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ABSTRACT

Introduction: Objective observational studies
have shown that basal metabolic rate (BMR)
decreases in patients with Alzheimer’s disease
(AD), but the causal relationship between BMR
and AD has not been established. We deter-
mined the causal relationship between BMR
and AD by two-way Mendelian randomization
(MR) and investigated the impact of factors
associated with BMR on AD.
Methods: We obtained BMR (n = 454,874) and
AD from a large genome-wide association study
(GWAS) database (21,982 patients with AD,
41,944 controls). The causal relationship
between AD and BMR was investigated using
two-way MR. Additionally, we identified the
causal relationship between AD and factors
related with BMR, hyperthyroidism (hy/thy)
and type 2 diabetes (T2D), height and weight.
Results: BMR had a causal relationship with AD
[451 single nucleotide polymorphisms (SNPs),
odds ratio (OR) 0.749, 95% confidence intervals
(CIs) 0.663–0.858, P = 2.40E-03]. There was no

causal relationship between hy/thy or T2D and
AD (P[ 0.05). The bidirectional MR showed
that there was also a causal relationship
between AD and BMR (OR 0.992, Cls
0.987–0.997, NSNPs18, P = 1.50E-03). BMR,
height and weight have a protective effect on
AD. Based on MVMR analysis, we found that
genetically determined height and weight may
be adjusted by BMR to have a causal effect on
AD, not height and weight themselves.
Conclusion: Our study showed that higher
BMR reduced the risk of AD, and patients with
AD had a lower BMR. Because of a positive
correlation with BMR, height and weight may
have a protective effect on AD. The two meta-
bolism-related diseases, hy/thy and T2D, had no
causal relationship with AD.
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Key Summary Points

Why carry out this study?

Objective observational studies have
shown that basal metabolic rate (BMR)
decreases in patients with Alzheimer’s
disease (AD), but the causal relationship
between BMR and AD has not been
established

In this study, we examined the
bidirectional causal relationship between
BMR and AD using a genetically informed
method

What was learned from the study?

Higher BMR reduced the risk of AD, and
patients with AD had a lower BMR

Our study also revealed that height and
weight may have an impact on AD by
influencing basal metabolic rate

The two metabolism-related diseases,
hyperthyroidism (hy/thy) and type 2
diabetes, had no causal relationship with
AD

INTRODUCTION

Alzheimer’s disease (AD) is the primary con-
tributor to dementia and the most prevalent
cause of death [1–3]. AD significantly decreases
the quality of life for individuals and poses a
significant challenge to public health and soci-
ety as a whole [4, 5]. Despite extensive research,
the cause of sporadic AD remains elusive. To
date, there is no established effective treatment,
and there are no confirmed preventive measures
available [6–8].

The basal metabolic rate (BMR) is considered
a crucial indicator of minimal metabolism
required to sustain life and is a significant

component of total energy expenditure. BMR is
influenced by various factors such as body
weight, height and health status. Numerous
studies suggest that metabolic dysfunction
increases the risk of AD. For instance, metabolic
dysfunction in both the body and brain can
contribute to the development of AD. Impaired
glucose metabolism in the brain has been linked
to AD and may start several years before the
onset of clinical symptoms, making it an
intrinsic part of AD pathogenesis [9, 10].

A number of acquired factors increase the
risk of developing AD. Among those factors are
diabetes and obesity [11]. Both obesity and
uncontrolled diabetes are characterized by an
increased BMR [12]. Due to the possibility of a
long incubation period between exposure and
results, randomized controlled trials, the gold
standard for causal reasoning, are not feasible
[13]. Confounding factors, reverse causation
and measurement errors can bias observational
studies [14]. Besides, the relationship between
BMR and AD has not been reported. In this
study, we tried to identify the risk and causal
relationship between BMR and AD. This may be
of value for extending prevention and treat-
ment strategies of AD.

