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ABSTRACT

Echocardiography frequently serves as the first-
line treatment of diagnostic imaging for several 
pathological entities in cardiology. Artificial 
intelligence (AI) has been growing substantially 
in information technology and various commer-
cial industries. Machine learning (ML), a branch 
of AI, has been shown to expand the capabili-
ties and potential of echocardiography. ML algo-
rithms expand the field of echocardiography by 

automated assessment of the ejection fraction 
and left ventricular function, integrating novel 
approaches such as speckle tracking or tissue 
Doppler echocardiography or vector flow map-
ping, improved phenotyping, distinguishing 
between cardiac conditions, and incorporating 
information from mobile health and genomics. 
In this review article, we assess the impact of AI 
and ML in echocardiography.

PLAIN LANGUAGE SUMMARY

Echocardiography is the most common test 
in cardiovascular imaging and helps diagnose 
multiple different diseases. Machine learning, a 
branch of artificial intelligence (AI), will reduce 
the workload for medical professionals and 
help improve clinical workflows. It can rapidly 
calculate a lot of important cardiac parameters 
such as the ejection fraction or important met-
rics during different phases of the cardiac cycle. 
Machine learning algorithms can include new 
technology in echocardiography such as speckle 
tracking, tissue Doppler echocardiography, vec-
tor flow mapping, and other approaches in a 
user-friendly manner. Furthermore, it can help 
find new subtypes of existing diseases in cardiol-
ogy. In this review article, we look at the current 
role of machine learning and AI in the field of 
echocardiography.
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Key Summary Points 

Machine learning algorithms, especially 
deep learning, will expand the boundaries of 
echocardiography. It will automate multiple 
tasks which help to reduce the burden for the 
sonographer.

Machine learning algorithms will integrate 
several new approaches in a seamless man-
ner, which includes speckle tracking, color 
Doppler echocardiography, 3D echocardi-
ography, vector flow mapping, and others. 
Many of these approaches were time-con-
suming or required extensive expertise. It will 
lead to the development of automated clini-
cal pipelines that can improve cardiovascular 
diagnosis and management.

Many challenges still exist for the growth of 
machine learning algorithms. Databases need 
to be publicly available and data or code 
sharing needs to be encouraged. Future stud-
ies need to incorporate external validation to 
assess the performance of the algorithm in 
various cohorts and to observe the reproduc-
ibility of values.

INTRODUCTION

Artificial intelligence (AI) refers to the utilization 
of machines to simulate human behavior and 
execute different actions with minimal involve-
ment or supervision [1]. Machine learning (ML), 
a branch of AI, can examine the information 
and lead to data-driven revelations or discoveries 
[2]. With every passing year, ML is emerging as a 
powerful tool in multiple industries and is estab-
lishing a firm foothold in information technol-
ogy [3]. ML is also growing in the field of health-
care. AI can simplify workflow and improve the 
capacity for image interpretation [4].

ML has made significant strides in the fields of 
radiology and pathology [5]. ML has impacted 

every cardiovascular imaging modality—this 
includes all phases of acquisition to the pres-
entation of findings [6]. In the arena of cardi-
ology, echocardiography frequently serves as 
the first line and diagnostic pillar of cardiovas-
cular imaging [7]. Echocardiography not only 
demands proper acquisition of imaging but also 
an appropriate interpretation [8]. If a physician 
comes to a different conclusion while observing 
the same set of imaging, it is more subjective 
than objective. A standardized and reproducible 
approach is pertinent in patient care. The appli-
cation of ML in the field of echocardiography 
can elevate the modality to unprecedented new 
heights. Over the last few years, ML has made 
significant progress in cardiovascular imaging. 
In this review, we will explore the impact of ML 
in the realm of echocardiography.

