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ABSTRACT

Introduction: Stroke is always associated with a
difficult functional recovery process. A
brain–computer interface (BCI) is a technology
which provides a direct connection between the
human brain and external devices. The primary
aim of this study was to determine whether
training with a BCI-controlled robot can
improve functions in patients with subacute
stroke.
Methods: Subacute stroke patients aged 32–-
68 years with a course of 2 weeks to 3 months
were randomly assigned to the BCI group or to
the sham group for a 4-week course. The pri-
mary outcome measures were Loewenstein
Occupational Therapy Cognitive Assessment
(LOCTA) and Fugl-Meyer Assessment for Lower

Extremity (FMA-LE). Secondary outcome mea-
sures included Fugl-Meyer Assessment for Bal-
ance (FMA-B), Functional Ambulation Category
(FAC), Modified Barthel Index (MBI), serum
brain-derived neurotrophic factor (BDNF) levels
and motor-evoked potential (MEP).
Results: A total of 28 patients completed the
study. Both groups showed a significant
increase in mean LOCTA (sham: P\0.001,
Cohen’s d = - 2.972; BCI: P\0.001, Cohen’s
d = - 4.266) and FMA-LE (sham: P\0.001,
Cohen’s d = - 3.178; BCI: P\0.001, Cohen’s
d = - 3.063) scores. The LOCTA scores in the
BCI group were 14.89% higher than in the sham
group (P = 0.049, Cohen’s d = - 0.580). There
were no significant differences between the two
groups in terms of FMA-B (P = 0.363, Cohen’s
d = - 0.252), FAC (P = 0.363), or MBI
(P = 0.493, Cohen’s d = - 0.188) scores. The
serum levels of BDNF were significantly higher
within the BCI group (P\0.001, Cohen’s
d = - 1.167), and the MEP latency decreased by
3.75% and 4.71% in the sham and BCI groups,
respectively.
Conclusion: Training with a BCI-controlled
robot combined with traditional physiotherapy
promotes cognitive function recovery, and
enhances motor functions of the lower
extremity in patients with subacute stroke.
These patients also showed increased secretion
of BDNF.
Trial Registration: Chinese clinical trial reg-
istry: ChiCTR-INR-17012874.
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Key Summary Points

The aim of the study was to evaluate the
effects of training with a brain–computer
interface (BCI)-controlled robot on
rehabilitation outcome in patients with
subacute stroke.

This randomized clinical trial with 28
patients with subacute stroke showed
that, to some extent, training with a BCI-
controlled robot (combined with
traditional physiotherapy) effectively
promotes cognitive recovery, and
enhances motor function of the lower
extremities. These results were
accompanied by increased secretion of
brain-derived neurotrophic factor (BDNF).

This means that training with a BCI-
controlled robot may be a safe and
effective strategy in subacute stroke
rehabilitation.

INTRODUCTION

Stroke is one of the most common causes of
disability and death, with high mortality and
disability rates [1]. The 2016 Global Burden of
disease data showed that stroke is the main
causes of annual loss of life in our country [2, 3].
Recovery of neural function after stroke is a
difficult process [4]. Traditional stroke rehabili-
tation programs include a variety of treatment
strategies, with varying degrees of evidence-
based support [5, 6]. Usually, these treatments
include repetitive physical exercises aimed at
restoring muscle strength and the activities of
daily living [7]. In the early phase, the treat-
ment may include passive exercises to maintain
the integrity of physical structures, in prepara-
tion for neurological recovery [8]. As the reha-
bilitation course continues, exercises gradually

shift to active-assistive training. The limitations
of passive training during the early stage of
stroke rehabilitation prompted us to investigate
innovative approaches that would enable
patients to exercise at this stage of their disease
[9].

A brain–computer interface (BCI) is a tech-
nology that bypasses normal nervous and
muscle pathways, providing a direct connection
between the human brain and external devices
[10, 11]. BCI training systems can use EEG sig-
nals from motor imagery performance with
sensory real-time feedback and decode these
signals to enable patients to direct devices, such
as wheelchairs, robots, and prosthetic devices,
including exoskeletons. In a previous study, we,
for the first time, proposed a special form of
visual stimulation, involving non-directional
specific motion reversal, to elicit steady-state
motion visual-evoked potentials (SSMVEPs)
[12–14]. This has BCI applicability in patients
with different neurophysiological impediments,
and is associated with stronger responses and
less visual discomfort [15]. Based on this tech-
nology [16], we developed a BCI-controlled
robot for lower limb rehabilitation of patients
with subacute stroke.