Mendelian randomization (MR) analysis is a
gene-based analysis method that utilizes ran-
domly assigned genetic variation to infer the
causal effect of exposure on outcomes. MR uti-
lizes genetic variants, such as single nucleotide
polymorphisms (SNPs), as instrumental vari-
ables to reduce confounding bias in exposure
and enhance causal inference of exposure-out-
come associations [15, 16]. In MR analysis,
SNPs, as genetic tools, must meet the following
three basic assumptions: (1) the genetic varia-
tion must be truly associated with exposure; (2)
genetic variation should not be associated with
any confounding factors associated with expo-
sure outcomes; (3) there is no direct link
between genetic variation and outcomes [17]
(Fig. 1). In this study, we determined the causal
relationship between BMR and AD by two-way
MR.
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METHODS

Genetic Variants Associated with BMR
Were Obtained from GWAS

We used data from the UK Biobank, where
454,874 participants were tested for BMR and
9,851,867 SNPs were measured, which were
detected in excerpt from the MR-Base plat-
form[18]. All the participants of the datasets
were of European origin. The data were ana-
lyzed and processed using the R package
TwoSampleMR [18]. The extraction criteria for
instrumental variables are (P\ 5 9 10–8,
R2\ 0.001, kb distance[10,000). BMR in UK
Biobank was calculated according to the Oxford
equation in a unit of standard deviation (SD),
with 1 SD = 1358.32 kilo-joule (KJ) [19]. Ethics
approval and informed consent were not
required for the present study, as they were
obtained in the original studies. The original
studies were conducted in compliance with the
Declaration of Helsinki.

GWAS Summary Data on AD

The summary genetic statistics for AD were
obtained from the International Genomics of
Alzheimer’s Project (IGAP), comprised of four
consortia, Alzheimer Disease Genetics Consor-
tium (ADGC), Cohorts for Heart and Aging

Research in Genomic Epidemiology Consor-
tium (CHARGE), The European Alzheimer’s
Disease Initiative (EADI) and Genetic and
Environmental Risk in AD/Defining Genetic,
Polygenic and Environmental Risk for Alzhei-
mer’s Disease Consortium (GERAD/PERADES).
The dataset in IGAP was a GWAS metaanalysis
of 46 case-control studies with approximately
10.5 million SNPs and 63,926 European indi-
viduals (21,982 AD cases and 41,944 cognitively
normal controls) (available from the IEU GWAS
database: https://gwas.mrcieu.ac.uk/) [20]. In
the study population, the average age of
patients with AD is 72.9 years old and that of
cognitive function control group 72.4 years old,
with some cases being anatomical or autopsy
(Supplementary Material, Tables 3–4) [20].
Individuals with a high degree of relatedness
were excluded from the analysis for all datasets,
so our analysis primarily focuses on patients
with sporadic AD, according to the criteria of
the National Institute of Neurological and
Communicative Disorders and Stroke (NINCDS)
and the Alzheimer’s Disease and Related Disor-
ders Association (ADRDA) [21, 22]. The screen-
ing criteria include ‘‘neuropsychological tests,
advanced imaging, cerebrospinal fluid mea-
surements, and other biological markers’’ [23].
AD is defined as a significant decline compared
to previous levels at cognitive or/and behavioral
(neuropsychiatric) aspects and involves impair-
ment in at least two domains, such as memory,
logic, visuospatial abilities and language func-
tions. Refer to Table 1 for AD, BMR and other
exposure-related information.

Other Datasets

The GWAS of standing height, weight, type 2
diabetes mellitus (T2D) and hyperthyroidism/
thyrotoxicosis (hy/thy) is the same MR-Base
platform excerpt with GWAS ID ukb-b-10787,
ukb-b-12039, ebi-a-GCST010118 and ukb-b-
20289, respectively [18].

Statistical Analysis

MR was performed using the TwoSampleMR
(version 0.5.6) package in R (version 4.2.1). In

Fig. 1 Directed acyclic graphs for Mendelian randomiza-
tion. The directed acyclic graph presents the causal
relationship among instrumental variable (SNPs), exposure
(basal metabolic rate, BMR), outcome (Alzheimer’s disease,
AD) and confounding factors (G). Other letters indicate
the direction of factors that can have an impact. 9, no
influence
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the main analysis, we applied the inverse-vari-
ance weighted (IVW) MR method to estimate
the associations between BMR and the risk of
AD [24]. The IVW method only provides unbi-
ased estimates when horizontal pleiotropy is
balanced or absent [25]. Instrument strength is
assessed by intensity and precision between
genetic variation and exposure. For each SNP,
the F statistic is calculated using the formula

F ¼ R2 � N�2
1�R2 R2 ¼¼ 2 � beta2 � EAF� 1�EAF

2 �
beta2 � EAF� ð1 � EAFÞ þ 2 � SE2 �N� EAF�
ð1 � EAFÞ (N represents the number of partici-
pants, EAF represents the effector allele fre-
quency, and beta is the estimated effect of SNP)
to assess its ability to independently predict
outcomes. If the F statistic for the instrument-
exposure association was significantly[10, the
likelihood of weak instrumental variable bias
was low [15].