Potential of Machine Learning in 
Echocardiography

As pocket ultrasound, wearable devices, and 
smartphone applications are expanding the 
capabilities of cardiovascular imaging, AI and ML 
algorithms will be strongly intertwined with the 
future of echocardiography [9]. Data emanating 
from each echocardiography is exponentially 
rising with each passing year and becoming pro-
gressively complex and it will easily overwhelm 
current statistical software [10]. With the inte-
gration of ML algorithms in clinical pipelines, 
it will provide additional insight and automate 
multiple clinical tasks (Table 1). It can improve 
the user interface, standardize interpretation, 
connect a variety of parameters in a meaning-
ful way, and facilitate the growth of the mobile 
health (mhealth) [11, 12]. ML algorithms can 
enable automatic and rapid interpretation of 
ejection fraction (EF). Besides automated EF, 
ML algorithms can integrate several diagnostic 
approaches that have been hindered previously 
due to multiple factors [8]. This includes mul-
tiple novel approaches such as global longitu-
dinal strain, color Doppler echocardiography, 
3D echocardiography, and others, which open 
various new branch points or pathways in the 
arena of echocardiography (Fig. 1). Furthermore, 
it can help bridge the gap between experienced 
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Table 1  Application of machine learning in echocardiography

Study Type of machine learning Description

AI-augmented assessment of ejection fraction and cardiac function

 Ouyang et al. [23] Deep learning Video-based deep learning algorithm which 
achieved segmentation comparable to 
expert readers

 Tromp et al. [24] Deep learning A deep learning workflow was developed 
which could assess for systolic and dias-
tolic function from echocardiogram

 Howard et al. [25] Deep learning Deep learning performance was compared 
with expert consensus for various charac-
teristics on echocardiogram

Role of AI in other aspects of echocardiography

 Hughes et al. [26] Deep learning Deep learning interpretation of echocar-
diogram for detecting anemia, BNP, and 
troponin

 Duffy et al. [27] Deep learning Deep learning to identify causes of left 
ventricular thickness in patients with amy-
loidosis and hypertrophic cardiomyopathy

 Salte et al. [28] Deep learning and other 
ML algorithms

To develop an algorithm fully capable of 
automated strain analysis

AI-driven phenotypes in aortic stenosis

 Sengupta et al. [29] Unsupervised learning To stratify aortic stenosis patient into high 
and low severity and to compare to mark-
ers of disease severity on computed tomog-
raphy and cardiac magnetic resonance 
imaging

 Todoki et al. [30] Unsupervised learning To predict major adverse cardiac events 
from echocardiography

AI-driven phenotypes in congestive heart failure and other conditions

 Pandey et al. [31] Deep learning Multiple phenotypes were found in patients 
with heart failure with preserved ejection 
fraction. The high-risk phenotype had 
higher incidence of hospitalization and 
cardiac death

 Cho et al. [32] Machine learning Multiple phenotypes were identified by vari-
ous echocardiographic parameters
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sonographers and burgeoning doctors. It can also 
serve as a complementary assistant [13]. It can 
improve the user interface, standardize interpre-
tation, and connect a variety of parameters in a 
meaningful way [11, 12]. In addition, it can iden-
tify a variety of novel phenotypes in heterogene-
ous conditions like aortic stenosis and diastolic 
heart failure [14]. It can integrate information 
from genomics and radiomics into large cardio-
vascular imaging databases [15]. This article is 
based on previously conducted studies and does 
not contain any new studies with human partici-
pants or animals performed by any of the authors.

Types of Machine Learning

ML is a broad term that can be subdivided 
into supervised learning, unsupervised, 

semi-supervised learning, and deep learning 
[16]. Supervised learning uses labeled param-
eters or domains to execute actions [16]. Unsu-
pervised learning does not utilize fixed labels 
and functions independently [17]. It is often 
referred to as agnostic. Semi-supervised learning 
is a hybrid algorithm that incorporates attributes 
from both supervised and unsupervised learning 
[18]. Reinforcement learning integrates certain 
reward criteria to perform various actions [18]. 
It is less commonly used in comparison to other 
contemporary algorithms.