We aimed to compare the recovery of suba-
cute stroke patients treated with the BCI-con-
trolled robot coupled with physiotherapy (PT),
with traditional training via a randomized trial.
We hypothesized that training with the BCI-
controlled robot would improve lower limb
motor function, and trigger endocrine and
neurophysiological changes in patients with
subacute stroke.

METHODS

Standard Protocol Approvals
and Registrations

This study was a single-center, randomized,
double-blind, sham-controlled clinical trial
with two parallel arms. The study was approved
by the Institute Ethics Committee of Xijing
Hospital (KY20172051), adhered to the guideli-
nes of the Declaration of Helsinki, and was
registered in the Chinese Clinical Trial Registry
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(ChiCTR-INR-17012874). Informed consent was
received to participate, and also included the
statement we provided concerning written
informed consent for the publication and for
the photograph (Fig. 1A) included in the paper.

Participants

Among 33 patients assessed for eligibility, a
total of 31 [mean (± SD) age, 52.4 (± 11.2)
years, including 27 men (87.1%)], were recrui-
ted for the study between October 2017 and
December 2018 at the Department of Rehabili-
tation of Xijing Hospital (Table 1).

The inclusion criteria were: (1) first onset,
based on the diagnostic criteria for stroke; (2)
computed tomography (CT) or magnetic reso-
nance imaging (MRI) localization of the lesion

unilaterally in the basal ganglia, internal cap-
sule, cortex, or subcortical area. The course of
the disease was in subacute phase which was
from 2 weeks to 3 months with stable vital
signs; (3) between 30 and 70 years of age; (4)
ability to comprehend instructions (Mini-Men-
tal State Examination score C 22); and (5)
signed informed consent form.

The exclusion criteria were as follows: (1)
unstable clinical progression secondary to brain
damage; (2) history of epilepsy; (3) severe car-
diopulmonary insufficiency resulting in the
patient not being able to tolerate the treatment;
(4) unilateral neglect; (5) history of eye disease
affecting visual acuity; and (6) motor dysfunc-
tion due to other causes.

The commercial software G Power was used
to achieve a statistical power of 0.8, with

Fig. 1 Training procedure. Participants were placed on
the training robot (A) and EEGs were recorded using the
international 10–20 system (B). A Newton’s ring was used

as a stimulator (C), enabling the participants to control the
robot (D) and to exercise with varying levels of difficulty
(E)
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statistical significance at P\0.05 (two-tailed
test) and an effect size of 0.45, a minimal sam-
ple size of 28 patients, which were required for
the present trial.

Randomization and Blinding

A computer random number generator assigned
patients to the BCI-controlled robot group (BCI
group for short) or to the sham group, using a
block randomization strategy. Before the
recruitment phase, sealed envelopes containing

Table 1 Baseline participant characteristics

Characteristics Total
(n5 28)

Sham group
(n5 14)

BCI group
(n5 14)

P value

Age, years; mean ± SD 53.1 ± 11.5 56.1 ± 11.5 50.1 ± 11.1 0.178

Sex, n (%) 1

Male 25 (89.3%) 12 (85.7%) 13 (92.9%)

Female 3 (10.7%) 2 (14.3%) 1 (7.1%)

Stroke type, n (%) 0.270

Ischemic 14 (50.0%) 9 (64.3%) 5 (35.7%)

Hemorrhagic 14 (50.0%) 5 (35.7%) 9 (64.3%)

Affected hemisphere, n (%) 0.266

Left 14 (50.0%) 5 (35.7%) 9 (64.3%)

Right 14 (50.0%) 9 (64.3%) 5 (35.7%)

Time since stroke, days; mean ± SD 37.3 ± 40.2 27.5 ± 18 47.1 ± 53.2 0.202

LOCTA, mean ± SD 56.4 ± 17.2 57.1 ± 17.3 55.8 ± 17.8 0.848

FMA-LE, mean ± SD 10.3 ± 6.2 10.1 ± 6.8 10.4 ± 5.7 0.882

FMA-B, mean ± SD 4.0 ± 2.7 4.1 ± 2.8 3.9 ± 2.7 0.839

FAC 1

Level 0 18 (64.3%) 9 (64.3%) 9 (64.3%)

