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ABSTRACT

Cardiac fibrosis is closely associated with mul-
tiple heart diseases, which are a prominent
health issue in the global world. Neurohor-
mones and cytokines play indispensable roles in
cardiac fibrosis. Many signaling pathways par-
ticipate in cardiac fibrosis as well. Cardiac
fibrosis is due to impaired degradation of col-
lagen and impaired fibroblast activation, and
collagen accumulation results in increasing
heart stiffness and inharmonious activity, lead-
ing to structure alterations and finally cardiac
function decline. Herbal plants have been
applied in traditional medicines for thousands
of years. Because of their naturality, they have
attracted much attention for use in resisting
cardiac fibrosis in recent years. This review
sheds light on several extracts from herbal
plants, which are promising therapeutics for
reversing cardiac fibrosis.
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Key Summary Points

Cardiac fibrosis is the most common
consequence after myocardial infarction
and other cardiovascular conditions.

Cardiac fibrosis is triggered by numerous
risk factors and cytokines.

Multiple signaling pathways are involved
in cardiac fibrosis.

Herbal plant extracts are promising
therapeutics in treating cardiac fibrosis.

INTRODUCTION

Cardiovascular diseases and sudden cardiac
death are major health concerns globally, lead-
ing to significant hospitalization and about 17
million deaths annually [1]. Mounting evidence
indicates that cardiac fibrosis occurs in multiple
common cardiac diseases, such as myocardial
infarction (MI), heart failure (HF), atrial fibril-
lation (AF), and diabetic cardiomyopathy. Most
of these diseases are relevant to cardiac remod-
eling, including electrical remodeling and
structure remodeling (fibrosis and hypertro-
phy). Collagen production and fibrogenesis are
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enhanced by neurohumor regulation after MI
[2]. Commonly, HF is mostly caused by MI and
approximately one billion cardiomyocytes are
killed as a result of ischemia [3]. Triggered by
inflammation, oxidative stress, hormone envi-
ronment, and neuroregulation, fibrosis precipi-
tates the development of HF and promotes
sudden death because it facilitates cardiac
inharmonious electrical and mechanical activi-
ties by increased cardiac hypertrophy and stiff-
ness [4]. Arrhythmia is also closely related to
cardiac fibrosis. AF is one of the most common
arrhythmias in clinical practice. It is estimated
that about 85% of patients with AF present
atrial fibrosis [5]. Besides drugs, cardiac fibrosis
can also be induced by hemodynamic alter-
ations, ion imbalance, re-entry, and tach-
yarrhythmia [6]. The area around periphery of
sleeves is most prominently affected by fibrosis
because it is distant from the coronary blood
supply [7].

This review is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by the author.

DEVELOPMENT OF CARDIAC
FIBROSIS

Myocardium fibrosis is characterized by fibrob-
last proliferation, activation, and accumulation
of extracellular matrix (ECM) [8]. Cardiac
fibroblasts, which are motile cells with the
shape of a flat spindle, derive from resident
fibroblasts, bone marrow, endothelial cells, and
epithelial cells, accounting for most cell popu-
lations in the heart. Cardiac fibroblasts partici-
pate in ECM production and maintain ECM
homeostasis (including producing interstitial
collagen I and III, less collagen IV, V, VI, lami-
nin and elastin, glycoproteins, growth factors,
and cytokines) in response to cytokines and
mechanical stimulation [9]. In addition,
fibroblasts provide an ideal mechanical scaffold
between cardiomyocytes and other types of
cells in the heart. Plenty of stretch-activated ion
channels permeable to Na?, K?, and Ca2? are
expressed on cardiac fibroblasts, constituting a
critical part of cardiac electrophysiology

[10, 11]. Cardiac fibroblasts are elevated signif-
icantly during injuries [12]. With chronic stim-
ulation of various cytokines, cardiac fibroblasts
are likely to utilize a hypersecretion mode by
transforming into myofibroblasts to function in
tissue repair [13, 14]. Myofibroblasts normally
do not occur in healthy myocardium unless
injury or stress occurs. They possess combined
features of fibroblasts and smooth muscle cells,
and are typically characterized by abilities to
migrate and contract due to the expression of a-
smooth muscle actin (a-SMA) [15]. The persis-
tent existence of myofibroblasts leads to exces-
sive ECM production [13].

Homeostasis of collagen in myocardium is
strictly controlled under normal conditions.
Stimulated by injuries, cardiac fibroblasts and
myofibroblasts become insensitive to regulatory
mechanisms and collagen production is dra-
matically enhanced, even though these cells
may undergo apoptosis [16]. Replacement
fibrosis and reactive fibrosis are two major types
of fibrosis occurring after MI. Replacement
fibrosis in the myocardium is accompanied by a
gradual loss of cardiomyocytes. It is critical to
prevent cardiac rupture and increases in
mechanical stress after MI. Scar formation is a
good example [17, 18]. In contrast, reactive
fibrosis is an adaptation without loss of car-
diomyocytes. It originates from areas around
vessels and spreads through the whole myo-
cardium, preserving the pressure generated by
the heart, changing chamber compliance, and
compromising cardiac output by increasing
ventricular stiffness, but it can progressively
develop into replacement fibrosis [15, 17].
Overproduction of fibrosis impairs mechanic-
electric coupling in myocardium, increasing
susceptibility to arrhythmia. Besides, fibrosis
causes myocardium stiffness and promotes the
development of HF [19].

COMMON CAUSES OF CARDIAC
FIBROSIS

Ischemia

Evidence indicates that ischemia and infarction
are direct injuries causing fibrosis [20]. At the

416 Cardiol Ther (2023) 12:415–443



early stage of cardiomyocyte death, neutrophils
infiltrate into the infarcted area, triggering the
activation of neurohormonal and intracellular
signaling pathways. In the meantime,
renin–angiotensin–aldosterone system (RAAS)
and sympathetic nervous system are stimulated
to promote endothelin-1 (ET-1) release, which
further stimulates cardiac fibrosis and myocar-
dial hypertrophy. Activation of matrix metal-
loproteinases (MMPs) promotes the degradation
of collagens in ECM. In the late remodeling
stage, transforming growth factor beta (TGFb1)
is increased and released from macrophages. It
stimulates the transformation of fibroblasts into
myofibroblasts and enhances type I and III
collagen production, leading to fibrosis syn-
thesis [2]. Formation of fibrosis and scar at
infarcted and interstitial areas further prevents
cardiac repair and increases susceptibility to
arrhythmia.

