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ABSTRACT

Precise stereotactic targeting of the dorsolateral
motor part of the subthalamic nucleus (STN) is
paramount for maximizing clinical effective-
ness and preventing side effects of deep brain
stimulation (DBS) in patients with advanced
Parkinson’s disease. With recent developments
in magnetic resonance imaging (MRI) tech-
niques, direct targeting of the dorsolateral part
of the STN is now feasible, together with visu-
alization of the motor fibers in the nearby
internal capsule. However, clinically relevant
discrepancies were reported when comparing
STN borders on MRI to electrophysiological STN
borders during microelectrode recordings
(MER). Also, one should take into account the
possibility of a 3D inaccuracy of up to 2 mm of
the applied stereotactic technique. Pneumo-
cephalus and image fusion errors may further

increase implantation inaccuracy. Even when
implantation has been successful, suboptimal
lead anchoring on the skull may cause lead
migration during follow-up. Meticulous pre-
and intraoperative imaging is therefore indis-
pensable, and so is postoperative imaging when
the effects of DBS deteriorate during follow-up.
Thus far, most DBS centers employ MRI target-
ing, multichannel MER, and awake test stimu-
lation in STN surgery, but randomized trials
comparing surgery under local versus general
anesthesia and additional studies comparing
MER-STN borders to high-field MRI-STN may
change this clinical practice. Further develop-
ments in imaging protocols and improvements
in image fusion processes are needed to opti-
mize placement of DBS leads in the dorsolateral
motor part of the STN in Parkinson’s disease.
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Key Summary Points

Precise targeting of deep brain stimulation
(DBS) leads to the dorsolateral motor part
of the subthalamic nucleus (STN) is
paramount for maximizing clinical
effectiveness in Parkinson’s disease.

With recent 3- and 7-Tesla MRI,
developments such as precise targeting
now seems feasible, but several procedural
factors negatively influence surgical
outcome.

3D inaccuracy of up to 2 mm of the
applied stereotactic technique,
pneumocephalus, CT/MRI fusion errors,
and suboptimal lead anchoring
compromise accurate implantation.

To account for these inaccuracies most
DBS centers employ, besides MRI
targeting, intraoperative
electrophysiological confirmation of STN
borders and awake test stimulation.

Future studies comparing
electrophysiological STN borders to MRI-
STN borders and further improvements in
image fusion are needed to optimize
placement of DBS leads in the motor part
of the STN.

DIGITAL FEATURES

This article is published with digital features,
including a summary slide, to facilitate under-
standing of the article. To view digital features
for this article go to https://doi.org/10.6084/
m9.figshare.13615103.

INTRODUCTION

Deep brain stimulation (DBS) of the subthala-
mic nucleus (STN) is a highly effective treat-
ment for patients with advanced Parkinson’s

disease [1, 2]. Precise stereotactic targeting of
the dorsolateral motor part of the STN is para-
mount for maximizing clinical effectiveness
and preventing side effects [2]. Ideally, the DBS
lead should be implanted in the motor area of
the STN in such a manner that co-stimulation of
the limbic and associative areas of the STN or
motor fibers in the nearby internal capsule is
minimized (Fig. 1). In daily clinical practice,
however, procedural factors influence this ideal
targeting strategy. In this review, we describe
several of these factors together with recent
developments that may improve STN targeting
during DBS surgery. This article is based on
previously conducted studies and does not
contain any new studies with human partici-
pants or animals performed by any of the
authors.

MAGNETIC RESONANCE IMAGING
(MRI) OF THE STN

Before the MRI era, localization of the STN was
performed indirectly, on the basis of an aver-
aged distance from an internal reference that
was visualized on a stereotactically acquired
ventriculography [3]. The most commonly used
reference was the line between the anterior and

