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ABSTRACT

Introduction: Stroke remains a leading cause of
death and disability worldwide. Effective and
prompt prognostic evaluation is vital for deter-
mining the appropriate management strategy.
Radiomics is an emerging noninvasive method
used to identify the quantitative imaging indi-
cators for predicting important clinical out-
comes. This study was conducted to investigate
and validate a radiomics nomogram for

predicting ischemic stroke prognosis using the
modified Rankin scale (mRS).
Methods: A total of 598 consecutive patients
with subacute infarction confirmed by diffu-
sion-weighted imaging (DWI), from January
2018 to December 2019, were retrospectively
assessed. They were assigned to the good
(mRS B 2) and poor (mRS[2) functional out-
come groups, respectively. Then, 399 patients
examined by MR scanner 1 and 199 patients
scanned by MR scanner 2 were assigned to the
training and validation cohorts, respectively.
Infarction lesions underwent manual segmen-
tation on DWI, extracting 402 radiomic fea-
tures. A radiomics nomogram encompassing
patient characteristics and the radiomics signa-
ture was built using a multivariate logistic
regression model. The performance of the
nomogram was evaluated in the training and
validation cohorts. Ultimately, decision curve
analysis was implemented to assess the clinical
value of the nomogram. The performance of
infarction lesion volume was also evaluated
using univariate analysis.
Results: Stroke lesion volume showed moder-
ate performance, with an area under the curve
(AUC) of 0.678. The radiomics signature,
including 11 radiomics features, exhibited good
prediction performance. The radiomics nomo-
gram, encompassing clinical characteristics
(age, hemorrhage, and 24 h National Institutes
of Health Stroke Scale score) and the radiomics
signature, presented good discriminatory
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potential in the training cohort [AUC = 0.80;
95% confidence interval (CI) 0.75–0.86], which
was validated in the validation cohort (AUC =
0.73; 95% CI 0.63–0.82). In addition, it
demonstrated good calibration in the training
(p = 0.55) and validation (p = 0.21) cohorts.
Decision curve analysis confirmed the clinical
value of this nomogram.
Conclusion: This novel noninvasive clinical-
radiomics nomogram shows good performance
in predicting ischemic stroke prognosis.

Keywords: Stroke; Radiomics; Nomogram;
Magnetic resonance imaging; Diffusion-
weighted imaging

Key Summary Points

Computed tomography (CT) and
magnetic resonance imaging (MRI) play
an important role in the early
identification of ischemic stroke;
however, the capability in predicting
functional outcome is limited.

Converting medical images into high-
throughput quantitative features,
radiomics, has been applied in the
prediction of clinical outcomes.

The novel noninvasive clinical-radiomics
nomogram encompassing patient
characteristics and the radiomics
signature shows good performance in
predicting ischemic stroke prognosis.

DIGITAL FEATURES

This article is published with digital features,
including a summary slide, to facilitate under-
standing of the article. To view digital features
for this article go to https://doi.org/10.6084/
m9.figshare.14749182.

INTRODUCTION

Stroke is a leading cause of mortality and dis-
ability worldwide, accounting for almost 5.5
million deaths and 116.4 million disability-ad-
justed life-years in 2016 according to the global
burden of disease statistics, and now almost 6.5
million deaths per year [1–3]. In East Asia (e.g.,
Japan and China), the mortality rates for stroke
are higher than those reported in Western
nations such as the United Kingdom and the
United States, representing the top cause of
death in China [4]. Approximately 80% of
stroke cases are attributed to ischemic stroke
[5, 6], which is characterized by sudden ische-
mia to some brain regions, leading to irre-
versible cerebral injury occurring within a few
minutes after the loss of blood circulation [7]. It
is desirable to improve the prediction of clinical
prognosis for information management strate-
gies in ischemic stroke.

