description Detecting
ADa

Early
ADa

Saccadic eye
movements

Abnormal anti-saccade [76] 4 4

Increased saccade latencies and frequency errors [78] 4 4

Ab Amyloid beta, AD Alzheimer’s disease, CCM corneal confocal microscopy, FAZ foveal avascular zone, GC-IPL ganglion cells-inner plexiform layer

complex, OCT optical coherence tomography, OCTA Optical coherence tomography angiography, PET positron emission tomography, RNFL retinal nerve
fiber layer, t-tau total tau
aSymbols:4 indicates the results of the study(s) showed evidence of detection; ± indicates that the results of the study(s) showed evidence of detection, but

were not significantly, such that this biomarker may predict the disease; x indicates that no studies were found/ no evidence of detection
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Increased pupillary size and increased Ab and
tau levels in the CSF was found to be signifi-
cantly, positively correlated in patients with the
hereditary gene mutant AD [33]. At the present
time, abnormal pupils have not been reported
to be a sign of early AD.

Lens The precursor of Ab protein (APP) and Ab
are typically present in the cataractous mam-
malian lens. These substances are toxic to
mammalian lens epithelial cells and produce
cataracts. However, more recent research has
demonstrated that Ab is absent or present at
extremely low levels in the human lens [34–36].
The accumulation of Ab plaque in the lens of
patients with AD and preclinical AD patients
remains unknown. Similar to the aging process,
the lens of an AD patient accumulates more
misfolded, insoluble protein aggregates [37].
These results indicate that the lens may not be a
highly specific biomarker for AD.

Retina and Choroid Amyloid beta plaques
were first identified on the retina in post-mor-
tem eyes of AD patients [38]. Curcumin, which
binds to Ab plaques and fluoresces, was
employed for in vivo retinal imaging of Ab
plaques [38]. These plaques cause severe gan-
glion cell degeneration, thinning of the retinal
nerve fiber layers and loss of optic nerve axonal
projections [39].

Since Ab possesses polarized properties [40],
several studies have tried to use in vivo retinal
hyperspectral imaging as a biomarker of Ab in
the brain. Individuals with high Ab load on
brain PET scans and with early AD differ sig-
nificantly in terms of retinal reflectance from
age-matched PET-negative controls. This find-
ing suggests that retinal imaging reflectance
scores and brain Ab accumulation are correlated
and that hyperspectral imaging of the retina can
predict the amount of Ab in the brain [41].

Vascular problems also occur in AD patients
due to Ab deposits resulting in loss of the
blood–brain barrier, decreased vascular density
and decreased vascular blood flow in tissues of
the brain [42]. Vascular structures can be
investigated through retinal vessels with non-
invasive retinal examinations. The most fre-
quently used ophthalmic procedures are retinal

fundus imaging, optical coherence tomography
(OCT), and optical coherence tomography
angiography (OCTA). Both OCT and OCTA use
light waves to capture cross-section pictures of
the retina and visualize vascular networks,
respectively.

Visualization of retinal vessels via fundus
imaging can be used as an alternative to other
more invasive investigations to look for changes
in the brain’s blood vessels [43–46]. Narrowing
or widening of vessels, low complexity and
decreased density of retinal vessels can all sug-
gest changes in the cerebral vasculature that are
linked to the early stages of neurodegenerative
diseases [46, 47].

Retinal nerve fiber layer (RNFL) thickness,
ganglion cells-inner plexiform layer complex
(GC-IPL), foveal avascular zone (FAZ) area, ves-
sel density and perfusion density are the most
common retinal parameters that have been
used to identify AD with OCT and OCTA
[43, 44, 48–59].

Optical coherence tomography: Numerous
studies have investigated the use of retinal OCT
in AD patients. A recent review [60] on OCT of
the retina showed that the majority of studies in
patients with AD demonstrated the presence of
RNFL thinning in both the macular and peri-
papillary regions, along with decreases in the
GC-IPL. However, these results are not exclu-
sively found in AD patients but may also be due
to aging and other factors. The authors of this
review [60] concluded that OCT has the
potential of being a non-invasive investigation
for AD, but that additional research is required.
One study reported a correlation between reti-
nal inclusion bodies, detected by OCT imaging,
and cortical amyloid deposits, detected by flor-
betapir PET imaging [61]. The most frequently
studied OCT parameter in AD patients has been
the peripapillary RNFL [44, 48, 50, 51, 53, 54],
which was found to decrease in AD patients
compared to healthy controls. However, a meta-
analysis revealed a small range of significance
[62]. Thinning of the peripapillary RNFL was
seen in both early AD and AD patients, but the
differences were not significant [44, 50]. A sys-
tematic review analyzing the choroidal thick-
ness in AD patients as compared to normal
controls found a significant difference [48], but
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a recent meta-analysis found no difference in
choroidal thickness between early AD patients
and normal controls [63].