Fig. 1 Coronal representation of the motor, associative,
and limbic subdivisions of the human STN. A four-
contact DBS lead is positioned to cover the dorsolateral
motor part of the STN, at a safe distance from the limbic
STN and internal capsule fibers
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posterior commissures (the AC–PC line). Stan-
dard human brain atlases were used to deter-
mine the position of the subthalamic nucleus,
relative to the AC–PC midpoint, in each direc-
tion of a Cartesian coordinate system superim-
posed on the brain by a stereotactic frame. In
1995, Benabid was the first to target the STN
using direct visualization on a T2-weighted 1.5-
T (Tesla) MRI [4]. In recent years, new MRI
sequences such as susceptibility-weighted
imaging (SWI) have been introduced and mag-
netic field strengths have increased up to 7 T, all
leading to improved STN visualization [5, 6]. On
coronal 7-T T2-weighted imaging, the STN can
be distuingished from surrounding white mat-
ter and the more ventrally located substantia
nigra pars reticulata (SNr) (Fig. 2). Direct tar-
geting of the dorsolateral part of the STN on

MRI is now feasible, together with visualization
of the motor fibers in the nearby internal cap-
sule through the use of diffusion tensor imaging
(DTI) (Fig. 3).

Notwithstanding these promising develop-
ments, one should keep in mind that STN
visualization on MRI in fact represents delin-
eation of an iron-dense structure that is thought
to overlap with the electrophysiological STN.
But how perfect is this overlap? To address this
issue, we and others compared STN representa-
tion on MRI with the location of the electro-
physiological STN as determined by
microelectrode recordings (MER) during DBS
surgery (see also Sect. ‘‘Microelectrode Record-
ings’’). At the calculated stereotactic target
depth, the percentage of microelectrodes mea-
suring typical STN activity that were located

Fig. 2 Axial (upper) and coronal (lower) midbrain
sections used for target planning during DBS of the
STN on 4 different MRI sequences. On coronal 7-T T2-
weighted MRI (7.0-T T2, lower right panel), the STN can

be distinguished from surrounding white matter and the
more ventrally located substantia nigra pars reticulata
(SNr). SWI susceptibility-weighted imaging

Fig. 3 Axial (left) and coronal (right) midbrain section used for target planning during DBS of the STN on 3.0-T T2-
weighted MRI, with superimposed diffusion tensor imaging (yellow) of the motor fibers in the internal capsule
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inside STN contour representation on MRI was
very high for 1.5-T T2 (99%) and 3-T T2 (100%).
But for 1.5-T SWI, one out of five microelec-
trodes measuring STN activity were located
outside, mostly lateral of the STN contour [5].
SWI thus does not correctly display the lateral
part of the STN in all patients, and SWI-based
STN targeting may carry the risk of targeting the
STN too medially (i.e., limbic/associative STN).
Discrepancies are also found when comparing
dorsal/ventral STN borders on MRI to electro-
physiological STN. Employing 3-T T2 and SWI,
Bus et al. showed that MER-STN started and
ended more dorsally than respective dorsal and
ventral MRI-STN borders [7]. The largest differ-
ence for the dorsal border was found using SWI
(on average 2.5 mm). Bot et al. used 7-T T2 to
show that MER-STN started more ventrally than
the dorsal MRI-STN border, on average 0.9 mm
[6]. Whether 3-T T2/SWI and 7-T T2 truly gen-
erate opposite results when comparing dorsal
MER-STN to dorsal MRI-STN borders remains to
be further studied, but it is clear from these
findings that STN representation on MRI pro-
vides an indication but not an exact represen-
tation of the electrophysiological STN
boundaries. Thus, relying solely on MRI for DBS
lead placement could potentially lead to miss-
ing the electrophysiological dorsolateral STN.

ACCURACY OF THE STEREOTACTIC
TECHNIQUE

For more than 70 years, stereotactic procedures
are performed with head-mounted stereotactic
frames. It provides a stable platform and offers a
high degree of accuracy. However, application
inaccuracies do occur. The total error, usually
expressed as the 3D (euclidean) distance
between the stereotactic (x, y, and z) coordi-
nates of the tip of the DBS lead and those of the
intended target, comprises errors associated
with each procedural step, including imaging,
target selection, vector calculations, and the
mechanical errors of the applied stereotactic
technique. In 1994, Maciunas et al. reported on
more than 21,500 independent accuracy test
measurements of a test phantom made with
11,000 computed tomography (CT) images and