The heterogeneity among genetic instru-
ments was evaluated by Cochran’s Q test [26]. If
heterogeneity existed, a random-effect IVW
model was used [27, 28]; otherwise, a fixed-ef-
fect IVW model was used. Other MR methods
used as sensitivity analysis included weighted
median and MR-Egger, using the ‘‘TwoSam-
pleMR’’ R package, as well as MR-pleiotropy
residual sum and outlier (MR-PRESSO) (with
10,000 simulations performed), using the ‘‘MR-
PRESSO’’ R package [29]. MR-egger regression
with bootstrap standard error is performed in
the MR analysis to produce pleiotropic-robust
causal estimates [30]. If at least 50% of the

variables are valid instruments, then estimates
based on median (weighted) are unbiased [31].
In addition, multiple sensitivity analyses were
performed to verify the robustness of the MR
test, such as MR-Egger intercept test and leave-
one-out analysis. MR-Egger intercept analysis is
used to evaluate directional pleiotropy. When
its P value is[0.05, directionality pleiotropy is
not present. Cochran’s Q statistics were com-
puted to test the presence of heterogeneity. We
also used a two-way MR analysis method to
detect whether the exposure to the outcome
had a reverse causal relationship. The statistical
analysis process is shown by Fig. 2. Leave-one-
out sensitivity analysis did not lead to an
appreciable change in the MR estimates (Sup-
plementary Material).

RESULTS

There was a Causal Relationship Between
Alzheimer’s Disease and Basal Metabolic
Rate

We used a two-sample MR method to analyze
BMR with AD outcomes. The SNPs associated
with BMR and AD are listed in Supplementary
Tables 5 and 6. We also counted the F value of
each SNP and calculated that the average
F value was 81.6 and minimum value 29.9. This
showed that the tool variable was not weak. In
the sensitivity analysis, the two samples were

Table 1 Data sources

GWAS Ncases Control Sample Population Consortium

AD 21,982 41,944 63,926 EUR IGAP

BMR – – 454,874 EUR MR-Base

T2D 77,418 356,122 433,540 EUR MR-Base

HY 3,545 459,388 462,933 EUR MR-Base

W – – 454,893 EUR MR-Base

SH – – 461,950 EUR MR-Base

GWAS, genome-wide association analysis; Ncases, number of cases; control, number of control groups; sample, sample size;
consortium, source organization; population, ethnic population (European population, EUR); W, weight; SH, standing
height; –, all samples were measured
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heterogeneous, but there was no horizontal
pleiotropy, so the results of weighted media
analysis and IVW analysis were more suitable,
and the P value of both detection methods was
\ 0.05, indicating a significant difference. The
value of OR showed that each SD increase in
BMR reduced the risk of AD (OR 0.752, 95% CI
0.664–0.851), while the risk of AD decreased
with increasing height and weight, possibly
because height and weight contribute to BMR
(Table 2). This suggests that a high BMR has a
protective effect on AD.

Interestingly, our reverse testing revealed
that an increased risk of AD had a diminished
impact on BMR (beta = - 0.7%, 95% CI - 0.011
to 0.003) (Table 3). When using MR-PRESSO
detection, abnormal values were detected,
which may have a greater impact on horizontal
pleiotropy. After correction, it was found that
the outlier-corrected P value was still \ 0.05,
and the ‘‘distortion test’’ detected P[ 0.05,
which mean outliers had no influence on the
results.

There Was No Causal Relationship
Between Hyperthyroidism or Type 2
Diabetes Mellitus and Alzheimer’s Disease

Both type 2 diabetes (T2D) and hyperthy-
roidism/thyrotoxicosis (hy/thy) affected BMR,

so we investigated the relationship between the
two diseases and AD. Results showed that nei-
ther disease had a causal relationship with AD
(P[0.05) (Table 4). BMI is associated with BMR
but has been shown to be unrelated to AD risk
[32]. Therefore, the screening criteria for SNPs
for both diseases as exposure were the same as
for BMR.

We performed an MR analysis of AD and two
fundamental factors associated with BMR, body
weight and height. Both weight and height
decreased the risk of AD in two-sample MR
analysis and reduced the risk of developing AD
by influencing BMR in MVMR analysis.