Level 1 4 (14.3%) 2 (14.3%) 2 (14.3%)

Level 2 5 (17.9%) 2 (14.3%) 3 (21.4%)

Level 3 1 (3.6%) 1 (3.6%) 0 (0.0%)

Level 4 0 (0.0%) 0 (0.0%) 0 (0.0%)

Level 5 0 (0.0%) 0 (0.0%) 0 (0.0%)

MBI, mean ± SD 24.4 ± 13.9 24.9 ± 14.0 23.8 ± 14.3 0.832

BDNF, mean ± SD 89.5 ± 19.0 88.9 ± 19.9 90.1 ± 18.8 0.868

Latency, mean ± SD 25.6 ± 3.1 25.7 ± 3.22 25.5 ± 3.25 0.902

Amplitude, mean ± SD 344 ± 262 333 ± 257 356 ± 285 0.963
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the protocol materials and patient allocation
were prepared and numbered sequentially. After
patients agreed to participate in the trial, the
envelopes were opened sequentially by the
coordinator, who was not involved with the
patient’s intervention. Patients were evaluated
at different time points: before intervention
(T0), and 1 week (T1), 2 weeks (T2), and 4 weeks
(T3) afterwards. Biochemical and neurophysio-
logical measurements were performed only at
T0 and T3. All investigators were rehabilitation
science majors with more than 3 years of pro-
fessional experience. To guarantee that the
study was performed in a double-blind manner,
two independent, experienced therapists eval-
uated the outcome. Participants were unaware
of the group to which they had been allocated.

Intervention

Participants were asked to lie comfortably on
the training robot with the help of therapists in
a quiet, ordinary well-illuminated room with no
electromagnetic shielding. The training robot
then moved from the stopping (horizontal) to
the working (vertical) position (Fig. 1A). We
adopted the international 10–20 system for EEG
recordings, which included O1, O2, Oz, PO3,
PO4, and POz sites (Fig. 1B). The EEG signals
were referenced to a unilateral earlobe, groun-
ded at the frontal position (Fpz), and sampled at
1200 Hz using a g.USBamp (g.tec, Austria) sys-
tem. Signals were online band-pass filtered from
1 to 100 Hz and notch filtered between 48 and
52 Hz to remove artifacts and power line inter-
ference. All electrode impedances were kept
below 5 kV during the experiments.

After placing the electrodes, the participants
were asked to view the screen binocularly and to
fixate on the center of the target stimulator
until the training started. We used Newton’s
ring as a stimulator, as described before [15].
Briefly, the phase of the Newton’s ring was
temporally sinusoidally shifted to generate the
motion reversal procedure, which included
alternating inward contraction and outward
expansion motions (Fig. 1C). After gazing at the
Newton’s ring for 1 s (which shifted at a specific
frequency), the SSMVEPs of the patients were

recorded. Each specific frequency signal was
assigned a movement task (e.g., starting to walk,
accelerated walking, stopping), and the training
robot moved correspondingly with the move-
ment task (Fig. 1D). We set different levels of
training tasks for each patient, so that they
could challenge themselves, step by step, with
different tasks, and to improve compliance and
patient interest (Fig. 1E). For example, in level 1,
the patients could start a training game with the
BCI system. In level 2, they manipulated run-
ning with left/right turn or accelerating, while,
in level 3, they could compete running with
obstacles. In the sham group, the EEG recording
system was placed, but it was not operational.
The patients also exercised on the training
robot while observing the avatar moving on a
screen which was not controlled by BCI system.
Besides training with the BCI-controlled robot,
conventional PT and medical treatments (e.g.,
management of high blood pressure) were also
provided to the participants. Patients in the BCI
and sham groups received 30 min of robot
training and 30 min of PT training once a day,
6 days a week, for a total of 4 weeks.

Motor-Evoked Potentials (MEPs)
Recording

MEPs (latency and maximal amplitude) were
recorded, as described in our previous study
[17]. Briefly, single pulse TMS (YIRUIDE Medical
Equipment, China) was applied over the affec-
ted hemisphere at 70–85% intensity of the
machine export threshold. The MEP latency
and maximal amplitude were calculated based
on five waves showing large amplitude and
good repeatability. MEP latency is defined as the
interval between the start of the single pulse
TMS on M1 and the initiation of the EMG
response (ms) in the contralateral target muscle.
MEP amplitude is defined as the peak-to-peak
amplitude (mV) in the EMG response of the
contralateral FDI. A TMS-elicited MEP was cat-
egorized as present or absent [18, 19].
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Blood Collection and Measurement
of BDNF Serum Levels

Blood samples were collected in EDTA-treated
tubes (BD, Franklin Lakes, NJ, USA) and imme-
diately frozen at - 20 �C. Within 3 days of col-
lection, samples were transferred to an ultra-low
temperature freezer. Serum BDNF concentra-
tions were measured by means of enzyme-
linked immunosorbent assay kits (Multi Sci-
ences, Catalog Nos. EK11272, lower detection
limit = 1.41 pg/mL), according to the manu-
facturer’s instructions.