Inflammation and Oxidative Stress

Acute death of cardiomyocytes often triggers
inflammation and oxidative stress immediately.
Inflammation clears ECM and dead cells around
the infarcted area in preparation for the healing
process. Simultaneously, cytokines like ET-1,
interleukin-1 (IL-1), interleukin-6 (IL-6), plate-
let-derived growth factor (PDGF), and tumor
necrosis factor alpha (TNFa) are secreted by
macrophages and mononuclear cells. Besides, a
large amount of ECM is produced by myofi-
broblasts to participate in the healing process
and maintain the integrity of the chamber.
After healing, reparative cells will undergo
apoptosis and scars will be finally formed with
cross-linked collagens [21]. Damaged ECM
activates innate immune cells, identifying
injury signals through transmembrane recep-
tors, such as Toll-like receptors, stimulating
proinflammatory cascades. The complement
system is activated during myocardial infarction
as well, which further triggers inflammation.
Oxidative stress triggers the synthesis of free
radicals resulting in cellular dysfunction, cell
apoptosis, necrosis, and tissue damage. These
free radicals are released from damaged antiox-
idant defenses and impaired mitochondrial

metabolism. They are enhanced because of
ischemia, tachycardiomyopathy, and pressure
and volume overload. Infarcted myocardium
promotes reactive oxygen species (ROS) pro-
duction, stimulating recruitment of inflamma-
tory cells and activating inflammation in the
injured myocardium. ROS generated in oxida-
tive stress might regulate intracellular signaling
pathways with high specificity. Moreover, free
radicals promote activation of leukocyte inte-
grins and adhesion molecules, facilitating the
expression of multiple chemokines and cytoki-
nes [21]. Metabolic oxidative products can be
determined in body fluids, such as serum and
urine. Accumulating evidence indicates that
levels of metabolic products associated with the
oxidative stress are positively correlated with
severity of cardiac fibrosis in MI, HF, and AF
[22–24]. Reduction of inflammatory factors
and/or inhibition of oxidative stress can signif-
icantly reduce cardiac fibrosis in different heart
diseases [25, 26]. Despite several large clinical
trials showing that inhibition of complement
and P-selectin did not benefit acute coronary
syndromes, inhibition of inflammation and
oxidative stress are still promising therapeutic
strategies for cardiac fibrosis [27, 28].

Other Common Causes of Cardiac Fibrosis

Infection, many cardiac conditions (arrhyth-
mia, hypertension, dilated/restricted/hyper-
trophic cardiomyopathy, MI, HF, etc.), systemic
autoimmune disease (sarcoidosis, amyloidosis,
etc.), and aging are also the most common
causes of cardiac fibrosis [29]. Moreover, genetic
propensity plays a significant role in the devel-
opment of cardiac fibrosis as well; for example,
Japanese patients with sarcoidosis who have
polymorphisms along with HLA-DQB1 (in par-
ticular DQB1*0601) are reported to have
increased susceptibility for cardiac sarcoidosis,
which is characterized by patchy cardiac fibro-
sis, myocardial granuloma, and lymphocytic
infiltration [30] (Fig. 1).
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MAJOR CHEMOKINES ASSOCIATED
WITH CARDIAC FIBROSIS

Angiotensin II (Ang II)

Ang II is a predominant factor in the RAAS,
taking part in many physiological and patho-
logical processes [31]. A receptor for Ang II
named Ang II type 1 receptor (AT1R) dominat-
ingly coupled to Gq/11 protein, is responsible
for promoting collagen production, hypertro-
phy, and cell proliferation and migration in
fibroblasts, endothelial cells, and smooth mus-
cle cells [32–36]. Triggered by different stimuli,
AT1R may present different conformations.
Mechanical stress can lead to the activation of
AT1R directly, which stimulates cardiac fibrob-
last proliferation, ECM production, and fibro-
genesis. This process can be suppressed by the

Ang II receptor blocker candesartan [37]. More-
over, Ang II enhances TGFb1 expression and
activates TGFb signaling to increase collagen
production in cardiomyocytes and fibroblasts
[31]. There is also a crosstalk between Ang II and
TGFb signaling to mediate collagen homeosta-
sis. Studies show that cardiac fibrosis induced by
angiotensin II could be ameliorated by improv-
ing vagal activity, AT1R blockers, and statins
[38–40].

TGFb

TGFb has been extensively studied as a key
regulator for fibrogenesis via the activation of
fibroblasts. It mediates the fibrotic process in
heart, lung, liver, and renal diseases [41–44].
Stimulated by cardiac injuries and tissue repair,
TGFb can be significantly upregulated and TGFb

Fig. 1 The etiologies, risk factors, cytokines, and signaling pathways involved in cardiac fibrosis, and the functions herbal
medicines exert in reversing cardiac fibrosis (this figure was made using www.biorender.com)
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signaling is activated to promote phosphoryla-
tion of Smad2/3, binding Smad4, translocating
to the nucleus, and eventually promoting
expression of fibrotic genes. TGFb prominently
increases the accumulation of ECM in the
myocardium by inhibiting MMP expression
[45, 46]. Downregulation of TGFb by antibodies
could suppress ECM expression and deposition
[47, 48]. After cardiac infarction, TGFb sup-
presses the inflammation in cardiac healing
processes, regulating fibroblast phenotypes, and
stimulating ECM deposition at the infarcted
zone by increasing collagen synthesis and
inhibiting the degradation of the matrix via the
induction of protease inhibitors [45]. Moreover,
TGFb and ET-1 collaboratively induce the dif-
ferentiation of myofibroblasts to stimulate car-
diac fibrosis [49].

Connective Tissue Growth Factor (CTGF)

CTGF is a key regulator in cardiac fibrosis in
response to cytokines and growth factors gen-
erated from injuries. It can be expressed in car-
diomyocytes and cardiac fibroblasts [50].
Extensive studies demonstrate that CTGF is
elevated notably in MI and HF in animals and
humans [51–54]. CTGF is increased in other
fibrosis-related disorders as well, such as idio-
pathic pulmonary fibrosis, chronic hepatitis,
cirrhosis, diabetic nephropathy, and focal seg-
mental glomerulosclerosis [55–57]. CTGF pro-
motes fibroblast proliferation and ECM
production [58]. It is positively correlated with
the formation of cardiac fibrosis. CTGF is a
downstream mediator of TGFb, and TGFb is a
driving force for CTGF expression as well. CTGF
synthesis is closely relevant to RhoA/ROCK,
Ras/MEK/ERK, and ROS-related signaling path-
ways [59–62]. Blocking pro-fibrogenic pathways
involving CTGF by antagonists is effective in
inhibiting fibrosis in animal models [63]. CTGF
seems to be a potential therapeutic intervention
for cardiac fibrosis [51].

ET-1

ET-1 is an outstanding profibrotic peptide syn-
thesized in endothelial cells and epithelial cells.

Inflammatory cells and fibroblasts are also
involved in ET-1 secretion. ET-1 has multiple
biological functions. It regulates inflammation,
cardiac contractility, water and sodium reab-
sorption, and vascular constriction [64, 65]. In
recent studies, ET-1 has received much more
attention because of its contribution to tissue
fibrosis, especially in cardiac fibrosis. ET-1 binds
to its receptors named endothelin-A (ETA) and
endothelin-B (ETB) in cardiac cells, fibroblasts,
endothelial cells, and smooth muscle cells to
perform normal functions [65]. ET-1 can pro-
mote cardiac fibrosis via endothelial-to-mes-
enchymal transition (EMT) [66]. Besides, ET-1
promotes EMT by inducing TGFb expression in
cardiac development and fibrosis [67]. TGFb
upregulates ET-1 via the JNK signaling pathway,
which accelerates the synthesis of ECM [13].
Blocking ET-1 signaling with endothelin recep-
tor blockers like bosentan can inhibit cardiac
fibrosis in animals with cardiac hypertrophy
[68]. Clinical investigations into using ET-1
receptor blockade in treating heart failure are
still ongoing.

PDGF

PDGF is a growth factor family comprising
PDGF-AA, AB, BB, CC, and DD. PDGF has two
receptors, a and b [13, 69]. During the healing
process, enhanced expression of PDGF attracts
macrophages, neutrophils, and fibroblasts to
migrate to the wounded area [70]. PDGF indu-
ces differentiation of myofibroblasts and ele-
vates the expression of collagens together with
Ang II, TGFb, and ET-1 [71]. After cardiac
infarction, PDGF signaling is activated in
perivasculature and mononuclear-like cells to
facilitate cardiac repair [72]. Moreover,
myocardial infarction can promote the expres-
sion of TGFb, collagen I, and TIMP1 in a PDGF-
dependent manner [73].