DISCUSSION

Summary

In this study, we performed univariate MR
analysis using genetic variation as a non-con-
founding agent to explore the BMR on AD. The
causal relationship was studied between disease
or phenotype associated with BMR. By applying
four complementary single-variable MR meth-
ods with different potential assumptions, we
found evidence suggesting that a higher genetic
susceptibility to BMR can reduce the risk of AD.
The results of the MVMR analysis showed that

Fig. 2 Bidirectional Mendelian randomization flowchart in this study
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height and weight may have an effect on AD by
altering BMR. Furthermore, we identified some
of the diseases that affect BMR, T2D and hy/thy
had no causal relationship with AD. This sug-
gested that, although the two diseases increased
BMR, they may also be related to confounding
factors that reduce the risk of AD. Through two-
way MR analysis, we found that there is a direct
causal relationship between the decline in BMR
and patients with AD (the same direction of
beta in the four methods). This suggested that a
decrease of BMR in normal people might
increase the risk of AD (Table 5).

Comparison to Previous Findings

Previous observational studies have shown that
there is a correlation between human height
and AD. For men, height in the highest quartile
[[ 179.7 cm (70.75 in)] had a 59% lower risk of
developing AD that in the lowest quartile
[\ 169.5 cm (66.75 in)], controlling for year of
birth and education (P = 0.03). For women
without an APOE e4 allele, increasing height
was associated with lower risk for AD (OR 0.88;
P = 0.01) [33]. This is consistent with our anal-
ysis where we speculate that genetically

Table 2 MR/MVMR analysis of the impact of BMR on AD

MRexposure Method Nsnp OR (95% CI) Pval
BMR

Standing height

Weight

MVMRexposure 
Weight

BMR

MR Egger

IVW
Weighted mode

Weightedmedian

MR Egger

IVW
Weighted mode

Weightedmedian

MR Egger
IVW
Weighted mode

Weightedmedian

outcome 
AD

AD

451

451
451

451

637

637
637

637

392
392
392

392

335

407

0.816 (0.606 to1.099)

0.752 (0.664 to0.851)
0.761 (0.500 to1.158)

0.750 (0.619 to0.908)

0.842 (0.709 to1.001)

0.842 (0.774 to0.917)
0.881 (0.709 to1.096)

0.838 (0.742 to0.947)

0.745 (0.567 to0.979)
0.849 (0.762 to0.947)
0.778 (0.560 to1.082)

0.822 (0.698 to0.968)

1.436 (0.877 to2.352)

0.526 (0.293 to0.943)

0.181

0.000
0.203

0.003

0.051

0.000
0.256

0.005

0.035
0.003
0.137

0.019

0.151

0.031

Standing height AD

BMR AD
543

262

0.2 1

0.977 (0.827 to1.154)

0.754 (0.570 to0.997)

2.8

0.781

0.048

Reduce risk  Increase risk

Effect of BMR and related factors on Alzheimer’s disease. Nsnp, number of genetic instrumental variables; OR, odds ratio;
95%CI, confidence intervals; IVW, inverse variance weighted. Red part, P\ 0.05. Because basal metabolic rate is
heterogeneous with Alzheimer’s disease, the IVW method was chosen for analysis.
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determined higher height may reduce the risk
of AD by increasing BMR based on MVMR
analysis.

Body height and weight affect BMR through
body surface area. Our results showed that
heavier weight reduced the risk of developing
AD by influencing BMR in MVMR analysis. At
present, there is no strong evidence that weight
is directly linked to AD, although a low body
weight may be found in AD. Some studies have
shown that weight loss occurs in patients in the
middle and late stages of AD [34], but other
studies suggest that weight loss may occur
before cognitive dysfunction [35]. This may be
due to the decrease in trace elements in the

body during weight loss, which increases the
risk of developing AD [36–38]. The decrease in
leptin during weight loss can also lead to a
decline in cognitive function [39]. Longitudinal
cohort studies have also shown that weight gain
reduces the risk of AD [40].