Clinical Assessment

The primary outcomes were as follows:

(1) Loewenstein Occupational Therapy Cogni-
tive Assessment (LOTCA): LOTCA is an
accurate test for post-stroke patients with
cognitive impairment [20], measuring
areas such as orientation ability, visual

perception, spatial perception, praxis,
visuomotor organization, thinking opera-
tions, memory, attention, and absorption
[21, 22]. A higher value indicates better
cognition.

(2) Fugl-Meyer Assessment for Lower Extrem-
ity (FMA-LE): FMA is a performance-based,
stroke-specific test to evaluate motor func-
tion (upper and lower extremity), sensory
function, balance, joint motion range, and
joint pain [23]. In this study, we focused
mainly on FMA-LE and FMA-B (maximum
scores: 34 and 14, respectively).

The secondary outcomes were as follows:

(1) Functional Ambulation Category (FAC):
FAC was utilized to quickly assess the
ambulation ability of the patients. Cate-
gories range from 0 (patient cannot walk or
needs help from 2 or more persons) to 5
(patient can walk independently on
uneven surfaces, and safely climb stairs
and inclines) [24].

Fig. 2 CONSORT flow diagram for randomization of patients with subacute stroke
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Table 2 Treatment outcomes between groups

Treatment Mean (SD)
before treatment
(T0)

Mean (SD) after
treatment (T3)

Cohen’s
d (T0–T3)

P value Mean
difference
(95% CI)

Cohen’s
d (sham to BCI
at T3)

P value

Primary outcomes

LOCTA

Sham 57.07 (17.28) 71.93 (17.25) - 4.266 \0.001 - 14.86

(- 17.75 to

- 11.97)

BCI 55.79 (17.81) 82.64 (17.84) - 2.972 \0.001 - 26.86

(- 34.36 to

- 19.35)

- 0.580 0.049

FMA-LE

Sham 10.07 (6.83) 16.36 (7.63) - 3.178 \0.001 - 6.29 (- 7.75

to - 4.82)

BCI 10.43 (5.67) 18.21 (7.59) - 3.063 \0.001 - 7.79 (- 9.67

to - 5.90)

- 0.168 0.540

Secondary outcomes

FMA-B

Sham 4.07 (2.84) 8.50 (3.01) - 3.365 \0.001 - 4.43 (- 5.41

to - 3.45)

BCI 3.86 (2.68) 9.57 (3.03) - 3.396 \0.001 - 5.71 (- 6.96

to - 4.46)

- 0.252 0.363

FAC

(median

(IQR))

Sham 0.00 (1.00) 1.00 (2.00) NA \0.001 NA

BCI 0.00 (1.00) 2.00 (2.00) NA 0.001 NA NA 0.363

MBI

Sham 24.93 (13.97) 54.79 (18.30) - 1.778 \0.001 - 29.86

(- 43.80 to

- 15.91)

BCI 23.79 (14.29) 60.29 (13.69) - 2.563 \0.001 - 36.50

(- 48.33 to

- 24.67)

- 0.188 0.493

Serum BDNF concentrations

Sham 88.90 (19.88) 92.42 (21.00) - 0.242 0.381 - 3.51

(- 11.88 to

4.86)
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(2) Fugl-Meyer Assessment for Balance (FMA-
B)

(3) Modified Barthel Index (MBI): MBI is a
widely used and reliable index assessing
the activities of daily life [25], and includes
10 activities, such as dressing, bathing, and
toilet. The highest score is 100, which
indicates full independence.

(4) Serum BDNF levels.
(5) Neurophysiological parameters, including

MEP latency and amplitude.