Conventionally, early identification of
ischemic stroke is carried out by computed
tomography (CT) and magnetic resonance
imaging (MRI). CT has the advantage of
detecting mass lesions and acute hemorrhage,
while MRI provides superior soft tissue contrast
for lesion identification as well as additional
tissue information such as cellularity, vascular-
ity, and microstructure complexity, with speci-
fic MRI sequences [8–10]. For instance, the
apparent diffusion coefficient (ADC) yielded by
diffusion-weighted imaging (DWI) can accu-
rately describe the diffusion characteristics of
the tissue. A recent study revealed that the ADC
of the infarct lesion is significantly associated
with patient prognosis in early subacute
ischemic stroke [11]. In the latter study, the
investigators only evaluated infarct lesions in
the middle cerebral artery. Additionally, the
ADC represents the mean value of the region of
interest instead of reflecting the heterogeneity
of infarcts. The CT perfusion–DWI mismatch
has been used as a simple metric that offers the
potential of a timely intervention, although
penumbral patterns inaccurately predict the
clinical outcome [12].

Radiomics can convert medical images into
high-throughput quantitative features, and has
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been applied in the prediction of clinical out-
comes [13–15]. A previous study [8] focusing on
radiomics feature selection demonstrated that
radiomics signatures show better efficacy than
models without image feature selection. How-
ever, the study’s sample size was small, with
only 70 patients. Another recent study [16]
including 146 patients proposed a penumbra-
based radiomics signature, which was helpful
for predicting patient prognosis in acute
ischemic stroke. Each patient underwent DWI
and perfusion-weighted imaging (PWI) in the
latter study. However, most ischemic stroke
patients underwent only DWI instead of PWI.
Thus, the objective of this study was to inves-
tigate the value of DWI-based radiomics for
prognosis prediction in ischemic stroke, and to
create an approach that could be used in man-
agement strategies for ischemic stroke. Mean-
while, an external cohort (data from MR
scanner 2) was assessed to validate the perfor-
mance of the novel nomogram.

METHODS

Study Population

The current diagnostic study had approval from
the Institutional Ethics Committee of our hos-
pital (approval number: 2021-008-01 K). Each
patient provided written informed consent
before MRI examinations. The study was per-
formed in accordance with the 1964 Declara-
tion of Helsinki and its later amendments. From
January 2018 to December 2019, a cohort of 598
patients diagnosed with ischemic stroke in our
institution were included in this study. The
participants had no previous infarction, and
could live independently before the infarction.
DWI scans were acquired within 24 h following
stroke onset. Cases with previous cerebral
hemorrhage, brain trauma, previous neurologi-
cal disorder, and severe MRI artifacts were
excluded.

We recorded the demographic and clinical
data of all participants, i.e., age, sex, blood
pressure, blood sugar, hemorrhage, baseline
National Institutes of Health Stroke Scale
(NIHSS) score (NIHSSbaseline), NIHSS score at

24 h post-admission (NIHSS24h), and the modi-
fied Rankin scale (mRS) score at 90 days.
Regarding functional outcomes, the individuals
were assigned to the good (mRS score B 2) and
poor (mRS score[ 2) outcome groups [17, 18].

MRI Acquisition

A total of 399 cases were acquired on scanner 1
(EXCITE HD 1.5 T MRI; GE Healthcare, Mil-
waukee, WI, USA) comprising a 16-channel
head/neck coil; the remaining 199 patients were
acquired on scanner 2 (uMR780 3.0 T MRI;
United Imaging Healthcare, Shanghai, China)
equipped with a 24-channel head/neck coil.

Scan parameters for scanner 1 were as fol-
lows: (1) axial fast spin-echo (FSE) T1-weighted
imaging (T1WI), with repetition time/echo time
(TR/TE) = 2259 ms/25.4 ms, slice thick-
ness/gap = 5 mm/1.5 mm, a field of view (FOV)
of 240 9 240 mm2, and a matrix of 256 9 192;
(2) axial FSE T2WI, with TR/TE = 5582 ms/
111 ms, slice thickness/gap = 5 mm/1.5 mm, a
FOV of 240 9 240 mm2, and a matrix of
256 9 192; (3) axial T2-fluid-attenuated inver-
sion recovery (FLAIR) sequence, with TR/
TE = 8589 ms/88.8 ms, slice thick-
ness/gap = 5 mm/1.5 mm, a FOV of 240 9 240
mm2, and a matrix of 256 9 192; (4) axial DWI
based on single-shot echo planar imaging
(SSEPI) sequence, with TR/TE = 3203 ms/
83.9 ms, slice thickness/gap = 5 mm/1.5 mm, a
FOV of 240 9 240 mm2, b values of 0 and
1000 s/mm2, and a matrix of 96 9 96.