Osteopontin (OPN)

OPN is an acidic glycoprotein with an
arginine–glycine–aspartic acid (RGD) sequence
that can bind and interact with integrins and
the CD44 receptor. OPN is expressed with a
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basal level in the adult heart and its expression
will be increased during cardiac remodeling and
heart failure. Current evidence indicates that
OPN is closely associated with inflammation
and fibrogenesis, which are critical in regulating
cardiac fibrosis and wound healing after cardiac
injury. Moreover, OPN expression is signifi-
cantly increased during dilated and hyper-
trophic cardiomyopathy, MI, and HF; decreased
OPN is closely related to improved heart func-
tion and reduced apoptosis in cardiomyocytes
[74].

Periostin

Periostin is an adhesive matricellular glycopro-
tein secreted by activated cardiac fibroblasts via
the stimulation of cytokines, mechanical stress,
and the TGFb signaling pathway. It is involved
in cell proliferation, inflammation response,
and tumorigenesis. It is also a crucial matricel-
lular factor which participates in cardiac mes-
enchymal tissue development and cell–matrix
crosstalk in myocardium during fibrogenesis. It
contains a fasciclin domain that is highly pro-
duced by activated fibroblasts and released
into the ECM after cardiac damage. Periostin
can be expressed in epicardium, smooth muscle
cells in vasculatures, and valvular interstitial
cells, which can be used as targets for treating
cardiac fibrosis. Moreover, it controls ECM
assembly and plays indispensable roles in hearts
from neonatal mice [75].

Secreted Protein Acidic and Rich
in Cysteine (SPARC)

SPARC is a glycoprotein that has a high affinity
calcium-binding domain and a strong affinity
for collagen. It is involved in the activation of
fibroblasts, collagen synthesis, and fibrogenesis,
promoting growth factor signaling and facili-
tating angiogenesis. SPARC can induce TGFb
signaling and stimulate ADAMTS1, which can
enhance collagen assembly and stabilization in
cardiac fibrosis [76].

Thrombospondin (TSP)-1

Thrombospondins (TSPs) are major ECM gly-
coproteins that include five members. All TSP
members have useful but complicated mul-
tidomains which allow interactions with
numerous cytokines, chemokines, receptors,
growth factors, and other ECM proteins. Among
TSPs, TSP1 is the most well-known and investi-
gated member. TSP1 exerts antiangiogenic
activity and is able to activate TGFb, which is a
key regulator in profibrotic and anti-inflamma-
tory processes. TSP1 regulates cardiac fibrogen-
esis through multiple ways, such as influencing
collagen production, affecting activity of MMPs,
activating TGFb signaling, promoting myofi-
broblast differentiation, regulating cardiomy-
ocyte apoptosis, and controlling myocardial
contraction. TSP-1-deficient animal models
have been evaluated for many cardiovascular
conditions like MI, cardiac hypertrophy, and
HF. TSPs are promising therapeutic targets for
treating cardiac fibrosis [77].

Tenascin C (TNC)

TNC is a large extracellular matrix glycoprotein
and transiently expressed in the heart at several
important stages during embryonic develop-
ment. It is weakly present in adult healthy
hearts, but can be re-expressed, upregulated,
and deposited in myocardium in a spatiotem-
porally constrained manner post cardiac injury
(e.g., MI, HF). TNC participates in inflammation
and fibrogenesis and can activate integrin sig-
naling in macrophages to promote fibrogenesis.
Although TNC knockout mice can present a
grossly normal phenotype, multiple disease
mouse models with TNC knockout have proved
that TNC is a key regulator in controlling
inflammation, tissue repair, and cardiac regen-
eration. TNC has both detrimental and benefi-
cial effects in injured hearts. However, it seems
that TNC exhibits more harmful effects because
of its proinflammatory and profibrotic func-
tions. Nevertheless, TNC is a promising diag-
nostic and prognostic biomarker for
inflammatory heart diseases, and can be a
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potential therapeutic target for cardiac fibrosis
[78].

SIGNALING PATHWAYS INVOLVED
IN CARDIAC FIBROSIS

TGFb Signaling

TGFb signaling is a critical mediator in the
regulation of cell growth, proliferation, differ-
entiation, cell injury, inflammation, immune
function, and tissue repair [79]. It is critical in
fibrogenesis, including cardiac fibrosis. The
canonical TGFb signaling pathway involves
transcriptional activators of the Smad family
[80]. Mammalian Smads are categorized into
three groups, receptor-activated Smads (includ-
ing R-Smads, Smad1, 2, 3, 5, and 8), inhibitory
Smads (I-Smads, Smad 6 and 7), and common
mediator Smads (Co-Smad, Smad4) [81]. When
R-Smads and Smad2 and Smad3 are phospho-
rylated, the complexes formed by R-Samds, Co-
Smad, and Smad4 will translocate to the
nucleus, which further activates gene tran-
scription [82]. Studies illustrate that TGFb-
Smad2/3 signaling could activate fibroblasts
and promote ECM production in cardiac
remodeling [13, 83]. Activation of TGFb recep-
tors mediates the activation of MAPK signaling,
leading to high expression of p38, JNK1/2, and
ERK1/2 signaling [84]. TGFb can regulate the
phenotypes and functions of fibroblasts. Stim-
ulated by TGFb, fibroblasts can be activated and
transformed into myofibroblasts, characterized
by synthesis of contractile proteins like a-SMA
[85]. During the healing process and patholog-
ical conditions, myofibroblasts are activated
from resident fibroblasts, pericytes, endothelial
cells, and progenitor cells derived from bone
marrow. The derivation of epithelial cells into
myofibroblasts requires stimulation of TGFb/
Smad signaling [86]. In vivo experiments show
that the TGFb-Smad2/3 signaling pathway par-
ticipates in pressure overload-induced cardiac
fibrosis. Deletion of TGFb receptor Tgfbr1/2 and
Smad3 could notably reduce fibrosis induced by
pressure overload. Loss of Smad2/3 decreases
expression of fibrosis-related genes and attenu-
ates ECM deposition [87]. The balance between

ECM synthesis and accumulation is regulated
by TGFb. It elevates collagen I by activation of
the Smad3-dependent pathway. TGFb induces
the generation of protease inhibitors to inhibit
the activity of MMPs. Activation of TGFb sig-
naling leads to tissue fibrosis in many animals
and human beings [83, 88]. Moreover, animal
and human failing hearts present high expres-
sion of TGFb [89, 90]. Inhibition of TGFb/Smad
signaling and EMT by drugs like pioglitazone or
TGFb receptor-specific antagonists can signifi-
cantly alleviate cardiac fibrosis [91, 92]. Smad-
dependent pathway (TGFb/Smads, TGFb/Sirtu-
ins, TGFb/BMP, TGFb/miRNAs, TGFb/MAPK)
and Smad-independent pathway (TGFb/PI3K/
Akt, TGFb/Rho/ROCK, TGFb/Wnt/b-catenin)
signaling is also indispensable in cardiac fibrosis
[79].