employing four commonly used stereotactic
devices: the Brown–Roberts–Wells (BRW) frame,
the Cosman–Roberts–Wells (CRW) frame, the
Kelly–Goers Compass frame, and the Leksell
frame (Table 1) [8]. In recent years, several
groups have reported on inaccuracies during
DBS procedures, including groups employing
frameless systems and robot-assisted procedures
(Table 1) [9–21]. On the basis of these results,
one should take into account the possibility of a
3D inaccuracy of up to 2 mm of the applied
stereotactic technique when targeting the dor-
solateral STN, underlining the need for intra-
operative imaging to verify lead localization.

INTRAOPERATIVE BRAIN SHIFT

An underlying assumption of stereotactic neu-
rosurgery is that anatomic structures do not
move between preoperative image acquisition
and surgery, during surgery, and postopera-
tively. Cerebrospinal fluid (CSF) loss and sub-
dural air invasion, however, may cause shift of
cortical and deeply located brain structures.
Several studies reported on pneumocephalus-
induced posterior displacement of the AC and
nearby structures such as the STN, in some cases
up to 4 mm [22, 23]. Moreover, the effects of
intracranial air may compromise stereotactic
accuracy especially on the second side [24]. In
addition to the effects of pneumocephalus on
intraoperative localization of the STN, it may
also affect follow-up: while the pneumo-
cephalus resolves the brain returns to its origi-
nal position, thereby potentially displacing DBS
leads (Fig. 4). We showed in previous work that
DBS leads are prone to anterior bending and
concomitant upward displacement along the
trajectory of (on average) 3 mm during long-
term follow-up, with the amount of displace-
ment correlating with the amount of pneumo-
cephalus [25]. Such lead displacement may
influence the choice of active contact on the
DBS lead and settings of the DBS parameters
during the first weeks/months of follow-up. To
prevent pneumocephalus, CSF loss and subdu-
ral air invasion should be minimized by plan-
ning burr holes on top of a gyrus so that brain
tissue is expected to pack the burr hole from
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inside during DBS surgery, and by closing burr
holes with fibrin glue or bone wax after intro-
duction of the microelectrode(s)/macroelec-
trode. The preferred position of the patient
during DBS surgery in the context of minimiz-
ing CSF loss is a matter of ongoing debate. There
may be less spontaneous CSF outflow in the
semi-sitting compared to supine position. In the
supine position, on the other hand, the brain
tissue may pack the burr hole from inside more
effectively compared to the semi-sitting posi-
tion, during which the brain ‘‘sinks’’ downward.
In addition, the supine position may match the
location of brain structures on pre-operative
MRI more accurately. However, the supine
position may not be as well tolerated as the
semi-sitting position during awake surgery.
Future studies comparing the supine and semi-
sitting position during deep brain stimulation
surgery with respect to these factors are needed.

INTRA/POSTOPERATIVE IMAGING
AND IMAGE FUSION

As stated previously, intra- and postoperative
imaging is used to verify DBS lead placement.
However, the accuracy of both MRI and CT in
lead localization is still controversial. The
diameter of DBS leads is 1.27 mm, but the size of
the lead artifact typically measures 3.6 mm on
MRI and 3.3 mm on CT (Fig. 5) [26, 27]. The
issue whether the exact position of the actual
DBS lead within the MRI artifact is concentric or
eccentric was studied by Hyam et al. in patients
in whom DBS leads were explanted as a result of
infection or suboptimal efficacy. By comparing
the center of the lead hypointensity on
postimplantation MRI to the center of the lead
track on postexplantation MRI, the authors
were able to calculate a mean difference in x
coordinate of 0.4 mm, and in y coordinate of
0.6 mm (the x–y vectorial difference averaged
0.7 mm) [28]. Because of this small difference, it
seems reasonable to assume that the lead
hypointensity seen on postimplantation MRI is
close to concentric. A similar study on the exact
position of the DBS lead within the CT artifact is
probably not feasible, since the contrast
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resolution of CT seems insufficient to correctly
display the lead track on postexplantation CT.