Among all ML algorithms, deep learning is 
heralded as the most advanced algorithm [19]. 
It is used in voice recognition software such as 
Siri or Alexa or self-driving cars developed by 
Google [5]. From an architecture standpoint, 
deep learning is like a human neuron with mul-
tiple layers [20]. This is the key fundamental 

AI artificial intelligence, TOPCAT  treatment of preserved cardiac function heart failure with an aldosterone antagonist

Table 1  continued

Study Type of machine learning Description

 Mishra et al. [33] Unsupervised learning Unsupervised learning was used in conges-
tive heart failure patient with coronary 
artery disease

 Segar et al. [34] Unsupervised learning Unsupervised learning was used in the 
TOPCAT trial data to identify multiple 
phenotypes

Fig. 1  Role of machine learning in echocardiography
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difference between deep learning and other 
algorithms. The multi-layered design helps aug-
ment object identification and visual recogni-
tion. Information is processed between previ-
ous and successive layers [20]. Recently, several 
technological advances in neuronal architecture 
have expanded the capabilities of deep learning 
[21, 22]. It can analyze information in a multi-
tude of approaches.

AI‑Augmented Assessment of Ejection 
Fraction and Cardiac Function

AI-driven automation can expedite and expand 
various processes in echocardiography. In this 
landmark study, Quyang et al. applied a video-
based deep learning algorithm that could seg-
ment the left ventricle, estimate ejection frac-
tion, and assess cardiomyopathy and was 
compared with human interpretation [23]. The 
model was able to accurately segment the left 
ventricle with a DICE coefficient of 0.92 (DICE 
coefficient measures the level of similarity 
between two samples). It was also able to effi-
ciently predict ejection fraction (mean absolute 
error of 6.0%) and classify heart failure with 
reduced ejection fraction (HFrEF) (area under the 
curve (AUC) = 0.96) in external databases. Inter-
estingly, the predicted EF from the algorithm 
had a small or similar variance with human 
experts. More impressively, the algorithm had 
higher reproducibility of values than human 
experts in real time. With more accuracy and 
reproducibility in calculated values, more accu-
rate decision-making can be performed for criti-
cal conditions and improve patient care. This 
study shows the potential of automated EF and 
facilitates the growth of precision medicine.

Similarly, Tromp et al. developed a deep learn-
ing workflow that could classify and segment 
two-dimensional echocardiograms during sys-
tolic and diastolic phases in multiple data sets 
[24]. For the ATTRaCT test set, the deep learn-
ing algorithm was able to achieve segmenta-
tion of the left ventricle and left atrium with a 
mean DICE coefficient greater than 93%. Fur-
thermore, it was able to effectively classify sys-
tolic dysfunction (left ventricular ejection frac-
tion < 40% with area under the operating curve 

(AUC) of 0.9–0.92) and diastolic dysfunction 
(early diastolic mitral inflow velocity to early 
diastolic mitral annular tissue velocity (E/e′) 
ratio > 13, AUC of 0.91–0.91) in the remaining 
datasets. Amazingly, there was less variability in 
measured values of deep learning architecture 
in comparison to values recorded by human 
experts. Similar to Quiang et al., the algorithm 
demonstrated similar values and performance 
in multiple external datasets with patients from 
different countries. Besides automated ejection 
fraction, their algorithm was able to rapidly 
assess systolic dysfunction from multiple cardiac 
Doppler parameters. In reality, color Doppler 
echocardiography generally requires extensive 
training and time involvement.

Howard et al. compared the performance of 
deep learning network assessment with expert 
consensus for assessing key characteristics in the 
echocardiogram [25]. The intraclass correlation 
coefficient (ICC) between AI and the expert con-
sensus was 0.926. Similarly, the algorithm per-
formed well in assessing interventricular septum 
thickness (ICC = 0.809) and posterior wall thick-
ness (ICC = 0.535) when compared with human 
interpretation. This is one of the first studies to 
create an online expert consensus panel from 
the entire country (United Kingdom) to serve 
as a reference standard to help train and vali-
date an ML algorithm. Furthermore, the range 
in variation in expert analysis could designate a 
possible range for performance which can guide 
the development of the ML algorithm. Unlike 
many studies in which the algorithm focused 
on segmentation of various areas, this algo-
rithm focused on identifying key points as the 
primary network target. By choosing key points, 
the algorithm mirrors the behavior of a typical 
sonographer.