Optical coherence tomography angiography:
OCTA is a non-invasive imaging tool that
enables a detailed angiographic view of the
retinal vascular networks in different layers of
the retina and the choroid. Neuroimaging
studies have shown that cerebral blood flow is
altered in AD patients [64]. Vascular changes in
the retina may be reflected on the OCTA, mak-
ing it a tool of interest. The most frequently
studied OCTA parameter in AD patients is the
FAZ area. Intriguingly, five studies [44, 55–58]
comparing the FAZ in patients with AD to that
of healthy controls indicated a significant rise in
the FAZ in AD patients. However, one meta-
analysis [62] revealed no difference in the FAZ
of AD patients and healthy controls, while
another meta-analysis [56] found that individ-
uals with AD had significantly lower whole
macular enface superficial and deep vascular
density (VD) values, and lower parafoveal
superficial VD than healthy controls. On the
other hand, no significant difference was seen
between the values for parafoveal deep VD in
these two groups. Macular vessel density (m-
VD) was an additional parameter utilized in
detecting early AD and AD. There was evidence
that m-VD was significantly lower in AD
patients than in healthy controls. Interestingly,
the lower the level of m-VD, the greater the
level of cognitive impairment. In addition,
m-VD demonstrated a correlation with cogni-
tive function, medial temporal atrophy, Fazekas
scores and the isoform 4, apolipoprotein E
(APOE4) genotype [65].

Functional Biomarkers
Alzheimer’s disease might influence the visual
function at both the cortical and ocular level.

Visual Acuity Although many studies have
found no appreciable difference in visual acuity
between AD patients and healthy controls
[31, 66, 67], some authors have reported a
reduction in visual acuity in AD patients when
the luminance is low [31, 68]. A large cohort
follow-up study of [ 15,000 older persons
without dementia found that poorer visual

acuity at baseline was associated with increased
incidence of dementia after 6 years, even after
adjusting for all factors. The authors of this
study concluded that dementia could poten-
tially be predicted by moderate-to-severe vision
impairment [69]. In conclusion, visual acuity
may be a biomarker that could help predict
early AD.

Stereopsis Stereopsis, or depth perception, is
the ability to recognize the different distances of
observed objects [70]. AD patients experience
less stereopsis and depth perception of three-
dimensional objects when compared to control
groups [31, 37, 71]. One explanation is that
successful performance on stereopsis testing
requires high cognitive abilities [31]. In one
study it was noted that the weakening of stere-
opsis in AD patients is caused by a decline in
binocular disparity perception brought on by
the cerebral cortex’s poor visuospatial function
[70]. Stereopsis may therefore be a technique for
AD diagnosis but not for the diagnosis of early
AD.

Saccadic Eye Movements Saccades are quick
eye movements toward touch, aural or visual
stimuli [72]. Areas regulating eye movements,
particularly saccades, are damaged in AD
patients, resulting in abnormal eye movements.
Consequently, eye movement analysis can
reveal a subtle abnormality in the connection
between neural and cognitive performance
[73–75]. Recent research indicates that the anti-
saccade task was the most significant abnor-
mality in early AD and AD compared to healthy
controls [76]. Anti-saccade is the task that
inhibits the eyes from moving in response to
stimuli. Frontal eye field and dorsolateral pre-
frontal cortex, which are connected to memory-
related neural networks, are linked to the anti-
saccadic task, possibly the result of frontal dys-
function, which is reported as an early sign of
brain degeneration in AD [77]. In a recent sys-
tematic review and meta-analysis on the rela-
tionship between AD and saccadic eye
movement, compared to healthy controls, both
early AD and AD patients showed significant
increases in saccade latencies and frequency
errors [78]. It is possible, therefore, that saccadic
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eye movement may eventually be a biomarker
for the diagnosis of AD at an earlier stage.

Non-Ophthalmic Artificial Intelligence
in Alzheimer’s Disease Diagnosis

Deep learning (DL), a subset of AI, has recently
been studied for the early detection of many
diseases in the healthcare setting. The diseases
at the forefront of DL research include those
diagnosed based on the interpretation of medi-
cal images, with a focus on the medical fields of
radiology, dermatology and pathology. AD, as a
disease which requires imaging for diagnosis, is
therefore a target for numerous DL studies.

Various approaches of AI or DL have been
used to assist in AD diagnosis. Most of these AI
algorithms are solely based on brain imaging.
For example, magnetic resonance imaging
(MRI) [79–90] and PET [91, 92] scans are able to
differentiate AD from normal cognition and/or
mild cognitive impairment (MCI) due to AD. In
addition to brain scans, genetic information,
such as DNA methylation, transcriptome, and
genome-wide association studies (GWAS) also
play an important role in DL-based disease
detection [92–95]. Additionally, disease can be
determined using DL to analyze brain
immunohistochemistry sections [96] and
abnormal brain metabolites from proton mag-
netic resonance spectroscopy (1H-MRS) studies
[97]. Such tools are able to differentiate AD from
other tauopathies and normal cognition plus
MCI due to AD, respectively.