Statistical Analysis

The statistical analyses were performed using
SPSS software (v.20.0; IBM, Chicago, IL, USA).
The effects of training with the BCI-controlled
robot on LOCTA, FMA, and MBI scores, as well

as on biochemical and neurophysiological
parameters, were analyzed by means of repeated
measures analysis of variance, with time as the
within-subjects factor and treatment as the
between-subjects factor. Bonferroni adjustment
was performed for post hoc analysis of multiple
comparisons. For FAC analysis, we performed
Friedman tests for within-group comparisons
and Mann–Whitney U tests for between-group
comparisons. If the Friedman test showed sta-
tistically significant differences, Wilcoxon mat-
ched-pairs tests were performed to compare
baseline with post-treatment (T0 with T1, T2, or
T3) values. A P value less than 0.05 was con-
sidered statistically significant. We calculated
Cohen’s d and g2 as measures of effect sizes. The
interpretation of Cohen’s d and g2 is described
in our previous paper [17]. Effect sizes were also
calculated for the mean differences (MD) of the

Table 2 continued

Treatment Mean (SD)
before treatment
(T0)

Mean (SD) after
treatment (T3)

Cohen’s
d (T0–T3)

P value Mean
difference
(95% CI)

Cohen’s
d (sham to BCI
at T3)

P value

BCI 90.14 (18.81) 106.09 (20.36) - 1.167 \0.001 - 15.95

(- 23.84 to

- 8.06)

- 0.661 0.092

MEP

latency

Sham 25.72 (3.22) 24.76 (3.09) 2.707 \0.001 0.97 (0.69 to

1.24)

BCI 25.52 (3.24) 24.31 (3.22) 1.160 0.013 1.21 (0.34 to

2.09)

0.141 0.776

Maximal MEP amplitude

Sham 333.22 (257.07) 371.78 (282.32) - 0.541 0.143 - 38.56

(- 93.32 to

16.21)

BCI 356.25 (285.08) 429.75 (243.08) - 0.704 0.087 - 73.50

(- 160.82 to

13.82)

- 0.219 0.659

SD standard deviation, CI confidence interval, LOTCA Loewenstein Occupational Therapy Cognitive Assessment, FMA-
LE Fugl-Meyer Assessment for Lower Extremity, FAC Functional Ambulation Category, FMA-B Fugl-Meyer Assessment
for Balance, MBI Modified Barthel Index, BDNF serum brain-derived neurotrophic factor, MEP Motor-evoked potential,
IQR interquartile range
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assessment after training with the BCI-con-
trolled robot or sham treatment.

RESULTS

The procedure was well tolerated, and no sig-
nificant adverse effects were reported in either
group. The two groups did not differ at baseline
level (T0) with respect to age, gender, lesion
side, diagnosis, or time since stroke. Three
patients discontinued the treatment while 28
patients completed the treatments. One patient
from the sham group had to abandon the study
due to deep vein thrombosis of the lower
extremity, while two other patients from the
BCI group dropped out because of consent or
dizziness. The remaining 28 patients [mean
(± SD) age: 53.1 (± 11.5) years; 25 men (89.3%)]
completed the 4-week trial (Fig. 2).

Primary Outcome

LOTCA
The within-subject effects in the BCI group were
significant (P\0.001, g2 = 0.854). The LOCTA
score started to increase in the 1st week of the
intervention [MD - 6.64 (95% CI - 9.24 to
- 4.04), Cohen’s d = - 2.124, P\0.001], and
was highest in the 4th week [MD, - 26.86 (95%

CI - 34.36 to - 19.35), Cohen’s d = - 2.972,
P\0.001]. Likewise, there were significant
within-subject effects in the sham group
(P\0.001, g2 = 0.890). The scores for the 1st
and 4th week were significantly higher than the
baseline score [MD - 2.64 (95% CI - 5.18 to
- 0.11), Cohen’s d = - 0.866, P = 0.039] [MD
- 14.86 (95% CI - 17.75 to - 11.97), Cohen’s
d = - 4.266, P\0.001]. The interaction
between time and intervention was significant
(P = 0.003, g2 = 0.418). The LOCTA scores
between the two groups were not significantly
different until the 4th week, when the scores in
the BCI group were 14.89% higher than in the
sham group [MD - 10.71 (95% CI - 21.38 to
- 0.052), Cohen’s d = 0.580, P = 0.049]
(Table 2; Fig. 3A).