Role of AI in Other Aspects of 
Echocardiography

We explore notable studies utilizing ML algo-
rithms in different aspects of echocardiogra-
phy. Hughes et al. evaluated the role of a deep 
learning interpretation of echocardiograms 
for evaluating certain biomarkers such as 
hemoglobin, B-type natriuretic peptide (BNP), 
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troponin I, and blood urea nitrogen (BUN) 
[26] to assess certain physiological states from 
echocardiography. Interestingly, the algorithm 
was derived from the publicly available Echo-
Net database. From the Cedars-Sinai data set, 
the deep learning framework was able to suc-
cessfully detect anemia (AUC = 0.80), elevated 
BNP (AUC = 0.75), and elevated troponin I 
(AUC = 0.69). This study emphasizes the capa-
bilities of deep learning algorithms in provid-
ing additional clinical insight and phenotypic 
information. The findings are in accordance 
with a growing consensus that deep learning 
assessment of cardiovascular imaging can cor-
relate with systemic physiology.

Duffy et  al. assessed the accuracy of deep 
learning for quantifying ventricular hypertro-
phy in patients with hypertrophic cardiomyo-
pathy and cardiac amyloidosis [27]. The algo-
rithm accurately measured intraventricular wall 
thickness and left ventricular diameter, and 
classified cardiac amyloidosis (AUC = 0.83) and 
hypertrophic cardiomyopathy (AUC = 0.98). In 
external validation, the algorithm had a similar 
performance in detecting cardiac amyloidosis 
(AUC = 0.79) and hypertrophic cardiomyopathy 
(AUC = 0.89). The algorithm was able to recog-
nize left ventricular wall thickness and diameter 
within the variance of human experts. In addi-
tion, it was capable of subtle ventricular changes 
or phenotypes that could be proven difficult for 
human readers. If this approach is adopted into 
clinical workflow, the algorithm can provide a 
high index of suspicion for the sonographer for 
several underrecognized conditions.

Salte et al. explored the role of deep learning 
and ML algorithms for fully automated meas-
urement of global longitudinal strain (GLS) in 
200 patients [28]. The algorithm successfully 
performed global longitudinal strain, automatic 
segmentation, and motion estimates across a 
wide variety of cardiac pathologies rapidly and  
with good accuracy (GLS was 12.0 ± 4.1% for the 
AI method and – 13.5 ± 5.3% for the reference 
method). This is the first study to describe a fully 
automated deep-learning pipeline that calculates 
GLS in real time. The algorithm was able to per-
form calculations within seconds, which is sub-
stantially better than the current clinical soft-
ware. If implemented into ultrasound hardware, 

GLS could be regularly integrated into clinical 
practice.

AI‑Driven Identification of New Phenotypes 
in Aortic Stenosis

ML algorithm can isolate new phenotypes in 
various cardiac conditions, which can further 
characterize various heterogeneous conditions. 
Sengupta et al. explored the potential of a super-
vised ML algorithm to stratify patients with 
aortic stenosis (AS) into high-severity and low-
severity AS phenotypes based on parameters of 
echocardiography [29]. Furthermore, they were 
compared to markers indicating disease sever-
ity observed in computed tomography (CT) 
and cardiac magnetic resonance (CMR) imag-
ing and major complications including aortic 
valve replacement (AVR) and mortality. The 
ML model subdivided 1117 (57%) patients hav-
ing high severity and 847 (43%) patients hav-
ing low-severity AS. In addition, ML-derived 
classification had enhanced discrimination 
(integrated discrimination improvement: 0.17, 
confidence interval (CI) 0.02–0.12) and reclas-
sification (net reclassification improvement: 
0.17, Cl 0.11–0.23) for aortic valve replace-
ment (AVR) outcomes at 5 years. Todoki et al. 
assessed an unsupervised learning framework 
in 866 patients by including echocardiographic 
attributes from the left ventricle to predict major 
adverse cardiac events (MACE) [30]. A loop sub-
divided patients into four unique categories and 
the Kaplan–Meier curves demonstrated signifi-
cant differences in mortality and MACE-related 
events (both p < 0.001).