The scan parameters for scanner 2 were as
follows: (1) axial FSE T1WI, with TR/
TE = 2048 ms/11.96 ms, slice thick-
ness/gap = 5 mm/1.5 mm, a FOV of 230 9 200
mm2, and a matrix of 288 9 192; (2) axial FSE
T2WI, with TR/TE = 4107 ms/88.2 ms, slice
thickness/gap = 5 mm/1.5 mm, a FOV of
230 9 200 mm2, and a matrix of 288 9 192; (3)
axial T2- FLAIR sequence, with TR/
TE = 7500 ms/96.66 ms, slice thick-
ness/gap = 5 mm/1.5 mm, a FOV of 230 9 190
mm2, and a matrix of 288 9 192; (4) axial DWI
based on SSEPI sequence, with TR/
TE = 2800 ms/75.4 ms, slice thick-
ness/gap = 5 mm/1.5 mm, a FOV of 230 9 220
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mm2, b values of 0 and 1000 s/mm2, and a
matrix of 128 9 128.

Segmentation of Infarction Lesions

Infarction lesions were manually segmented
with ITK-SNAP (http://www.itk-snap.org). The
3D volume of interest (VOI) of each infarct
lesion was delineated by slice-by-slice stacking
of DWI images by two neuroradiologists (Y. S.
and H. W.) with 6 and 12 years of experience,
respectively. In case of disagreement, both
neuroradiologists reached a consensus after an
additional reading session.

The intra-observer and interobserver repro-
ducibility of lesion segmentation were evalu-
ated by determining the intraclass correlation
coefficients (ICCs) of the extracted radiomic
features in 30 randomly selected cases. Neuro-
radiologist S manually sketched the VOIs twice
within 2 months, and intra-observer ICCs were
evaluated for the extracted radiomics features.
Neuroradiologist W sketched the VOIs once,
and the extracted radiomics features were fur-
ther used to assess interobserver ICCs. ICCs[
0.75 indicated good consistency, and radiolo-
gist S completed the remaining segmentation.

Feature Extraction

Using the noncommercial Analysis-Kit software
(GE Healthcare, China), images from scanners 1
and 2 were normalized by z-score transforma-
tion to transform the data into a standard
intensity range with mean and standard devia-
tion of 0 and 1, respectively. Then, 402 features
were extracted, including 42 histogram features,
11 Gy-level size zone matrix (GLSZM) parame-
ters, 15 form factor indexes, 154 Gy-level co-
occurrence matrix (GLCM) parameters, and 180
run length matrix (RLM) indexes.

Oversampling of the Minority Group

The synthetic minority oversampling technique
(SMOTE) was utilized for minority sample gen-
eration from joint weighting of optimal features
to address the adverse impact of the unbalanced
training cohort [19]. Finally, the synthetic

samples improved the unbalanced training
cohort by offering values that were comparable
to current cases instead of simple replications.

Feature Selection and Development
of the Radiomics Nomogram

First, minimum redundancy and maximum
(mRMR) correlation analysis was implemented
for feature selection. Then, the least absolute
shrinkage and selection operator algorithm
(LASSO) was utilized for selecting optimal fea-
ture subsets based on ten-fold cross-validation.
Features with nonzero coefficients were
retained, and a radiomics signature was con-
structed using the training data set. Radiomics
score calculation used a linear combination of
select parameters weighted by the associated
LASSO coefficients. The area under the receiver
operating characteristic (ROC) curve (AUC) was
determined for evaluating the predictive per-
formance of the radiomics signature in both the
training and validation cohorts.

Discriminative features between the two
groups were selected by univariate logistic
regression analysis (p\0.05); then, a clinical
model was constructed with these discrimina-
tive features by multivariate logistic regression,
using backward stepwise selection. In the pro-
cess of multivariate logistic regression, the
likelihood ratio test with Akaike’s information
criterion was utilized as the stopping rule.
Collinearity was assessed via the variance infla-
tion factor (VIF), and features with VIF val-
ues[ 10 were excluded. Finally, the clinical
model and radiomics score were combined to
establish a radiomics nomogram.