Transcription Factor Nuclear Factor (NF)-
jB Signaling

NF-jB signaling mediates cell growth, stress,
and inflammation [93]. The effect of NF-jB on
cell survival may be either pro- or anti-apoptotic
according to different cell types and stimuli
[94]. NF-jB is a key signal leading to induction
of cell apoptosis in response to endoplasmic
reticulum (ER) stress [95]. Mounting evidence
indicates that NF-jB activity is enhanced in
many cardiological diseases, and NF-jB signal-
ing is strongly associated with cardiac fibrosis
[96–98]. Clinical studies prove that NF-jB is
activated in failing human hearts [99, 100]. NF-
jB signaling inducing cardiac fibrosis and
hypertrophy involves multiple mechanisms. It
regulates microRNA expression to modulate
fibrosis-associated gene expression [97]. NF-jB
signaling facilitates cardiac fibrosis by ER stress
as well [101]. Additionally, NF-jB signaling has
crosstalk with inflammation signaling to induce
cardiac fibrosis [102]. Inflammatory factor IL-6
is upregulated by arginine vasopressin in rat
cardiac fibroblasts through regulation of the
GRK2/NF-jB pathway [103]. Activation of NF-
jB can elevate inflammatory factor interleukin-
17 (IL-17)-induced MMP-1 in primary human
cardiac fibroblasts to enhance cardiac fibrosis
[104]. NF-jB signaling can strengthen cardiac
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fibrosis by interacting with oxidative stress.
Inhibition of NF-jB signaling and ROS genera-
tion can decrease cell necrosis and apoptosis in
myocardial ischemia/reperfusion [105]. Inhibi-
tion of NF-jB signaling by applying transgenic
animals or pharmacological NF-jB antagonists
was shown to be cardioprotective [106–109].
Activation of NF-jB can lead to adaptive cardiac
hypertrophy, and inhibition of NF-jB can
ameliorate cardiac hypertrophy induced by
chronic pressure overload [110]. Inhibition of
NF-jB can also attenuate Ang II-induced
hypertrophy accompanied by altered expression
of IL-6 receptor protein gp130 [111]. Suppres-
sion of the TLR4/NF-jB signaling pathway can
also ameliorate cardiac fibrosis in mice with
myocardial hypertrophy [112]. Thus, NF-jB
signaling is important in regulating cardiac
remodeling.

mTOR Signaling

The mammalian target of rapamycin, mTOR,
plays a critical role in regulating mRNA trans-
lation and determining cell and organ size
[113]. mTOR has two functional complexes:
mTORC1 is sensitive to rapamycin and
mTORC2 is insensitive to rapamycin. Studies
indicate that inhibition of mTOR can activate
expression of proinflammatory cytokines
through NF-jB in immune cells [114]. Accu-
mulating evidence indicates that mTOR activity
and its associated signaling are activated in
cardiac fibrosis and hypertrophy in response to
Ang II, b-adrenergic stimulation, and insulin
growth factor 1 [115–117]. Cardiac fibrosis
induced by NADPH oxidase 4 is due to the
activation of Akt/mTOR and NF-jB [118]. Car-
diac fibrosis induced by leptin is also correlated
with increased oxidation and the activation of
the mTOR signaling pathway in cardiac myofi-
broblasts [119]. Blocking mTOR with rapamycin
can decrease heart weight in models with
hypertrophy, and mitigate the size increase of
cardiomyocytes induced by Ang II and hydro-
gen peroxide [120]. Cardiac fibrosis induced by
TGFb1 can be inhibited by mediating the
AMPKa/mTOR signaling pathway [121]. Sup-
pression of mTOR mitigates cardiac fibrosis and

hypertrophy induced by chronic pressure over-
load [113]. However, some studies point out
that mTOR ameliorates adverse outcomes
induced by pressure overload, and it plays a
cardioprotective role by suppressing the release
of cytokines and inhibiting NF-jB activity [122].
Moreover, when cardiac function deteriorates,
mTORC1 is inactivated and HF may develop
[123]. Thus, mTOR signal might play a compli-
cated role in regulating cardiac fibrosis in a
time- and space-dependent manner.

Mitogen-Activated Protein Kinase (MAPK)
Signaling

The MAPK signaling cascade contains extracel-
lular signal-regulated kinase 1/2 (ERK1/2), c-Jun
N-terminal protein kinase (JNK), and p38
mitogen-activated protein kinase (p38 MAPK).
p38 MAPK contains four isoforms, p38a, p38b,
p38c, and p38d. P38a is an important ingredient
expressed in healthy hearts whereas p38b
expression is much lower [124]. Extensive evi-
dence demonstrates that the MAPK signaling
cascade is involved in cardiac fibrosis [125–127].
p38a MAPK contributes to cardiac hypertrophy
and p38 MAPK signaling is activated in cardiac
fibrosis induced by MI [128]. Impaired cardiac
function and ECM remodeling are also associ-
ated with the activation of the b2-AR-Nox-ROS-
p38 MAPK axis [129]. ROS and p38 MAPK exert
critical roles in cardiac fibrosis; ROS can trigger
cardiac fibrosis by activating MMPs [130]. As
part of MAPK signaling, the ERK1/2 signaling
pathway is activated by ROS and EN-1 in cardiac
fibrosis in dilated cardiomyopathy, and antiox-
idant agents could inhibit ROS production and
ERK1/2 signaling to prevent cardiac fibrosis
[131, 132]. Studies also believe that cardiac
fibrosis and hypertrophy induced by pressure
overload can be associated with the activation
of JNK, ERK, and p38 MAPK. JNK activation is
related to the reduction of gap junction, ERK
activation is correlated with the growth of car-
diomyocytes, and p38 MAPK activation is asso-
ciated with enhanced cardiac fibrosis [133].
Thus, regulation of the MAPK signaling path-
way is a promising method to treat cardiac
fibrosis.
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Na/K-ATPase Signaling

Na/K-ATPase, a canonical ion transporter on cell
membranes mediating Na? and K? transport,
functions as a signal transducer to prolong the
activation of Na/K-ATPase signaling. There is
about 700 pmol/g wet weight of Na/K-ATPase on
cardiomyocytes in normal myocardium from the
human left ventricle [134]. Interestingly, about
40% of Na/K-ATPase is lost in human dilated
cardiomyopathy [135]. Studies prove that Na/K-
ATPase is involved in cardiac fibrosis [136, 137].
Mutant rodents expressing a ouabain-sensitive
form of Na/K-ATPase a1 subunit exposed to
transverse aortic coarctation (TAC) were subject
to earlier and severe cardiac fibrosis and hyper-
trophy compared to wild types. Mice treated with
an ovine anti-digoxin antibody digibind show
inhibition of cardiac fibrosis and hypertrophy
[138]. Moreover, Na/K-ATPase inhibited by digi-
talis triggers myofibroblast differentiation via
enhanced expression of COX-2 and stimulation
of PKA [139]. These studies imply that Na/K-
ATPase plays a critical role during cardiac fibrosis.

Wnt/b-Catenin Signaling

Wnt/b-catenin signaling is activated during
numerous cellular responses, such as cell differ-
entiation and proliferation, inflammation,
ischemic injury, tissue repair, and scar forma-
tion. Numerous studies have shown that Wnt/b-
catenin signaling participates in cardiac fibrosis.
It is reported that the Wnt signaling can pro-
mote fibroblast activation and proliferation
[140]. Wnt signaling participates in heart devel-
opment and is quiescent in normal adult car-
diomyocytes. However, it becomes reactivated in
many cardiovascular conditions, such as cardiac
hypertrophy, or cardiac fibrogenesis [141].