Abnormal thyroid function and some meta-
bolic diseases, for example, T2D, will affect the
BMR, which is usually one of their diagnostic
indicators. There is evidence to suggest people
with T2D may be at a higher risk of developing
AD [41–44], and some studies have found that
treating diabetes may also help to slow the
progression of AD [45, 46]. Some research sug-
gests that people with T2D may have an

Table 3 MR analysis of the impact of AD on BMR

Exposure Method Nsnp Beta (95% CI) Pval

−0.007 (−0.011 to −0.003) 0.001

Weighted mode 16 −0.008 (−0.014 to −0.003) 0.006
−0.008 (−0.013 to −0.003) 0.002Weighted median 16

16IVW
−0.009 (−0.015 to −0.003) 0.01016MR EggerAD

-0.02 0 0.01

Reduce risk Increase risk

Effects of Alzheimer’s disease on basal metabolic rate. Beta: Risk Index

Table 4 MR analysis of the effect of type 2 diabetes mellitus and hyperthyroidism-related diseases on AD

Exposure Methods Nsnp Beta Se Pval

T2D MR Egger 122 0.024 0.048 6.26E-01

Weighted median 122 - 0.001 0.035 9.88E-01

IVW 122 -0.005 0.024 8.39E-01

Weighted mode 122 0.012 0.035 7.39E-01

hy/thy MR Egger 9 -7.432 9.198 4.46E-01

Weighted median 9 3.237 4.130 4.33E-01

IVW 9 6.281 3.240 5.30E-02

Weighted mode 9 1.590 4.750 7.46E-01

Pval[ 0.05, no causation; T2D, type 2 diabetes; hy/thy, hyperthyroidism/thyrotoxicosis; Se, standard error. Risk index
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increased risk of developing AD due to the
effects of high blood sugar on the brain [47, 48].
High levels of blood sugar can damage blood
vessels and nerve cells in the brain, which may
contribute to the development of AD [49, 50].
However, the relationship between T2D and AD
is complex and not fully understood. Our
results suggest that there is no causal relation-
ship between T2D and that observational stud-
ies may be due to confounders.

There is a link between hormonal imbalance
and neurodegenerative diseases, e.g., clinical
studies have found that some patients with AD
have Cushing’s syndrome (CS). CS is caused by
the long-term release of excessive glucocorti-
coids (GCs) from the adrenal glands, which
subsequently impairs brain function and indu-
ces dementia [51]. Changes in plasma thyroid
hormone (TH) levels in patients with hyper-
thyroidism may affect neuronal function
[52, 53]. Generally, the risk of thyroid dysfunc-
tion is markedly increased in older people [54].
Behavior, cognition, cerebral blood flow and
glucose consumption in AD are associated with
TH deficiency, but whether there is a causal

relationship between thyroid dysfunction and
AD is inconclusive [55]. Our results suggest that
hyperthyroidism is not causally related to AD.

BMR represents the energy expenditure nec-
essary to maintain basic physiological func-
tions, including cardiac activity, respiration,
conduction of nerve impulses, ion transmem-
brane transport and metabolic activity [56, 57].
Until now, there have been no research reports
on the correlation between BMR and AD. Our
present study indicated that an increase in
genetically determined BMR may reduce the
risk of AD.

It is well known the brain makes up only a
small part of our body’s total mass, but it is the
largest source of energy expenditure, account-
ing for [ 20% of total oxygen metabolism.
Neurons are the most energetic cells in the
brain, consuming up to 75–80% of the oxygen
in the brain [58]. This in itself suggests that
neurons are highly sensitive to disruptions in
glucose metabolism and mitochondrial dys-
function [59]. The gradual decline in metabolic
efficiency during aging renders neurons more
vulnerable to toxic damage [60, 61]. If changes

Table 5 Susceptibility testing (BMR/SH/W and AD)

Exposure Method Q Q_Df Pval Egger_Intercept Se Pval
Cochran’s Q MR-Egger intercept

BMR AD as the outcome

MR Egger 526.617 449 6.64E-03 – – –

IVW 527.034 450 7.02E-03 -1.25E-03 2.09E-03 5.51E-01

SH MR Egger 823.025 635 6.22E-07 – – –

IVW 823.025 636 7.12E-07 -1.09E-06 1.60E-03 9.99E-01

W MR Egger 486.979 390 5.90E-04 – – –

IVW 488.291 391 5.78E-04 2.42E-03 2.36E-03 3.06E-01

AD BMR as the outcome

MR Egger 39.418 16 9.46E-04 – – –

IVW 44.288 17 3.11E-04 1.00E-03 1.00E-03 1.79E-01

In Cochran’s Q, the test showed heterogeneity (P\ 0.05), and the MR-Egger intercept showed no horizontal pleiotropic
effect (P[ 0.05) during bidirectional Mendelian randomization
Se, sample standard error; Egger_Intercept, intercept term (evaluate pleiotropy); Q, normalized weighted sum of squares;
Q_Df, degree of freedom. –, no data
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in energy metabolism may occur, the vulnera-
bility of these neurons may increase before the
appearance of clinical symptoms, leading to the
loss of neurons [62]. In humans, low brain
metabolism can cause cognitive impairment
[63]. We also provide the possibility of this
causal relationship here.