Radiomics Nomogram Validation

ROC analysis was carried out for evaluating the
nomogram’s performance in the training and
validation cohorts. A calibration curve was
implemented to assess the calibration of the
radiomics nomogram. Finally, the net benefit
(difference between the true-positive and
weighted false-positive rates) for multiple
threshold probabilities obtained by decision
curve analysis (DCA) was utilized for assessing
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the radiomics nomogram for its clinical value in
the validation cohort. In the decision curve, the
net benefit was plotted against the threshold
probability.

Statistical Analysis

R v3.5.1 (http://www.Rproject.org) was
employed for data analysis. For the comparison
of clinical features, the chi-square or Fisher’s
exact test was applied. The Wilcoxon test was
carried out for between-group comparisons of
radiomics scores. The mRMR algorithm in the
‘‘mRMRe’’ package was used to filter the radio-
mic features with high relevance and no
redundancy. LASSO logistic regression in the
‘‘Glmnet’’ package was carried out to select the
most optimal feature subsets and construct the
radiomics model. ROC curves were plotted by
using the ‘‘pROC’’ package. DCA curve genera-
tion utilized the ‘‘dca.R’’ package. Calibration
curves were plotted with the ‘‘ModeGood’’
package. The Hosmer–Lemeshow test was used
for assessing nomogram calibration. The
Delong test was carried out for assessing differ-
ences in AUCs in various models. All tests with
p\0.05 were deemed statistically significant.

RESULTS

Clinicodemographic Features

Figure 1 depicts the study flowchart. The
baseline data of the enrolled cases in both
training and validation cohorts are summa-
rized in Table 1. We also investigated the
differences in baseline features between the
good and poor functional outcome groups in
both training and validation cohorts. Marked
differences were found in age, infarct volume,
NIHSSbaseline, NIHSS24h, and hemorrhage (all
p\0.05).

Logistic Regression Findings

Variables including age, sex, infarct volume,
NIHSSbaseline, NIHSS24h, and hemorrhage pre-
sented significant differences (p\0.05) in uni-
variate logistic regression analysis (Table 2). In
multivariate logistic regression, variables such
as age, NIHSS24h, hemorrhage, and radiomics
score showed significant differences.

Fig. 1 Pipeline of radiomics analysis of ischemic stroke on diffusion-weighted imaging
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Performance of the Radiomics Signature
in Predicting Clinical Functional
Outcomes in Ischemic Stroke

Infarct volume showed average performance
with an AUC of 0.678 in distinguishing good
and poor clinical functional outcomes in
ischemic stroke (Fig. 2). Eleven radiomics
parameters (supplementary material lists the
implication of the 11 radiomics features)
showing nonzero coefficients were finally
obtained in the training cohort (Fig. 3a–c). Fig-
ure 3d shows the comparisons of radiomics

scores between these two groups in both train-
ing and validation sets. Patients with poor out-
come generally had higher radiomics scores
than those with good outcomes. The Wilcoxon
test showed that radiomics scores differed sig-
nificantly between the good and poor outcome
groups [-0.65 (-1.25, -0.03) vs. 0.10 (-0.42,
0.52); p\0.005] in the validation set. The novel
radiomics signature also performed well in dis-
tinguishing good and poor clinical functional
outcomes with an AUC of 0.69 (0.59–0.78) in
the validation set.

Table 2 Univariate and multivariate regression findings

Variable Univariate logistic regression Multivariate logistic regression

OR (95% CI) p OR (95% CI) p

Age 1.05 (1.02–1.08) \ 0.001 1.05 (1.02–1.08) \ 0.001

Sex 2.08 (1.22–3.54) 0.007 – –

Infarct volume 1.01 (1.005–1.018) 0.0004 – –

NIHSSbaseline 1.16 (1.06–1.27) 0.001 – –

NIHSS24h 1.18 (1.1–1.27) \ 0.001 0.15 (0.23–0.82) 0.03

Hemorrhage 0.14 (0.28–0.67) 0.012 3.66 (2.34–6.36) \ 0.001

CI confidence interval

Fig. 2 Performance of infarct volume in predicting clinical functional outcomes of ischemic stroke
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Clinical Predictive Model and Radiomics
Nomogram Building