FMA-LE
The interaction between time and intervention
was not significant (P = 0.363, g2 = 0.068).
Compared with the baseline FMA-LE scores
(before intervention), the scores in both the
sham and BCI groups increased significantly as
the treatment progressed, (P\0.001,
g2 = 0.810; P\0.001, g2 = 0.795). The highest
FMA-LE scores were observed in the 4th week
[MD - 6.29 (95% CI - 7.75 to - 4.82), Cohen’s
d = - 3.178, P\0.001; MD 7.79 (95% CI - 9.67
to - 5.90), Cohen’s d = - 3.063, P\0.001].

Fig. 3 Primary outcomes, including Loewenstein Occu-
pational Therapy Cognitive Assessment (LOTCA)
(A) and Fugl-Meyer Assessment for Lower Extremity
(FMA-LE) (B) mean scores showed significant improve-
ment of cognitive and motor function in both groups.
However, only the BCI group showed a significant

improvement in LOCTA scores in the 4th week of
treatment. Error bars indicate the standard deviation (SD).
Asterisks indicate significant pre-post differences (with
respect to T0) (*P\0.05). A pound sign (£) indicates a
significant difference when compared with the sham group
(#P\0.05)
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There were no significant differences between
the two groups at any time point, although the
effect size gradually increased (Cohen’s
d T1 = - 0.095, T2 = - 0.161, T3 = - 0.168).
(Table 2; Fig. 3B).

Secondary Outcomes

Clinical scores (FMA-B, FAC, and MBI) were
assessed at all four time points, Serum BDNF
levels and neurophysiological parameters were
measured or recorded before treatment (T0) and
on the 4th week (T3).

FMA-B
The interaction between time and intervention
was not significant (P = 0.192, g2 = 0.124). The
FMA-B scores were significantly higher com-
pared with baseline scores at T1 [MD - 1.29
(95% CI - 2.54 to - 0.04), Cohen’s d = - 0.764,
P = 0.041], T2 [MD - 3.00 (95% CI - 4.25 to
- 1.75), P\0.001, Cohen’s d = - 1.783], and
T3 [MD - 5.71 (95% CI - 6.96 to - 4.46),
P\0.001, Cohen’s d = - 3.396] in the BCI
group, while the scores in the sham group only
increased significantly at T2 [MD - 2.07 (95%
CI - 3.05 to - 1.09), Cohen’s d = - 1.574,
P\0.001] and T3 [MD - 4.43 (95% CI - 5.41 to
- 3.45), Cohen’s d = - 3.365, P\0.001]. There
were no significant differences between the two
groups at any of the three time points, although
the effect size gradually increased (Cohen’s
d T1 = - 0.060, T2 = - 0.174, T3 = - 0.252).
(Table 2; Fig. 4A).

FAC
The FAC scores were significantly higher com-
pared with baseline scores at T2 (P = 0.008) and
T3 (P = 0.001) in the BCI group. In contrast, in
the sham group, they increased significantly
only at T3 (P\0.001). There were no significant
differences between the two groups at any of
the three time points (PT1 = 0.784, PT2 = 0.771,
PT3 = 0.363). (Table 2; Fig. 4B).

MBI
The interaction between time and intervention
was not significant (P = 0.401, g2 = 0.065).
Compared with the baseline MBI scores, the

scores in both the sham and BCI groups
increased significantly as the treatment pro-
gressed (P\0.001, g2 = 0.712; P\0.001,
g2 = 0.843). The highest MBI scores were
observed on the 4th week [MD - 29.86 (95% CI
43.80 to - 15.91), Cohen’s d = - 1.778,
P\0.001; MD - 36.50 (95% CI - 48.33 to
- 24.67), Cohen’s d = - 2.563, P\0.001].
However, there were no significant differences
between the two groups at any time point
(PT1 = 0.811, PT2 = 0.441, PT3 = 0.493, Cohen’s
d T1 = - 0.065, T2 = - 0.212, T3 = - 0.188)
(Table 2; Fig. 4C).

Serum BDNF Levels

Serum BDNF levels were significantly higher in
the BCI group after 4 weeks of treatment [MD
- 15.95 (95% CI - 23.84 to - 8.06), Cohen’s
d = - 1.167, P\0.001]. In contrast, the differ-
ence was not significant in the sham group
(P = 0.381, Cohen’s d = 0.242). At the end of
the intervention, serum BDNF concentrations
in the BCI group (98.52 ± 20.12 pg/mL) were
higher than in the sham group
(92.42 ± 21.00 pg/mL), although not significant
(P = 0.092, Cohen’s d = - 0.661) (Table 2;
Fig. 4D).