Currently, accumulating studies have shown
that abnormal glucose metabolism in the brain
is an early event before the pathological features
of Ab deposition in AD [64–68]. Numerous
studies highlight the negative effects of Ab on
mitochondrial function, and mitochondrial
dysfunction is observed in APP and APP/PS1-
based transgenic mouse models [69–73]. Thus,
metabolic abnormalities are also considered to
be the driving factors and hallmarks of AD
[65, 66]. We macroscopically identify the causal
relationship between energy metabolism and
AD from the perspective of BMR first, which has
certain significance for prevention and treat-
ment AD.

Implications for Policy and Practice

Our study shows that there was a causal rela-
tionship between the decrease in BMR and
increased risk of AD. Therefore, the degree of
AD risk prediction could be judged by examin-
ing the basal metabolism and BMR. The risk of
AD decades later could be predicted by the
interval of BMR at young age. And the patho-
logical burden of AD could be alleviated by
increasing basal metabolism (such as exercise,
increasing muscle mass, etc.) in the daily care of
patients with AD.

Strengths and Limitations

This study comprehensively investigated the
causal relationship between BMR and AD under
a bidirectional MR design based on genetic tools
selected from the current larger case load of AD
and the largest BMR scale of causation. A series
of sensitivity analyses were used to control
pleiotropic bias and verify the robustness of the
MR results. However, this still has certain limi-
tations. First, we involved some heterogeneity
in Cochran’s Q statistics during bidirectional

MR analysis. To solve this problem, we chose
the IVW random-effects method that provides
robustness to heterogeneity and weighted
media as our main MR method—random effects
can avoid bias in results due to heterogeneity.
Weighted median robust MR results are avail-
able in predictions where heterogeneity is pre-
sent but no horizontal pleiotropy. Second, we
detected potential pleiotropic effects in the MR-
PRESSO test. For this, we increased confidence
in the results by removing anomalies, and after
removing outliers, the original IVW analysis
was found. The causal effects identified with the
weighted media analysis did not change due to
outliers, which increases the reliability of the
results. Third, the leave-one-out analysis
method failed to identify individual SNPs that
had biased effects on IVW. This indicated the
reliability of the results. Finally, our findings
suggested that elevated basal metabolism has a
protective effect on AD, but we also found that
both disorders do not lower AD risk during the
analysis of diseases associated with elevated
BMR. However, by MVMR analysis, both genetic
phenotypes that are closely related to BMR for
height and weight have some causal relation-
ship with AD, which may be BMR, which has
the effect of acting as an intermediary factor.
This suggested that predicting AD by BMR alone
still had certain drawbacks, for example, an
increase in BMR in a diabetic patient with a
reduced risk of AD may also result in other AD
risk factors increasing morbidity.

The disadvantage of MR analysis is that cur-
rent genome-wide association studies (GWAS)
for diseases or large sample sizes are still insuf-
ficient. For example, the APOE e4 allele remains
the strongest genetic risk factor for sporadic
Alzheimer’s disease [20]. Thyroid disease and
type 2 diabetes both share common mecha-
nisms with AD [74], and it is of great signifi-
cance to study the causal relationship between
diseases in the absence of horizontal pleiotropy.
However, due to the lack of large samples and
race-specific population studies in current
GWAS or genetic scoring studies, we were
unable to find appropriate data in the database
to separately analyze the direct causal relation-
ships of patients with AD carrying the APOE e4
allele and other diseases.
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CONCLUSION

In conclusion, we demonstrated that higher
BMR had a significant effect on lower morbidity
of AD. The elevated basal metabolism deter-
mined by innate genetic factors can reduce the
risk of AD. This could be used as a potential
indicator of the incidence of AD. We still need
to further determine the specific mechanisms
underlining how BMR affects the AD causal
pathway and explore the specific relationship
among these mechanisms.
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4. Kępka A, Ochocińska A, Borzym-Kluczyk M, Cho-
jnowska S, Skorupa E, Przychodzeń M, Waszkiewicz
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