RECEPTORS/ION CHANNELS
INVOLVED IN CARDIAC FIBROSIS

Ryanodine Receptor Type 2 (RyR-2)

RyR-2, the most important Ca2? release channel
in the sarcoplasmic reticulum in

cardiomyocytes, is involved in cardiomyocyte
contraction and cardiac hypertrophy. Mechan-
ical stretch can enhance the expression of
TGFb1 and induce fibrosis in cultured car-
diomyocytes from neonatal rats. Knockdown of
RyR-2 can significantly reduce TGFb1 expres-
sion in cardiomyocytes and suppress collagen
gene expression in cardiac fibroblasts with
mechanical stretch, suggesting that RyR-2 pro-
motes cardiac fibrosis through regulating TGFb1
under mechanical stretch [142]. Another study
indicated that RyR-2± mice exhibited less com-
pensated cardiac fibrosis, hypertrophy, and
contractility under pressure overload compared
with wild-type mice, suggesting that RyR-2
contributes to cardiac fibrosis and hypertrophy
through regulation of Ca2? release from the
sarcoplasmic reticulum [143].

Transient Receptor Potential Cation
Channel 3 (TRPC3)

TRPC proteins, which are non-selective Ca2?

permeable channels, are involved in maladap-
tive cardiac remodeling. TRPC3 plays a positive
role in the regulation of ROS in the heart. It can
modulate fibroblast activities and functions in
rats with AF [144]. A membrane-bound ROS
enzyme named NADPH oxidase 2 (Nox2) pro-
motes fibrosis by regulating TGFb and Ang II-
mediated Akt and Wnt signaling pathways in
cardiomyocytes and cardiac fibroblasts. TRPC3
reduces fibrosis by stabilizing Nox2. TRPC3
interacts with Nox2 physically at C-terminal
sites of TRPC3 and inhibits Nox2 from protea-
some-dependent degradation. Nox2 stabilizes
TRPC3 proteins to intensify TRPC3 channel
activity. TRPC3 enhances Nox2-induced ROS
production in cardiomyocytes from neonatal
rats [145, 146]. Moreover, peptides at TRPC3
C-terminal abolish TRPC3-mediated ROS syn-
thesis [146, 147]. Studies indicate that inhibi-
tion of TRPC3 pharmacologically can
significantly attenuate cardiac reactive fibrosis
and left ventricular diastolic dysfunction in
mice with dilated cardiomyopathy [148].
Moreover, blockage of TRPC3 and TRPC6 toge-
ther with genetic deletion and selective small
molecules in mice and rats can prominently
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suppress pathological cardiac fibrosis and
hypertrophy induced by sustained pressure
overload [149]. These results suggest TRPC3
might be a potential therapeutic target for
fibrosis reversal.

Sphingosine 1-Phosphate Receptor (S1PR)

S1P is a bioactive lipid and lysophospholipid
mediator exerting regulation of cell prolifera-
tion, differentiation, and migration. S1P plays a
cardioprotective role in many animal models
and exerts pro- and antifibrotic roles during
injuries depending on different cell types [150].
S1P promotes the transformation of myofi-
broblasts by activation of the TGFb signaling
pathway. TGFb promotes sphingosine
kinase 1(Sphk1) expression, and inhibition of
Sphk1 may decrease S1P in the blood. Silent
Sphk1 notably decreases collagen production
induced by TGFb [151, 152]. Neutralization of
S1P in the extracellular space with specific
antibodies inhibits collagen production
induced by TGFb [152]. Besides, overexpression
of Sphk1 promotes fibrosis and degeneration of
cardiomyocytes [153]. The binding between S1P
and its G-protein receptor sphingosine 1-phos-
phate receptors (S1PRs) activates signaling
involved in cardiac fibrosis [154]. S1PRs have
five subtypes, of which S1PR1 is the most
abundant in the myocardium. S1PR on car-
diomyocytes is involved in hypertrophy and
cardiac protection. Activation of S1PR can
inhibit cAMP production and reduce adrenergic
receptor-induced contractility [155]. Activation
of S1PR on fibroblasts can mediate migration
and proliferation which are necessary for fibro-
sis and cardiac remodeling. Activation of car-
diac S1PR also affects heart rate and cardiac
contractility, and promotes hypertrophy, pro-
tecting the heart from ischemia. S1PR knockout
mice display embryonic lethality and exhibit
progressive heart failure [156]. However, exces-
sive exposure to S1PR agonists may result in a
vascular leak and fibrosis [157].

Other ion channels are also involved in car-
diac fibrosis, such as sarcoendoplasmic reticu-
lum calcium ATPase (SERCA) in
cardiomyocytes; Ca2? release-activated Ca2? (

CRAC) channels; potassium channels; sodium
channels, and voltage-gated Ca2? channels
(VGCCs) in myocardial fibroblasts [158]. Thus,
modifying and targeting ion channels in car-
diomyocytes and cardiac fibroblasts are poten-
tial ways to regulate cardiac fibrosis after cardiac
injury.

NONCODING RNAS INVOLVED
IN CARDIAC FIBROSIS

MicroRNAs

MicroRNAs are a class of small noncoding RNAs
with a length of about 22–25 nt. They partici-
pate in the vast majority of biological and
pathological processes involved in cell prolifer-
ation, cell apoptosis, organ development, and
disease progression. Recent studies demonstrate
that microRNAs contribute to the progression of
cardiac hypertrophy, cardiac fibrosis, and
angiogenesis under cardiomyocyte injuries in
many cardiac diseases. MicroRNAs can act as
both positive and negative regulators for cardiac
fibrosis [159]. A recent study shows that miR-
130a is significantly increased in mice infused
with angiotensin II and human failing hearts.
Upregulation of miR-130a in cardiac fibroblasts
enhances profibrotic response, and downregu-
lation of miR-130a can reverse this phenotype
[160]. miR-133 is a negative regulator of fibrosis
by downregulation of CTGF [161]. miR-433 is
shown to be a trigger of cardiac fibrosis through
inhibition of antizyme inhibitor 1 (AZIN1) and
JNK1 in cardiac fibroblasts [162]. In addition,
miR-1, miR-133a, miR-199, and miR-21 increase
the expression of TGFb/Smad3 by downregula-
tion of AZIN1, whereas miR-15, miR-199, miR-
21, miR-29, and miR-208 can decrease the
expression of JNK1, leading to increase of
pSmad3 expression. These microRNAs are criti-
cal in regulating fibrosis synthesis and degra-
dation in the myocardium [163].