Neurophysiological Parameters

MEP Latency
Both the sham and BCI groups showed a sig-
nificant reduction in latency after 4 weeks of
treatment [MD 0.97 (95% CI 0.69–1.24),
Cohen’s d = 2.707, P\0.001; MD - 1.21 (95%
CI 0.34–2.09), Cohen’s d = 1.160, P = 0.013,
respectively], with MEP latency reductions of
3.75% and 4.71%, respectively. However, at the
end of treatment, the latency values between
the two groups did not show any significant
difference (P = 0.776, Cohen’s d = 0.141)
(Table 2; Fig. 4E).

Maximal MEP Amplitude
After training, the maximal MEP amplitude
showed an increase in the BCI group [MD
- 73.50 (95% CI - 160.82 to 13.82), Cohen’s
d = - 0.704, P = 0.087] and in the sham group
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(P = 0.143, Cohen’s d = - 0.541), although
neither were significantly different. Compared
with the sham group, the maximal MEP
amplitude increased by 15.59% (P = 0.659,
Cohen’s d = - 0.219) in the BCI group (Table 2;
Fig. 4F).

DISCUSSION

Our study found that a 4-week training course
with the BCI-controlled robot significantly
increased LOCTA scores, and enhanced motor
function of the lower extremities. These chan-
ges were accompanied by increased secretion of
BDNF. This is the first report of an innovative
approach based on SSMVEPs and training with a
BCI-controlled robot which enables patients to
exercise actively in the early phase after a
stroke.

Although the rehabilitation of patients with
stroke is a challenging task for doctors, inter-
disciplinary approaches offer novel solutions,
and these include BCI-controlled devices
[26, 27]. BCI can be defined as a system which
translates the brain activity patterns (typically
measured by electroencephalography) into sig-
nals for interactive applications [28–30]. In this
study, we propose a method named as active
and passive co-stimulation, which could rebuild
the loop-locked motor nerve pathway. Visual
stimulation provides active stimulus to the
nerve of motion control by mirror neuron,
while the robot provides passive stimulus to the
nerve of motion perception. By analyzing the
EEG, the system could apperceive user’s motor
intention and use it to control the active and
passive co-stimulation, which was a part of
more complex BCI system involving motor
imagery practice [31]. In our previous study, we
utilized a special form of visual stimulation
involving non-direction-specific motion rever-
sals to elicit SSMVEPs for BCI applications
[15, 32]. This method can overcome problems
of visual fatigue caused by uncomfortable light
twinkling and contrast changes, as well as
adaptation effects. We proposed an EEG-driven
lower limb rehabilitation system for patients
with stroke. By analyzing the EEG, the system
can deduce the patient’s motor intentionality

and use that information to control the lower
limb rehabilitation robot. Based on the previous
study, the BCI-controlled robot training system
was built, with visual stimulation, acquisition,
EEG processing, and robot-assisted motion
components [16]. We set different levels of
training tasks for each patient, and, as the
training level difficulty increased, the cognitive
function requirements, such as memory and
attention, also increased step by step.

After a stroke, motor dysfunction is always
accompanied by cognitive impairment, which
seriously affects the activities of daily living
[21]. Many studies based on the principle of
neurofeedback therapy [33] have reported that
BCI-controlled systems can improve attention
and other cognitive abilities [34]. For example,
Lee et al. [35] developed games with a memory-
training component for the elderly population,
and showed that they improved attention and
memory. Kleih et al. [36] trained aphasic
patients with a P300-BCI speller communica-
tion system, and showed that it improved
aphasia recovery and neural plasticity by acti-
vating language circuits. In this study, we uti-
lized a specially designed BCI-controlled robot
training system for the rehabilitation of suba-
cute stroke patients, and the initial results are
encouraging. After 4 weeks of training, patients
in the BCI group showed better cognitive
function than the sham group, which is con-
sistent with Edelman’s report [37]. This result
also indicates that the gradual improvement in
cognitive function partly depends on the sum-
mative effects of training time, as reported by
Carelli et al. [38]. The cognitive function
assessment test used in this study was LOTCA,
which measures a wide range of basic cognitive
functions. Since our BCI training system
required intensive attention, visuomotor orga-
nization, and memory abilities, training of
these specific cognitive functions may be one of
the reasons for the improvement in LOCTA
scores [39].