Another factor at play is the software used for
co-registration of the pre-, intra-, and postop-
erative imaging. Engelhardt et al. reported a
small but significant 3D difference (on average
1.2 mm) in the coordinates of the deepest lead
contact when calculated on four different
commercially available co-registration devices
[29]. Furthermore, additional image co-regis-
tration errors may occur between two different
scan modalities: O’Gorman et al. compared lead
coordinates on postoperative stereotactic CT
with lead coordinates on postoperative CT co-
registered with preoperative stereotactic MRI

using four different co-registration software
programs and reported a mean 3D discrepancy
of 1.2 to 1.7 mm (the x–y vectorial discrepancy
averaged 0.6 up to 0.7 mm) [30]. The use of co-
registration software and the choice of different
scan modalities thus influences the observed
location of the DBS lead.

MICROELECTRODE RECORDINGS

STN neurons in patients with Parkinson’s dis-
ease have characteristic firing rates in irregular
bursts, which have movement- and tremor-re-
lated activity [31]. Burst frequencies of 5–20 Hz
are observed in the dorsal STN, while activity

Fig. 4 Intraoperative (left panel) and 1-year follow-up
(right panel) analysis of DBS lead on semi-sagittal CT
reconstructions parallel to the lead. Intraoperative CT
shows pneumocephalus, posteriorly shifted frontal cortex,

and a straight lead trajectory. Follow-up CT shows
resolved pneumocephalus and anterior bending of the
DBS lead

Fig. 5 Axial 1.5-T T2 of left midbrain showing typi-
cal ± 3.5 mm diameter artifact of DBS lead (left panel).
Semi-sagittal T1 and CT reconstructions parallel to the
lead (four panels on the right) show that the diameter of

the lead artifact on MRI (3.6 mm) and CT (3.3 mm) is
considerably thicker than the actual diameter of the DBS
lead (1.3 mm)
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deeper into the STN shifts to 15–40 Hz fre-
quencies [32]. Many DBS centers therefore per-
form intraoperative electrophysiological
measurements to localize the dorsolateral
motor part of the STN. Currently, MER remains
the electrophysiological technique most com-
monly used. During a typical exploratory MER
track starting just above the STN, a low back-
ground noise and absence of single cell record-
ings is followed by a sudden increase in
background activity and irregular bursts of
spontaneously active neurons when the MER
tip enters the dorsolateral STN. Within the
dorsolateral STN, MER may be used to check for
the presence of kinesthetic (or movement-re-
lated) cells, i.e., neurons that respond to passive
movement by changing their firing rate and
pattern [33]. At the ventral STN border, the exit
of the MER tip out of the STN corresponds to a
sudden decrease in background noise and loss
of single cell activity. Neuronal activity may
then increase again when the electrode tip
enters the SNr, although its neurons are more
sparse and fire more regularly than STN neurons
[34]. To increase the chances of targeting the
dorsolateral STN, given the occurrence of
imaging and surgical inaccuracies, Benabid
developed a MER holder with five MER chan-
nels, with the central channel aiming at the
planned MRI target, with additional anterior,
lateral, posterior, and medial channels at a
2-mm distance from the central channel [34]. In
2010, we reported how often each of these five
MER channels was chosen for final STN DBS
lead implantation: the central channel was
chosen in 50% of the cases, the anterior channel
in 24%, the lateral channel in 10%, the poste-
rior channel in 10%, and the medial channel in
6% [35]. Because of these results and the finding
of a systematic literature review showing that
the number of MER penetrations may increase
the risk of intracerebral hemorrhage [36], we
reduced the number of MER channels in the
years thereafter to three (MRI target, 2 mm
anterior and 2 mm lateral channels) and found
that 92% of final STN DBS leads were indeed
implanted in one of those three channels [37].
Three-channel instead of five-channel MER thus
provides sufficient accuracy to target the dor-
solateral STN in the large majority of patients.