Long Noncoding RNAs (lncRNAs)

LncRNAs are another class of noncoding RNAs
with lengths over 200 nt and seldom encode
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proteins. Mounting evidence states that
lncRNAs are involved in multiple biological and
pathological conditions at transcriptional, post-
transcriptional, and translational levels
[164, 165]. Recent studies indicate that lncRNAs
can modulate cardiac fibrosis as well. LncRNA
Wisp2 super-enhancer-associated RNA (Wisper)
is enriched in cardiac fibroblasts. Expression of
Wisper is positively correlated with cardiac
fibrosis-related markers collagen type 1 alpha 1
chain (COL1A1) and collagen type III alpha 1
chain (COL3A1) in both MI models in murine
and human heart with aortic stenosis. Besides,
Wisper is important in regulating cardiac
fibroblast proliferation and migration. Down-
regulation of Wisper attenuates fibrosis induced
by MI [1]. IL-17 is involved in the pathological
formation of cardiac fibrosis. A recent study
demonstrates that lncRNA AK081284 is upreg-
ulated in cardiac fibroblasts treated with IL-17,
and increased AK081284 enhances collagen and
TGFb production [166]. Another study clarifies
that miR-455 is negatively correlated with the
expression of collagen I and III, and miR-455
could downregulate the expression of CTGF.
Moreover, mitigating expression of lncRNA H19
can notably upregulate miR-455, leading to
attenuated expression of CTGF [167]. Another
lncRNA named growth arrest-specific 5 (GAS5)
can regulate cardiac fibrosis as well. GAS5 is
downregulated and miR-21 is increased in car-
diac fibrosis tissue. Elevating GAS5 expression
suppresses cardiac fibroblast proliferation by
mitigating the expression of miR-21 through
regulation of the PTEN-MMP-2 signaling path-
way [168]. As lncRNAs are also involved in car-
diac development and fibrogenesis, more
underlying mechanisms should be further
determined, an they are potential therapeutic
targets involved in cardiac fibrosis.

Circular RNAs

Circular RNAs are a group of noncoding RNAs
important in cellular biology. However, their
functions in cardiac fibrosis and cardiac regen-
eration are largely unknown. In recent years,
circular RNAs have been reported to regulate
cardiac repair. A study demonstrated that

mitochondria-derived ROS production can be
regulated by a mitochondria-localized circular
RNA named circSamd4, which are expressed in
fetal and neonatal cardiomyocytes. Moreover,
the transcription factor Nrf2 can regulate the
expression of circSamd4 to control oxidative
stress in mitochondria. Upregulation of cir-
cSamd4 can induce proliferation and prevent
apoptosis in cardiomyocytes, and reduce fibro-
genesis after MI [169].

MITOCHONDRIA ARE INVOLVED
IN CARDIAC FIBROSIS

Mitochondria are one of the most critical cell
organs in cardiomyocytes. They account for
one-third of the cell volume and participate in
ATP production and energy balance to maintain
the normal contraction and dilation of the
heart. Different cardiac injuries can result in
mitochondrial membrane damage, ion channel
opening, mitochondrial membrane potential
loss, mitochondrial permeability transition pore
(mPTP) opening, water and sodium entering
mitochondria leading to mitochondrial swel-
ling and breakage, and activation of apoptosis.
Moreover, mitochondrial DNA can be damaged
and plenty of ROS can be produced, which can
negatively control the TCA cycle and ATP pro-
duction. Moreover, multiple signaling pathways
are activated during this process to promote
cardiac fibrosis.

PROMISING HERBAL PLANTS
IN INHIBITION OF CARDIAC
FIBROSIS

As fibrosis occurs in numerous heart diseases,
therapeutic strategies targeting cardiac fibrosis
are promising treatments for cardiac diseases. In
recent decades, increasing attention is paid to
plant components because of their safety and
easy accessibility. Accumulating evidence indi-
cates that multiple traditional herbs restrain or
reverse fibrosis via anti-inflammation, anti-ox-
idative stress, and relevant signaling. These
findings indicate that herbal plants are promis-
ing in treating cardiac fibrosis.

Cardiol Ther (2023) 12:415–443 425



Andrographolide

Andrographolide, a major botanical compound
from a medical herb named Andrographis panic-
ulata, has been used in Chinese traditional
medicine for decades. Accumulating studies
illustrate that andrographolide has multiple
biological functions, e.g., it can protect against
inflammation [170], oxidative stress [171], and
hyperglycemia [172]. Andrographolide can also
alleviate liver fibrosis by activation of the Nrf2-
associated antioxidant pathway, and it inhibits
fibrogenesis and inflammation in non-alcoholic
steatohepatitis [173–175]. Andrographolide
treatment can ameliorate pulmonary fibrosis by
decreasing the level of oxidative stress via
reducing malondialdehyde (MDA) and increas-
ing the glutathione/oxidized glutathione ratio,
and decreasing the production of collagen I and
collagen III [176, 177]. Andrographolide also
attenuates diabetic nephropathy by reducing
oxidative stress and inflammation mediated by
the Akt/NF-jB pathway [178]. Wu et al. reported
that administration of andrographolide for
7 weeks orally (25 mg/kg/day) significantly
improves cardiac function and attenuates car-
diac fibrosis in mice with cardiac hypertrophy
induced by aortic banding. Andrographolide
mitigates transcription of hypertrophy-related
genes (ANP, BNP, and b-MHC), and fibrosis-as-
sociated genes (collagen I, collagen III, TGFb,
and CTGF). Cardiomyocytes treated with
andrographolide exhibit a blunt response to
angiotensin II. Andrographolide prevents acti-
vation of cardiac fibroblasts and cardiac hyper-
trophy in mice through inhibiting the MAPK
signaling pathway [179].

Arctiin

Arctiin is an active ingredient from Arctium
lappa L. in traditional Chinese medicine. Evi-
dence shows that arctiin is administered to fight
against viral infection [180] and cancers [181].
Arctiin can inhibit inflammation by suppressing
COX-2 expression via the NF-jB signaling
pathway [182]. Arctiin can reduce serum glu-
cose and hemoglobin levels in rats with diabetic
mellitus, decreasing the incidence of diabetic

retinopathy [183]. It reduces endoplasmic
reticulum stress-induced EMT of podocytes
[184]. It is also effective in attenuating
glomerulosclerosis and albuminuria by regula-
tion of nephrin and podocin expression [185].
Arctiin aglucone arctigenin inhibits renal
interstitial fibrosis in rats with obstructive
nephropathy by decreasing collagen deposition,
epithelial atrophy, and tubular dilatation via
downregulating inflammatory cytokines TNFa,
interferon-c (IFNc), and interleukin-1b (IL-1b)
and upregulating anti-oxidation manganese
superoxide dismutase, implying that arctiin has
potential in treating renal fibrosis [186].
Recently, Li et al. discovered that actiin can
prevent pressure-overload and phenylephrine-
induced cardiac hypertrophy in mice by inhi-
bition MAPKs and AKT signaling [187]. These
studies indicate that arctiin might play an anti-
fibrosis role in heart diseases.

Arjunolic Acid

Arjunolic acid is one of the elementary bioac-
tive ingredients of arjuna extracts. Purified
arjunolic acid has multiple biological functions,
such as anti-oxidative stress, anticoagulant,
anti-apoptosis, and anti-inflammation
[188–190]. Arjunolic acid restrains intracellular
ROS-dependent JNK-p38 and p53-mediated
cardiac apoptosis induced by doxorubicin [191].
Arjunolic acid can reduce cardiac toxicity
induced by sodium nitrite by balancing cell
apoptosis [191]. In addition, arjunolic acid
inhibits collagen expression and elevates car-
diac function in cardiac hypertrophy, because it
can bind and stabilize its ligand binding
domain named peroxisome proliferator-acti-
vated receptor alpha (PPARa). Moreover, it
promotes PPARa expression and represses TGFb
signaling specifically by suppressing TGFb acti-
vated kinase 1 (TAK1) phosphorylation in car-
diac hypertrophy. PPARa N-terminal
transactivation domain (AF-1) interacts with
TAK1 directly, thereby masking TAK1 kinase
domain. The level of arjunolic acid-induced
PPARa-bound TAK1 presents an inverse corre-
lation with TAK1 phosphorylation and subse-
quently reduces activation of p38 MAPK and
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NF-jBp65, ameliorating excess collagen syn-
thesis in cardiac hypertrophy. This study
implies that arjunolic acid is a PPARa agonist
which could inactivate non-canonical TGFb
signaling in cardiac fibrosis [192].