AI‑Driven Identification of New Phenotypes 
in Congestive Heart Failure and Other 
Conditions

Similarly, AI algorithms can be used to further 
differentiate heart failure. Pandey et al. devel-
oped a deep learning model which incorporated 
multidimensional parameters from echocardi-
ography to identify subtypes in patients having 
heart failure with preserved ejection fraction 
(HFpEF) [31]. The algorithm isolated high- 
and low-risk phenotypes. The performance of 



273Cardiol Ther (2024) 13:267–279 

the ML-derived model was tested against two 
external cohorts. It revealed a superior area 
under the receiver operating curve (ROC) than 
the 2016 American Society of Echocardiogra-
phy (ASE) guidelines in patients with HFpEF 
for predicting elevated left ventricular filling 
pressures (0.88 vs. 0.67; p = 0.01). The high-risk 
phenotype had significantly higher rates of 
hospitalization and cardiac death (hazard ratio, 
HR = 1.92, p = 0.01) in the TOPCAT cohort. Cho 
et al. examined an ML algorithm in 297 patients 
with multidimensional left ventricular param-
eters for phenotyping by using left ventricular 
speckle tracking, vector flow mapping, and left 
ventricular measurements [32]. The algorithm 
isolated four unique clusters. Cluster IV had a 
higher prevalence of stage C or D heart failure 
(78%, p < 0.001) and an elevated incidence of 
MACE events (p < 0.001). Mishra et al. utilized 
unsupervised clustering in 1000 heart failure 
patients with coronary artery disease (CAD) 
with 15 echocardiographic variables and four 
phenogroups were identified [33]. Phenogroup 
1 was associated with an elevated risk (HR = 4.8) 
of heart failure hospitalization. Similarly, Segar 
et al. utilized unsupervised clustering in the 
TOPCAT cohort with 654 patients with echocar-
diographic information, and three phenogroups 
were identified [34]. Phenogroup 1 had a sub-
stantially higher incidence of adverse events, 
which include all-cause mortality and heart 
failure hospitalization.

External Validation

There is considerable variance in the human 
expert assessment of the ejection fraction [35]. 
This can be attributed to the time-consuming 
nature of manual tracing of the size of the ven-
tricle to assess each beat and there are irregulari-
ties in the heart rate [36]. If variation is present, 
the American Society of Echocardiography and 
the European Association of Cardiovascular 
Imaging recommend a tracing average of five 
consecutive beats [36, 37]. More commonly, 
the ejection fraction is often a measure of one 
beat which explains high inter-observer varia-
tion or minimal precision in day-to-day practice 
[37]. Unfortunately, choosing one beat is very 

subjective, and not reflective of the guidelines. 
This further becomes an issue in patients with 
borderline ejection fraction, where less accurate 
reporting is linked with elevated complications 
and morbidity [38, 39]. Deep learning algo-
rithms provide an opportunity for rapid segmen-
tation and frequent evaluation of the cardiac 
cycle across multiple beats in the cardiac cycle.

It is imperative that ML algorithms are tested 
to the same level of rigor equaling a human 
expert to have any meaningful role in the clini-
cal environment [40]. To date, there have been 
multiple ML studies for assessing ejection frac-
tion, systolic function, and view classification. 
They were tested on private databases, and the 
results were not replicable and there was a lack 
of interpretability. Most of these algorithms were 
never tested with an external cohort to assess 
their performance; there was an absence of vali-
dation [41]. If algorithms can be tested in differ-
ent populations, it provides a glimpse or insight 
into the performance of the algorithm if adopted 
in clinical practice. Moreover, the algorithms 
can be adjusted or improved by medical teams 
if results are unsatisfactory. If more nationwide 
collaboration between multiple experts occurs, 
we can create a uniform reference standard that 
can help serve as a benchmark for training ML 
algorithms. More importantly, it provides the 
foundation for automated workflows in medi-
cal management.