According to the above multivariate logistic
regression results, a clinical model was con-
structed. The radiomics signature and clinical
characteristics were independent risk factors for
clinical functional outcome. The radiomics sig-
nature and patient characteristics, including
age, hemorrhage, and NIHSS24h, were utilized
for radiomics nomogram construction (Fig. 4a).
Figure 4b and c shows calibration curves for the
nomogram in the training and validation sets,
respectively. A nonsignificant Hos-
mer–Lemeshow test (p = 0.55) indicated favor-
able calibration in the training data set. ROC
analysis showed that the nomogram performed
well in distinctly predicting good and poor
clinical functional outcomes [Fig. 5a; AUC =
0.80, 95% confidence interval (CI) 0.75–0.86].
The good calibration and discrimination prop-
erties of the radiomics nomogram were

confirmed in the validation cohort, also with a
nonsignificant Hosmer–Lemeshow test (Fig. 4c;
p = 0.21) and an AUC of 0.73 (Fig. 5b; 0.73, 95%
CI 0.63–0.82). Table 3 lists the accuracies, sen-
sitivities, specificities, and positive (PPV) and
negative (NPV) predictive values of the radio-
mics signature, clinical model, and radiomics
nomogram. The combined model showed a
higher prediction value than the radiomics sig-
nature and clinical model. The DCA for the
radiomics nomogram is shown in Fig. 6. This
shows that the radiomics nomogram is superior
to the clinical model regarding ‘‘treat all’’ vs.
‘‘treat one’’ strategies when the threshold prob-
ability is within the 0.05–0.65 range.

DISCUSSION

Following ischemic stroke, patients show mul-
tiple neurological complications and physical
symptoms. Effective and prompt diagnosis

Fig. 3 Selection of radiomics features using LASSO logistic
regression and the predictive accuracy of the radiomics
signature. a Selection of the tuning parameter (k) in the
LASSO model via tenfold cross-validation based on

minimum criteria. b The coefficients have been plotted vs.
log(k). c The final retained features with nonzero coefficients.
d Radiomics score distribution in the training and validation
cohorts; the optimum cutoff value was -0.41
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would help not only in the subacute manage-
ment of ischemic stroke but also in prognostic
evaluation. This study demonstrated that the
novel radiomics nomogram including the
radiomics signature and patient features had
good performance in predicting clinical func-
tional outcome in ischemic stroke patients.
These results are promising for a noninvasive

method for assessing the prognosis of ischemic
stroke individuals. This is one of the few radio-
mics-based studies focusing on clinical func-
tional outcome in ischemic stroke cases. In
addition, the sample size was moderate, and
598 ischemic stroke patients were included in
the final study, with 399 and 199 patients in the
training and validation cohorts, respectively.

Fig. 4 Radiomics nomogram for predicting the clinical functional outcome of ischemic stroke. a Calibration curve of the
nomogram b training cohort, c validation cohort

Neurol Ther (2021) 10:819–832 827



Furthermore, we used data from the first MRI
scanner (1.5 T, GE Healthcare) to train the pre-
dictive model and data from another MRI
scanner in the same stroke center (3.0 T, United
Imaging Healthcare) to validate the predictive
model’s performance. Therefore, the repro-
ducibility and applicability of this study indi-
cate the feasibility of DWI-based radiomics in
predicting the clinical functional prognosis of
ischemic stroke patients.

Changes in ADC derived from DWI related to
functional outcome in ischemic stroke have
been reported in several studies [20, 21]. Pereira
et al. reported that the ADC value was nega-
tively correlated with the mRS score in basilar
artery occlusion [22]. A measurement of the
freedom of water diffusion, ADC is decreased in
cerebral ischemia due to the shift in water from
external to internal compartments of the cell
[23]. Furthermore, Budde et al. proposed that

Fig. 5 Receiver operating characteristic curves based on the clinical characteristics, radiomics signature, or radiomics
nomogram

Table 3 Performance of the predicative model

Cohort Accuracy (95% CI) Sensitivity Specificity Pos. pred. valuea Neg. pred. valueb