Astragaloside IV

Astragaloside IV is a bioactive ingredient in
Astragalus membranaceus Bunge (Fabaceae).
Mounting evidence indicates that astragalus
resists cell apoptosis, oxidative stress, and viral
infection. Astragaloside is identified to prevent
hepatic fibrosis by suppressing the PAR2 sig-
naling pathway in diabetic rats and inhibiting
the Notch signaling pathway in rats with cho-
lestatic liver fibrosis induced by common bile
duct ligation [193, 194]. Astragaloside IV effec-
tively restrains pulmonary fibrosis in rats
induced by bleomycin via mitigating ECM
deposition [195]. Moreover, astragaloside IV can
prevent glucose-mediated podocyte apoptosis
and protects against renal fibrosis by inhibition
of TGFb1-induced fibrosis in mouse renal
fibroblasts through suppression of MAPK and
NF-jB signaling pathways [196, 197]. Astraga-
loside IV alleviates myocardial ischemia reper-
fusion-induced cardiac injury by activating HIF-
1a signaling and energy regulation [198, 199].
Another study proves that astragaloside IV
could target calcineurin, angiotensin-convert-
ing enzyme, and c-JNK to block calcium influx
to exert a protective role in cardiac diseases
[200]. Lu et al. found that astragaloside IV could
decrease the expression of PAR1, PAR4, NF-jB,
and inhibit TGFb/p-AKT/p-GSK-3b signaling
and cell apoptosis in cardiac fibroblasts. More-
over, astragaloside IV can reduce cardiac fibro-
sis, and improve cardiac functions in rats with
diabetic cardiomyopathy [201]. In addition,
cardiac fibrosis induced by isoprenaline can be
inhibited by astragaloside IV via inhibition of
ROS expression, phosphorylation of profibrotic
family members of MAPKs, extracellular signal-
regulated kinase, p38 MAPK, and JNK; cardiac
fibrosis could be inhibited by astragaloside IV by
suppression of ROS-induced MAPK activation
[202]. Studies also demonstrate that astraga-
loside IV can prevent isoproterenol-induced

cardiac hypertrophy by modulating NF-jB/
PGC-1a signaling [203]. Astragaloside IV can
attenuate cardiac fibrosis in coxsackievirus B3-
induced cardiomyopathy by inhibiting the
TGFb1 signaling pathway [204].

Baicalin (BA)

BA, a major active flavonoid ingredient in
skullcap, is reported to have antioxidant, anti-
inflammation, and anti-fibrosis functions.
Studies show that baicalin could attenuate liver
fibrosis in nonalcoholic fatty liver disease
(NAFLD) mice by inhibiting the expression of
inflammation-related factors like TNFa, IL-1b,
and MCP-1, suppressing macrophage influx and
nuclear factor-jB, and inhibition of a-SMA,
TGFb1, and Col1A1 [205]. BA has also been
shown to protect against heart and vascular
injuries. BA attenuates atherosclerosis by lipid
regulation and inhibition of dendritic cells in
ApoE-/- mice [206, 207]. BA also exerts a car-
diac protective role in ER stress-induced car-
diomyocyte apoptosis, cardiac infarction, and
hypoxic pulmonary hypertension [208–210]. In
chronic pressure overload-induced cardiac
hypertrophy mice models, BA can induce the
expression of PPARa and mitigate cardiac
fibrosis and cell apoptosis [211]. In cardiac
fibroblasts treated with angiotensin II, BA inhi-
bits cell proliferation and collagen production
by reducing the expression of fibronectin and
CTGF. Moreover, BA inhibits cardiac fibrosis by
regulating AMPK/TGFb/Smads signaling [212].

Corydalis hendersonii Hemsl. (CH)

CH mainly grows in northern temperate regions
of Tibet with an altitude of 4200–4500 m [213].
It is a well-described folk medicine with effects
of clearing heat and detoxifying. It has been
applied for the treatment of high-altitude
polycythemia for centuries in Chinese tradi-
tional medicine [214]. It is also used for thera-
peutic treatments of hepatitis, hypertension,
gastritis, edema, and infectious diseases [213].
Bai et al. showed that CH treatment in mice
with acute myocardial infarction (AMI) has a
dose-dependent cardioprotective effect. It
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decreases left ventricular end-diastolic diameter
(LVEDs), improves EF compared to those with-
out CH treatment; CH alleviates the increase of
LDH and CK-MB in serum; reduces plasma
inflammation factors like Ang II, TNFa, IL-6,
and IL-1b and expression of cardiac MMP-2 and
MMP-9. Moreover, CH decreases p-p65, p-IjBa,
p-JAK2, p-STAT3, MMP-2, and MMP-9 in myo-
cardium from mice with AMI. CH also reduces
inflammatory cell infiltration around infarcted
areas and inhibits platelet aggregation. Thus,
CH exerts as a cardiac protector against MI by
inhibition of myocardial fibrosis, inflammation,
and platelet aggregation via NF-jB and JAK2-
STAT3 signaling [213].

Kaempferol

Kaempferol is a remarkable component of
Kaempferia exerting anti-inflammatory and
anti-oxidative stress effects in many diseases.
Kaempferol is abundant in apples, beans, citrus,
strawberries, and tea [215]. Kaempferol is very
important because it regulates cell apoptosis,
cell cycle, and inflammation in cancer cells
[216–218]. Kaempferol shows many benefits in
treating atherosclerosis, hyperlipidemia, and
coronary heart diseases owing to its anti-in-
flammatory and anti-oxidative stress properties
[219]. It reduces fibrosis formation induced by
angiotensin II as it inhibits Ang II- or TGFb-in-
duced EMT and suppresses the proliferation and
activation of cardiac fibroblasts, which can
alleviate cardiac fibrosis production [220].
Kaempferol mitigates cardiac injuries induced
by hyperglycemia through the alleviation of
inflammation and oxidative stress. It protects
myocardium of diabetic cardiomyopathy by
suppressing NF-jB nucleus translocation and
exciting a nuclear factor named erythroid 2
p45-related factor-2 (Nrf2). Kaempferol also
prevents cardiac fibrosis and apoptosis in
streptozotocin (STZ)-induced diabetic mice
[221]. Kaempferol can reduce cardiac fibrosis
and hypertrophy, and improve cardiac func-
tions in mice treated with aorta banding by
modulation of oxidative stress and the ASK1/
MAPK signaling pathway [219]. Another plant
containing kaempferol named Boerhavia diffusa

also exerts a cardioprotective role in rats with
Ang II-induced cardiac fibrosis and hypertro-
phy. It reduces ANP and BNP expression and
cardiac mass index induced by Ang II and
upregulates endogenous antioxidant enzymes
with elevated translocation of Nrf2 from cyto-
plasm to the nucleus. Moreover, it attenuates
cardiac fibrosis significantly by decreasing the
lipid and protein oxidation induced by Ang II
[222]. These results demonstrate that kaemp-
ferol has potential for treating cardiac fibrosis.