Contemporary Views on Machine Learning

Without a doubt, echocardiography serves as the 
primary diagnostic modality and is fundamen-
tal in cardiovascular diagnosis and management. 
Several important metrics that reflect myocar-
dial function include left ventricular ejection 
fraction, left ventricular end-systolic volume, 
and left ventricular end-diastolic volume [42]. 
In a single echocardiogram, there are numer-
ous acquisition angles and views that could 
offer multiple interpretations of the underlying 
anatomy of the heart [8]. Nonetheless, there 
is substantial interobserver variability. Due to 
significant differences in quantification and 
interpretation, ML approaches can help stand-
ardize and improve the reproducibility of these 
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values. However, initial deep learning studies 
based on manual images of systole and dias-
tole had considerable differences with human 
expert evaluation [43, 44]. With the emergence 
of the landmark EchoNet database, deep learn-
ing algorithms trained in video–labeled images 
can help predict ejection fraction comparable or 
superior to human experts with high reproduc-
ibility. With the database being publicly avail-
able, other academic centers have been able to 
use the transfer learning properties of the data-
base to help train their deep learning algorithms 
with smaller sample sizes and produce accurate 
results. Previously, ML algorithms focused pri-
marily on the automation of tasks. Now these 
algorithms are beginning to embark on obtain-
ing specific cardiac measurements during systole 
or diastole readings. Most patients with heart 
failure have a mildly reduced or preserved ejec-
tion fraction, and proper evaluation is necessary 
in the spectrum of cardiac disease. Furthermore, 
it can be particularly puzzling to identify heart 
failure with preserved ejection fraction, and 
structural changes associated with elevated left 
ventricular pressure can be difficult to detect on 
echocardiograms [45]. This will eventually lead 
to fully automated ML pipelines in the clinical 
setting, which will facilitate rapid and accu-
rate assessment of ejection fraction and various 
parameters in real time, which will drastically 
improve patient care.

Multiple prominent echocardiographic 
approaches such as speckle tracking, tissue Dop-
pler echocardiography, vector flow mapping, 
3D echocardiography, and stress echocardiogra-
phy can be increasingly integrated into clinical 
practice with the application of ML algorithms, 
especially with deep learning. Many of the dif-
ficulties associated with these procedures can 
be overcome through these ML frameworks. 
The time and expertise required for 3D echo-
cardiography have been a barrier to widespread 
acceptance. GE Healthcare’s  HeartModel, which 
utilizes artificial intelligence, enables chamber 
quantification and 3D ejection fraction, left 
ventricular, and atrial volume [46]. After proper 
training, these algorithms can automate a num-
ber of these redundant tasks and be faster than 
their human counterparts. Few commercially 
available applications utilize AI to measure 

strain such as GE Automated Functional Imag-
ing (AFI) or EchoPAC™, which allows quantita-
tive analysis of complete global and longitudi-
nal strain throughout the entire course of the 
cardiac cycle [47]. However, these approaches 
are semi-automatic and require several steps of 
operator input. In addition, this approach gener-
ally requires 5–10 min. Based on positive results 
for speckle tracking, deep learning can remove 
the need for manual tracing and can possibly  
be implemented into ultrasound machines soon 
[28]. The application of deep learning algo-
rithms can perform these scans in less than a 
minute and do not require human input to cor-
rectly classify cardiac views or perform timing 
of cardiac events. This will enable automated 
pipelines that can calculate global longitudinal 
strain (GLS) in real time. Furthermore, the use of 
automated workflow can expedite and broaden 
access worldwide, augment the quality of care, 
and reduce costs for multiple cardiac conditions.

Current guidelines do not place significant 
weight  on the heterogeneity of various cardiac 
conditions such as CAD, congestive heart fail-
ure, and aortic stenosis [10]. There is a complex 
interplay of various factors that includes genetic, 
molecular, and pathological components [10]. 
This emphasizes the importance of unsupervised 
clustering or deep learning approaches. With the 
application of these approaches, we can uncover 
new phenotypes or variants within these intri-
cate conditions [48]. Genomics is being incor-
porated into clinical databases to form pan-
genomic databases [49]. With the incorporation 
of echocardiographic and genomic variables, 
ML algorithms can extrapolate new patterns 
or improve current clinical risk stratification 
or classifications. In addition, there are pros-
pects for new biomarkers or drugs. Further-
more, the correlation between medical imaging 
and biomarkers is vastly underexplored [50]. It 
remains unclear if common cardiovascular imag-
ing approaches such as echocardiography can 
broadly approximate biomarker values and pos-
sibly provide great insight into a patient’s under-
lying condition [25]. Furthermore, these deep 
learning algorithms do not have an elevated 
risk of radiation or additional cost. These pipe-
lines may reduce the need for invasive testing. 
With the growing advances in radiomics, this 
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approach allows greater extraction of features in 
imaging. It can help further differentiate clini-
cally similar conditions [49]. These approaches 
allow us to divert our resources towards new 
innovative approaches in management, which 
can tailor phenotype-driven or individual-based 
management and improve our understanding of 
complex heterogeneous entities in cardiology.