Overall, the performance of MRI-trained DL
[79–90] to detect AD has been reported to be
relatively high, with 80.0–99.79% accuracy and
an area under the receiver operating character-
istic (ROC) curve (AUC) of 89.21–97.3l; in
addition, PET-trained DL was found to have
96.4% AUC [91] and 96.8% accuracy [92]. On
the other hand, genetics-based DL [92–95] had a
lower performance, with an accuracy ranging
from 73.1% to 89%, and an AUC ranging from
80.5% to 99.88%.

There are also DL models computing differ-
ent types of data, including demographic data,
medical data, functional assessment, cognitive
score and genetic and brain imaging, to

discriminate AD from normal cognitive status.
These models provided 93.9–96.1% AUC and
92–100% accuracy, which are comparable with
MRI- and PET-based DL [98–100].

MCI, an early AD manifestation, can also be
detected by DL models. MRI-based DL
[79, 80, 84, 86], PET-based DL [91] and com-
puting models [99] can differentiate between
MCI associated with AD and normal controls,
with accuracies ranging from 71.4% to 99.6%
and an AUC ranging from 62.45% to 62.59%.

AI is currently an emerging tool for AD
detection using various medical information,
most of which are brain images. AI showed
comparable performances to specialists [85] or
even outperformed specialists in some models
[85, 91].

Ophthalmic Artificial Intelligence
to Identify Alzheimer’s Disease

The study by Wisely et al. [101] utilized multi-
modal retinal images as input for AI training,
including GC-IPL thickness, superficial capillary
plexus from OCTA images and ultra-widefield
(UWF) color and fundus autofluorescence (FAF)
scanning laser ophthalmoscopy images. A total
of 62 eyes from AD patients and 222 eyes from
healthy controls were included in this study
[101]. The findings demonstrated that multi-
modal retinal images were highly effective at
identifying AD, achieving an AUC of 0.836. The
most valuable single input for disease predic-
tion in this study was the GC-IPL. The quality of
the images, such as ultra-wide field images that
occasionally contained eyelashes and caused AI
leading to incorrect identification of the true
pathology and low numbers of input data, were
identified as limitations in this study [101].

Research using a larger dataset was published
by Cheung et al. [102]. They used 12,949 color
fundus photos from patients from different
countries for AI training. Pictures were taken
from 3240 healthy individuals (7351 photos)
and 648 AD patients (5598 photos). The results
showed 86.3% accuracy in detecting AD in
bilateral internal validation dataset. The test
dataset demonstrated 79.6–92.1% accuracy in
detecting AD and 80.6–89.3% accuracy in
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distinguishing Ab-positive patients previously
diagnosed with PET scans from Ab-negative
patients.

An attempt was made to predict cognitive
function using AI on a database of 25,737 color
fundus photos and metadata of healthy partic-
ipants from the Canadian Longitudinal Study
on Aging (CLSA). The metadata included type of
drinker, type of smoker, level of education
achieved, perceived mental state, among others.
This study’s significant disadvantage is the
absence of individuals with cognitive impair-
ment among the enrolled subjects, which
results in a relatively narrow range of cognitive
scores in the training data. As a result, the
results revealed a prediction accuracy of only
22.4% in cognitive function using color fundus
photos and metadata [103].

DISCUSSION

Useful biomarkers of AD, similar to biomarkers
of other diseases, should be reliable and repro-
ducible in terms of detecting or monitoring the
disease, and the ideal tests or investigations to
detect them should be non-invasive, easy to
execute and inexpensive [104]. Since the eye is
an organ with a direct connection to the brain,
the pathological changes that occur in the brain
may also be reflected in ocular tissues, making it
an organ with the potential of containing AD
biomarkers [105].

Ocular biomarkers, including those struc-
tural or functional, have been studied exten-
sively using imaging modalities and non-
invasive methods as options for detecting AD.
However, not all ocular biomarkers have the
same level of usefulness for the detection of
early AD. The retina is the only part of the
central nervous system that can be pho-
tographed non-invasively, providing sub-cellu-
lar resolutions in enface and cross-sectional
views; consequently, it is the most studied tis-
sue in the human body. Although the results
from recent studies detailed in Table 1 show
abnormalities and alterations in a number of
ocular biomarkers, the findings are inconsistent
and non-specific to AD. The retina, due to the
availability of various imaging modalities that

are able to explore pathological alterations, is
still at the forefront as the target for studies of
AI for detecting AD.