The use of MER may be associated with an
increased risk of hemorrhage and several groups
reported good clinical outcome in MRI-guided
STN DBS without the use of MER [38, 39]. Do we
really need MER during STN DBS surgery? Can
one rely solely on MRI guidance? As stated
previously, not all MRI sequences properly dis-
play the dorsolateral STN, and clinically rele-
vant discrepancies were reported when
comparing dorsal STN borders on MRI to the
electrophysiological dorsal STN border. Indeed,
in our 2020 study no electrophysiological STN
signal was found in 5% of the MRI-targeted
trajectories, and unexpectedly short STN MER
trajectories (2.5 mm or less) were seen in 13% of
MRI-targeted channels [37]. Similarly, Lozano
et al. reported a 20% mismatch between the
expected STN on 1.5-T MRI and the MER find-
ings, with mismatch defined as an STN MER
trajectory of less than 4 mm [40]. Notably, in
our 2020 study the x–y vectorial stereotactic
inaccuracy among MRI-targeted trajectories
with 2.5 mm or less STN MER activity exceeded
the mean stereotactic error (of 1.25 mm) more
often than the inaccuracy among MRI-targeted
trajectories with more than 2.5 mm STN MER
activity (67% versus 42%, respectively). Besides
the ability of MER to properly identify the dor-
solateral STN, it also supplies important intra-
operative feedback on the accuracy (or lack
thereof) of the stereotactic method, when
changes can still be made. If one decides to omit
MER and rely on MRI guidance only, accurate
and reliable intraoperative imaging to check
stereotactic accuracy thus seems indispensable.
Future studies comparing STN borders on ultra-
high field MRI to the electrophysiological STN
during DBS surgery with verified ultra-low
intraoperative stereotactic inaccuracy are nee-
ded to determine whether MRI can really
replace MER in localizing the dorsolateral STN.
Alternatively, intraoperative spectral analysis of
local field potentials (LFPs) while descending
the final DBS lead into the STN may also pro-
vide neurophysiological information relevant
to the position of the lead relative to the dor-
solateral STN [41]. Also, MRI techniques such as
tractography and connectivity mapping provide
additional insight into STN subdivisions, and
may replace the need for electrophysiological
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motor STN identification [42, 43]. However, one
should realize that (hard to avoid) stereotactic
and image-fusion-related inaccuracies carry the
risk of ‘‘missing’’ the dorsolateral motor part of
the STN when one decides to use MRI guidance
only.

AWAKE TEST STIMULATION

Many DBS centers conduct test stimulation in
awake patients to localize that part of the STN
where maximal motor improvement at low
stimulation intensities and high thresholds for
stimulation-induced side effects are observed.
Furthermore, intraoperative testing can reduce
the time needed for postoperative programming
by identifying the contacts most likely to be
selected [44]. Recent developments in MRI
visualization of the dorsolateral STN and motor
fibers in the nearby internal capsule, however,
could make awake test stimulation redundant,
allowing for DBS surgery under general anes-
thesia. Asleep DBS would offer a major advan-
tage for patient comfort and surgical workflow.
Thus far, several groups reported good clinical
outcomes in patients with Parkinson’s disease
undergoing STN DBS surgery under general
anesthesia [45–47]. In our previously men-
tioned 2020 study employing MRI targeting,
three-channel MER, and awake test stimulation,
we retrospectively determined the relative con-
tribution of awake test stimulation in STN DBS
lead placement by analyzing where final DBS
leads were implanted and why these locations
were chosen [37]. For final lead placement, the
MRI-targeted trajectory was chosen in 39% of
STNs (18% of bilaterally implanted patients),
the trajectory with the longest STN MER signal
in 60% of STNs (38% of bilaterally implanted
patients). The most frequently noted reason
why another trajectory was chosen for final lead
placement was a lower threshold for side effects
in the planned trajectory. Interestingly, a
superior effect of test stimulation on PD symp-
toms was never noted as the reason, suggesting
that test stimulation in MRI-targeted, anterior
and lateral channels was equally effective.
Alternatively, spontaneous improvement of
parkinsonian motor symptoms following