Gait and balance impairments due to limb
deficits after a stroke are one of the main
determinants associated with poorer functional
recovery [40, 41]. Since the survival rates of
stroke patients have increased, developing more
effective treatments to improve walking is one
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of the major goals of stroke rehabilitation
[42, 43]. However, there is a lack of well-defined
rehabilitation protocols. Intelligent, motor-dri-
ven devices for rehabilitation, or so-called
rehabilitation robotics, represent an exciting
new frontier with considerable potential to
address these concerns. Several studies have
shown that intensive training protocols with
robotic devices combined with physical therapy
produce comparable gains in motor function
among acute or subacute stroke patients
[44, 45]. However, end-effector and exoskeletal
devices only provide passive training, and
patients cannot exercise spontaneously [46]. We
developed a BCI-controlled robot for lower limb
rehabilitation which allows subacute stroke
patients to actively train their lower limbs. Our
results demonstrated that FMA-LE scores in
both the sham and BCI groups increased sig-
nificantly with respect to baseline. However,
there were no significant differences between
the two groups at any time point, a result that is
not completely in line with previous studies. A
study of chronic stroke patients comparing
robot treatment with traditional treadmill
training in an intensive 4-week protocol repor-
ted an advantage of the robot treatment, with
significant improvements in gait speed, step
length, and balance [47]. However, in our study,
the results only appeared to be an enhancement
in motor functions with no significant differ-
ence. Several reasons may account for this dis-
crepancy, but the most important factors were
the relatively short duration of the intervention
and training time. We found that although
there were no statistically significant differences
between the two groups in the three time
points, the effect size between them increased
gradually, suggesting that significant differ-
ences would be seen with a longer training
course. We plan to investigate this possibility in
a future clinical trial.

BDNF is a neurotrophic factor with growth-
promoting and neuronal plasticity effects on
various neuronal populations after injury [9].
Several reports have demonstrated a relation-
ship between BDNF levels and cognitive func-
tion in clinical trials [48]. For example,
Miyamoto et al. [49] found that serum BDNF
levels increased significantly after cognitive

training, and Borror et al. [50] found that a
change in BDNF levels in stroke patients after
functional training was one of the key factors
associated with improved cognitive function.
Our results demonstrated that 4 weeks of train-
ing with a BCI-controlled robot significantly
increased serum BDNF levels, which suggest
that increasing levels of BDNF after training
with a BCI-robot may explain the cognitive
improvement in stroke patients.

MEP latency and amplitude are two impor-
tant indicators of neuronal damage and of the
relative integrity of the connecting pathways,
especially of the corticospinal tract [51]. In the
present study, we found significant pre-post
differences in MEP latencies in both groups and
a borderline significant difference in MEP
amplitude in the BCI group with respect to
baseline, and that these were positively corre-
lated with cognitive and motor functions.
However, MEP latency and amplitude were not
significantly different between the two groups,
and this was also consistent with the clinical
evaluation. Although MEP latency and ampli-
tude are two important parameters for evaluat-
ing neurophysiological changes [52], they do
not always change in parallel. Latency is per-
haps a more valuable parameter for evaluating
the status of the connecting pathway, since
MEP amplitude is more easily influenced by age,
the resting state of the muscle, etc. Interest-
ingly, although MEPs were not initially detected
in five patients from the sham group and in six
from the BCI group, we finally succeeded in
detecting them in three patients, suggesting
that functional recovery may occur earlier than
neurophysiological changes.

Our present study has several potential lim-
itations. First, the number of participants was
relatively small, which may increase the risk of
type-II errors. Second, limited by objective
conditions, the duration of the intervention
was relatively short, and this may influence the
motor function recovery results. The fact that
the effect size between the two groups increased
with the duration of the intervention suggests
that we may see significant differences with
more prolonged interventions. Finally, other
tests, such as functional magnetic resonance
imaging and functional near-infrared imaging,
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are needed to understand the mechanisms
underlying the beneficial effects of BCI training.

CONCLUSIONS

This is the first study of lower limb rehabilitation
in patients with subacute stroke using a
BCI-controlled robotic device and a Newton’s
ring to elicit SSMVEPs. We provide evidence
that training with a BCI-controlled robot,
combined with traditional PT, is an effective
strategy to promote cognitive recovery and that
it enhances motor function of the lower
extremities in stroke patients. These changes
were accompanied by increased secretion of
BDNF.
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