Radiomics signature Training 0.63 (0.58–0.67) 0.30 0.95 0.84 0.61

Testing 0.74 (0.68–0.80) 0.42 0.90 0.61 0.80

Clinical model Training 0.68 (0.64–0.73) 0.32 0.94 0.78 0.67

Testing 0.68 (0.61–0.75) 0.33 0.90 0.66 0.69

Radiomics nomogram Training 0.65 (0.60–0.70) 0.60 0.78 0.93 0.68

Testing 0.76 (0.70–0.82) 0.78 0.61 0.89 0.79

a Positive predictive value
b Negative predictive value
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focal enlargement and constriction in
axons/dendrites result in markedly reduced
ADC [24]. However, the precise pathological
mechanism of ADC alterations remains unclear.
Moreover, a study showed that core infarct
volume is correlated with clinical functional
outcome [25]. We also investigated the predic-
tive performance of infarct volume but
obtained moderate performance, with an AUC
of 0.678. In a recent study using MRI fluid-at-
tenuated inversion recovery (FLAIR) vascular
hyperintensity (FVH) in predicting clinical
outcome, the good functional outcome group
had a higher FVH [26]. In another study that
explored resting-state functional connectivity
MRI and outcome after acute stroke, patients
with good outcome had greater functional
connectivity than patients with poor outcome
[27]. The two studies evaluated the performance
in predicting clinical functional outcome using
new methods. However, the two small sample

studies only included 37 cases; our study
showed higher diagnostic efficiency including
598 participants.

Radiomics transforms medical images into
quantitative indexes through high-throughput
extraction by data-assessment algorithms for
predicting important clinical outcomes [13, 28].
However, there are few published reports
applying radiomics to explore the functional
outcomes of ischemic stroke cases, leaving a gap
in knowledge. A previous study reported that
DWI could identify lesions with a probability of
90% within the first 3 h of symptom onset [29].
Therefore, VOIs were delineated on DWI images
in this study. The current work revealed that
DWI–based radiomics had AUCs of 0.70 and
0.69 in the training and validation cohorts,
respectively.

It is difficult to estimate clinical outcomes
only by considering the radiomics features of
the lesions. Multiple factors could be correlated

Fig. 6 Decision curve analysis for the radiomics nomogram
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with clinical prognosis besides the characteris-
tics of the lesion itself. Macciocchi et al. assessed
ischemic stroke systematically over 3 months,
and concluded that characteristics such as age,
prior stroke, initial neurological deficit, and
lesion location are highly correlated with func-
tional outcome [30]. Additionally, a recent
study demonstrated that enhanced genetic
imbalance after ischemic stroke is correlated
with worse functional outcomes [31]. The cur-
rent results were consistent with these previous
studies, demonstrating that radiomics score,
hemorrhage, age, and NIHSS24h were indepen-
dent indicators of clinical outcome in ischemic
stroke patients. Combining these independent
risk factors, a novel radiomics nomogram was
generated, as shown above. The developed
nomogram had good predictive value, with
AUCs of 0.80 and 0.73 in the training and val-
idation sets, respectively.

There were several limitations in this study.
First, potential selection bias was inevitable in
this retrospective analysis. Secondly, the enrol-
led patients came from a single stroke center.
Nevertheless, data from one scanner were uti-
lized to train the predictive model, and another
scanner provided data for model validation,
reducing overfitting of the predictive model.
Thirdly, we did not consider infarct location
(anterior and posterior circulation, lacunar,
cortical, and massive cerebral) or size. However,
the infarct volume was evaluated in this study,
which showed average performance. Fourthly,
we found that the radiomics signature and
clinical variables had high specificity and low
sensitivity, which may be attributed to the fact
that most patients had good functional out-
come (mRS B 2, 494/598, 82.6%). However, the
radiomics nomogram showed better perfor-
mance. These encouraging results warrant fur-
ther multicenter trials applying noninvasive
imaging features for predicting clinical func-
tional outcomes in ischemic stroke.

CONCLUSIONS

In conclusion, this study provides new insights
into prognosis prediction in ischemic stroke.
The above results indicate that a radiomics

nomogram incorporating the radiomics signa-
ture and clinical characteristics can accurately
predict clinical functional outcomes in
ischemic stroke patients.
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