A crucial point when evaluating scientific
papers is to verify the diagnostic criteria of AD
employed by the authors of each quoted article,
particularly whether it adheres to the DSM-5 or
National Institute on Aging – Alzheimer’s
Association (NIA-AA) criteria. The NIA-AA cri-
teria encompass positive biomarkers, such as
the presence of Ab/tau in the CSF, amyloid on
PET and hippocampal atrophy on MRI, which
contribute to increased diagnostic certainty.
However, it is important to acknowledge that
the authors may not have conducted a com-
prehensive evaluation of the criteria adopted,
potentially resulting in oversight regarding the
specific criteria employed in each cited article.
Consequently, when cited papers assert superior
sensitivity or specificity of a particular ocular
biomarker, it is critical to consider that such
claims may be attributed to the utilization of
NIA-AA criteria rather than solely relying on the
inherent quality of the ocular biomarker itself.

Retinal images have been studied for DL
algorithms aimed at detecting systemic diseases
other than AD, including cardiovascular disease
risk, chronic kidney disease, anemia, vital signs
(e.g. blood pressure) and glycated hemoglobin
level, among others, with acceptable accuracy
from internal validation in the same develop-
mental datasets. These DL models have limited
data on validation from new, external datasets.
The deployment of these models in the real-
world settings may not be feasible in the short
term.

AI has been mainly applied to detect AD in
various brain imaging modalities (PET and
MRI). In general, these AI models can have
accuracies ranging from 71% to 99%. With the
addition of more data, such as genetic data, the
models can increase their accuracies up to
93–99%. However, PET or MRI images are not
easily accessed compared to retinal images; in
particular color retinal images taken from con-
ventional retinal cameras are difficult to obtain.

The study by Cheung et al. [102], demon-
strated that AD may be identified using DL to
analyze only color fundus photos. This concept
provides a quick, affordable and labor-free way

1526 Neurol Ther (2023) 12:1517–1532



of detecting probable AD dementia patients
with adequate sensitivity and specificity. How-
ever, although the results from the initial stages
are promising, there is still a long way to go
before these automated algorithms can be put
to use. Using color fundus photos to diagnose
AD could also be of use in the existing com-
munity eye-care center, which allows screening
for common eye diseases, such as diabetic
retinopathy and glaucoma, as well as screening
for AD as needed. As telemedicine, non-mydri-
atic digital retinal cameras and smartphone
cameras gain popularity in the medical field,
color fundus photos will be more available.
Additional research is required to see if com-
bining color fundus photographs with blood-
based or other AD biomarkers can enhance
sensitivity and specificity. In addition, it would
be extremely useful to employ this method to
detect preclinical and prodromal AD and to
predict the progression of dementia in early AD
patients.

Ophthalmic AI seemed to perform better
when using multimodal retinal images rather
than only fundus images. Based on a review of
ophthalmic AI studies to detect AD, we discov-
ered limitations in the use of ophthalmic
biomarkers for AI-based AD detection. First, AI
research in ophthalmology does not have a
large number of datasets that can be used to
train AI. This reduces the accuracy and sensi-
tivity of AD detection. Second, the diversity of
the dataset is also essential as greater diversity
could make it easier for AI to spot disparities in
data. Third, the image quality in certain inves-
tigations causes AI to identify pathology inac-
curately. Eliminating the artifact’s affected area
is recommended, but this will allow AI to
overlook the true pathology beneath the
removed portion. Attention maps are proposed
to determine which information the model
should identify and use to make decisions from
the images.

CONCLUSIONS

Alzheimer’s disease is the most common cause
of dementia and has a devastating impact on
patients, caregivers and societies. Although

there has not yet been a standard treatment for
the disease, early detection should provide
awareness to those involved in patient care. To
detect early onset AD, multimodal, non-inva-
sive investigations have been utilized. Numer-
ous biomarkers that can detect AD—and
possibly early AD—are currently available,
including those from the eye where many non-
invasive tests and imaging modalities can be
used. Ocular biomarkers are therefore among
the many emerging biomarkers for detecting
early AD.

Ocular biomarkers that have been found to
be able to detect early AD include tears, corneal
nerves, retina, visual function and, in particu-
lar, eye movement tracking. Currently, there is
no ocular biomarker that can definitively detect
early AD, but according to numerous studies,
there is a high possibility that ocular biomarkers
will be able to detect early AD in the future. The
use of AI in conjunction with ocular biomarkers
has been an area of interest to many researchers.
However, these studies are marked with
numerous limitations, including a limited
number of databases, a wide variety of partici-
pants and poor ocular imaging quality.

In summary, the use of AI with ocular
biomarkers through multimodal imaging could
improve the accuracy of identifying AD
patients, and could become a screening tool for
older patients to detect preclinical AD prior to
the development of AD symptoms. This topic
still warrants additional research.
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