Though significant strides are being made 
in clinical phenotyping and genetic sequenc-
ing, several cardiac conditions are frequently 
misdiagnosed or underdiagnosed, such as 
hypertrophic cardiomyopathy or cardiac sar-
coidosis [12]. This can be attributed to similar 
morphological attributes, which can be diffi-
cult to distinguish in echocardiography [51]. 
Though the degree of left ventricular thickness 
is often a prominent prognostic sign, it can be 
difficult to quantify due to high inter-observer 
variability [27]. With significant strides in deep 
learning algorithms, it can accurately identify 
phenotypes and characteristics not perceived 
by human expert evaluation. ML algorithms 
can accurately delineate subtle variations in left 
ventricular wall geometry and thickness. This 
will lead to the development of automated work-
flows that can enable a precision diagnosis of 
multiple cardiac conditions.

Smart devices and mobile applications are 
deeply ingrained in our daily lifestyles [9]. As 
deep learning algorithms continue to progres-
sively evolve with concomitant growth in 
handheld echocardiographic devices, these 
algorithms will cause a paradigm shift in car-
diovascular diagnosis and management. These 
algorithms will reduce repetitive tasks and 
interobserver or intraobserver variability. With 
AI software embedded in ultrasound machines, 
this will improve access to cardiac imaging in 
underserved areas or regions with the absence 
of clinical expertise [1, 11]. Deep learning algo-
rithms will expedite the growth of smart clinics 
in the near future, and this will be especially 
important in resource-deficient areas [52].

Challenges of ML Algorithms in 
Echocardiography

Although ML frameworks offer limitless oppor-
tunities, the optimal performance of these algo-
rithms is dependent on the size and complex-
ity of the underlying data. If ML algorithms are 
trained on smaller datasets, it can lead to “false 
discoveries”, which can be misleading or impact 
patient care [16]. Up-and-coming medical teams 
need to be cautioned about this and need to be 
responsible when developing their algorithms. 
Except for a few databases, such as EchoNet, 
most databases in echocardiography are not 
publicly available [19]. However, building or 
obtaining datasets can pose significant difficul-
ties for smaller institutions. Multiple institu-
tional board approvals are required, which can 
be both time-consuming and labor-intensive 
[53]. Creating large datasets may also involve 
financial constraints. The concept of data-shar-
ing and code-sharing needs to be developed 
within institutions that can promote widespread 
growth of ML.

Although the promise of ML and AI can be 
promising and enticing for providers, it is far 
from perfect. “The black box” nature of AI and 
ML is one of the potential pitfalls of these algo-
rithms and this needs to be addressed carefully 
by medical teams. AI is not programmed with 
ethics and can be susceptible to various biases 
[4, 17]. Medical providers need to have a clear 
understanding of the algorithm and the pro-
ject goal. This would require frequent meet-
ings between the investigator and engineering 
to effectively develop and train ML algorithms 
[54] (Fig. 2). Furthermore, for ML to prosper in 
the medical field, the fundamentals of ML need 
to be introduced during medical education, resi-
dency, and fellowship [4]. This will help prepare 
future investigators and they will be able to fully 
utilize the capabilities of these algorithms.

CONCLUSIONS

As we move forward in this digital era, ML algo-
rithms will create new pathways and expand 
the boundaries of the field of echocardiography. 
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These will serve as a valuable digital compan-
ion that offers additional diagnostic input and 
can automate several processes. The future of 

precision medicine is becoming increasingly 
evident with the growth of ML algorithms.

Fig. 2  Steps in developing a proper ML algorithm for a 
medical team. CV cross-validation, GPL General Public 
License, LOOCV leave 1 out cross-validation, ML machine 

learning, S/W software. (Permission obtained for the figure 
for use in our publication)
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