penetration of the STN, referred to as the
microlesion effect, may have flattened the dif-
ference in stimulation-induced motor
improvement among the different channels
[48]. Most observed side effects that influenced
the choice of trajectory for final lead placement
in our 2020 study were thought to originate
from co-stimulation of the nearby internal
capsule [37]. However, the clinical relevance of
the observed side effects and of the stimulation
threshold at which they occurred were not
prospectively studied, so it is not possible to
deduce from these retrospective data whether
the decision not to implant the final lead in a
certain trajectory led to better outcomes. Evi-
dently a trajectory in which mouth contraction
or dysarthria occurred at 2 mA seems even in
retrospect not a good choice for final DBS lead
placement. But a trajectory in which gaze
paresis occurs at 5 mA might still have been a
good choice for final lead placement, since it is
not common to employ STN DBS above 4.5 mA.

To investigate whether awake test stimula-
tion during STN DBS surgery is really indis-
pensable, we started a controlled trial in 2017
randomizing 110 patients between surgery
under local or general anesthesia (GALAXY
trial) [49]. Of note, we will perform MER in all
patients in order to optimize lead implantation
in the electrophysiological dorsolateral STN in
both the awake and asleep study group.
Reduction of propofol levels during MER allows
for the detection of typical STN neuronal firing
patterns [50]. The results of the GALAXY trial
are expected to be reported by the end of 2020.

DBS LEAD ANCHORING
TECHNIQUES

Various methods have been developed to secure
the DBS lead to the skull, such as titanium
microplates, acrylic cement, and several com-
mercially available plastic cap systems. For all
techniques, lead migration has been reported.
In a comparative study, we observed less long-
term (1 year) lead migration for leads anchored
with the commercial plastic cap system
(1.5 mm) than for leads anchored with a tita-
nium microplate (2.3 mm) [51]. But even with
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such commercial plastic cap systems, Morishita
et al. reported lead migration of more than
3 mm in 12% of their DBS patients at 6-month
follow-up [52]. Similar to pneumocephalus,
anchoring-related lead displacement may
influence the choice of active contact on the
DBS lead and settings of the DBS parameters
during follow-up. Repeated postoperative
imaging to accurately determine the location of
lead contacts is therefore strongly advocated
when the effects of DBS deteriorate during fol-
low-up. Finally, we usually place at least one
stimulation contact of the multiple-contact
electrodes below the optimal stimulation point
as determined during surgery, so that it is pos-
sible to switch to a lower contact point in case
of upward displacement after longer-term fol-
low-up.

CONCLUSIONS

The underlying idea of STN DBS in patients with
advanced PD is quite simple: DBS leads are to be
implanted in the dorsolateral motor part of the
STN, at a safe distance from its other subdivi-
sions and nearby internal capsule fibers. How-
ever, several factors complicate this ideal
targeting strategy. Not all MRI sequences prop-
erly display the dorsolateral STN, and clinically
relevant discrepancies were reported when
comparing STN borders on MRI to electrophys-
iological STN borders. The 3D inaccuracy of
stereotactic techniques averages 2 mm. Pneu-
mocephalus and image fusion techniques may
further increase implantation errors. Even when
implantation has been successful, suboptimal
lead anchoring on the skull may cause lead
migration during follow-up. Meticulous pre-
and intraoperative imaging is evidently indis-
pensable, and so is postoperative imaging when
the effects of DBS deteriorate during follow-up.
Thus far, most DBS centers employ MRI target-
ing, multichannel MER, and awake test stimu-
lation in STN surgery, but ongoing and future
studies may change this clinical practice. The
soon to be reported results of the GALAXY trial
randomizing patients between MER-guided
surgery under local or general anesthesia will
tell whether awake test stimulation during STN

DBS surgery is indispensable, Furthermore,
studies comparing MER (or LFP)-STN borders
during DBS surgery with verified intraoperative
ultra-low stereotactic inaccuracy to MRI-STN
borders may serve to study whether MER is
redundant during 7-T MRI-guided STN surgery.
Finally, developments in imaging protocols and
improvements in image fusion processes are
needed to further optimize placement of DBS
leads in the dorsolateral motor part of the STN
in Parkinson’s disease.
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