Matrine

Matrine, an extract from Chinese traditional
medicine named Kushen (Sophora
alopecuroides L.), exerts anti-inflammatory and
anti-oxidative stress effects in many diseases
[223, 224]. It exhibits an anti-fibrosis role by
inhibiting the TGFb/Smad signaling pathway in
liver and renal fibrosis [225, 226]. Zhang et al.
discovered that matrine is a negative regulator
of the TGFb signaling pathway. Administration
of matrine improves left ventricle function,
heart compliance, and reduces cardiac fibrosis
via inhibition of the TGFb1/Smad signaling
pathway in diabetic cardiomyopathy rat mod-
els. High glucose increases collagen production
by activation of the TGF-1/R-Smad signaling
pathway and suppression of I-Smad signaling in
cultured cardiac fibroblasts. However, treatment
with matrine at non-cytotoxic concentrations
of glucose without affecting I-Smad in cardiac
fibroblasts, matrine blocks TGFb1/R-Smad sig-
naling transduction and represses collagen
production and deposition [227]. Liu et al. also
found that giving 200 mg/kg/day matrine for 10
consecutive days to rats with diabetic car-
diomyopathy could attenuate cardiac fibrosis
and mitigate the damage of cardiac function via
inhibiting ATF6 signaling, which causes accu-
mulation of intracellular calcium and activation
of ECM expression triggered by NFAT. More-
over, cardiac fibroblasts treated with matrine
and high glucose could significantly decrease
the activity of calcineurin and reduce the
expression of fibronectin and collagen I com-
pared with cardiac fibroblasts treated with high
glucose alone [228]. All these studies suggest
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that matrine plays a significant cardioprotective
role in cardiac fibrosis.

Myricitrin

Myricitrin is a major flavone component in the
root bark of Myrica esculenta, Myrica cerifera,
Ampelopsis grossedentata, and some other plants.
Some analysis indicates that myricitrin inhibits
apoptosis of retinal pericytes induced by high
glucose [229]. Myricitrin regulates the produc-
tion of NADPH oxidase-dependent ROS, which
can inhibit endotoxin-induced inflammation
through inhibiting JAK/STAT1 and NOX2/
p47phox signaling pathways [230]. Moreover,
myricitrin can protect against hypoxia/reoxy-
genation-induced injury in cardiomyocytes
[231]. Myricitrin mitigates high glucose-medi-
ated apoptosis of H9C2 myocardiocytes by
activation of the Akt-Nrf2 signaling pathway
[232]. Another study elucidated that myricitrin
prevents against cardiotoxicity induced by
doxorubicin via inhibiting oxidative stress and
mitochondrial apoptosis through the ERK/P53
pathway [233]. Besides, pretreatment with
myricitrin prominently decreases advanced
glycation end product (AGE)-induced TGFb1
and collagen I expression, mitigates ROS
increase, and inhibits cell apoptosis and fibrosis
in H9C2 cells through Nrf2 activation and NF-
jB inhibition. Oral administration of myricitrin
to STZ-induced diabetic mice with a concen-
tration of 300 mg/kg/day for 8 weeks can sig-
nificantly improve heart function and
myocardial fiber arrangement. Furthermore,
fibrosis and collagen accumulation are signifi-
cantly reduced in myocardium. Myricitrin can
significantly increase anti-oxidation enzymes
Nrf2, HO-1, and NQO-1, and decreases inflam-
mation related IL-6 and TNFa genes. Apoptosis
of cardiomyocytes is attenuated by myricitrin
via activation of Akt and inhibition of ERK sig-
naling. These findings suggest that myricitrin
protects myocardium through inhibiting apop-
tosis of cardiomyocytes and reducing fibrosis
synthesis by inhibition of inflammation,
oxidative stress, and apoptosis [234].

Nigella sativa

Nigella sativa is a protective traditional medicine
applied in many Asian countries. It is reported
N. sativa helps resist inflammation, cancer, and
fights against immune disorders and parasitic
diseases [235]. N. sativa is reported to attenuate
pulmonary fibrosis induced by bleomycin in
rats [236], and it demonstrated an anti-fibrosis
effect in liver, oral, and renal fibrosis in different
animal models and clinical practice [237–239].
N. sativa (2.5, 5, and 10 ml/kg) administered to
rats for 12 consecutive weeks while receiving
80 mg/kg sodium nitrite orally prominently
reduced sodium nitrite-induced increases of
serum urea and creatinine, and significantly
reduced the expression of fibrosis markers like
MCP-1 and TGFb1. N. sativa can ameliorate
nephrotoxicity induced by sodium nitrite via
inhibition of oxidative stress, restoration of
fibrosis and inflammation, amelioration of
cytochrome c oxidase, and attenuation of
apoptosis [237]. Norouzi et al. found that
N. sativa reduces heart IL-6 and TNFa expres-
sion, ameliorates expression of the oxidative
stress marker MDA and collagen production in
myocardium from rat inflammation models
induced by lipopolysaccharide in a concentra-
tion-dependent manner. After treatment with
N. sativa, the total thiol, superoxide dismutase
(SOD), and catalase are increased. Cardiac
fibrosis is also decreased by N. sativa in a con-
centration-dependent manner. All these exper-
iments suggest that N. sativa mitigates cardiac
fibrosis by affecting oxidative/antioxidative
balance, and increasing antioxidative enzymes
[240].

Roselle

Roselle, also known as Hibiscus sabdariffa L., is
often consumed as juice or hot tea because of its
nutraceutical benefits. It is an antioxidant and
could protect insulin-resistant rats against
hyperglycemia and hyperlipidemia [241]. A
study indicates that rosemary extract can inhi-
bit pulmonary fibrosis induced by bleomycin
[242]. Roselle extract can also protect against
cardiac oxidative damage in diabetic rats. Si
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et al. find that roselle could improve heart
functions in obese rats with MI, as it increases
left ventricular diastolic pressure (LVDP), LVdP/
dtmax, LVdP/dtmin, coronary flow, and rate
pressure product (RPP). Besides, roselle decrea-
ses collagen production, ANP, BNP expression,
fibrosis production, and inhibits oxidative stress
by reducing Nox2 expression, enhancing SOD
enzyme activity and increasing GSH concen-
tration [243]. Moreover, roselle attenuates car-
diac fibrosis in rats with MI induced by
isoproterenol.

Rosemary (Rosmarinus officinalis L.)

Rosemary is a medical herb with antioxidant
and anti-inflammatory effects. One study
reported that intraperitoneal administration of
75 mg/kg of rosemary leaf extract for 4 weeks
could significantly attenuate pulmonary fibrosis
in rats by inhibiting oxidative stress induced by
bleomycin [242]. Rosemary extract also relieves
liver cirrhosis mediated by thioacetamide in
male rats [244]. Murino Rafacho et al. discov-
ered that dietary supplementation of rosemary
could significantly reduce cardiac fibrosis and
improve cardiac function after myocardial
infarction by decreasing collagen production,
LDH activity, oxidative stress, and increasing
ATP synthase activity, 3-hydroxyacyl coen-
zyme A dehydrogenase activity, and citrate
synthase activity [245]. Another study showed
that rosmarinic acid from rosemary can signifi-
cantly reduce cardiac fibrosis induced by MI
through regulation of the AT1R/p38 MAPK sig-
naling pathway [128]. These results suggest that
rosemary might be a protective agent for
reducing cardiac fibrosis induced by cardiac
injuries.

Scutellarin

Scutellarin is a flavonoid from a Chinese herb
named Erigeron breviscapus. This traditional
Chinese medicine has been applied in cardio-
vascular diseases for decades [246]. Scutellarin
also has a protective role in cerebrovascular
diseases [247, 248]. Pan et al. discovered that
scutellarin (3 mg/kg, 10 mg/kg, 30 mg/kg) can

significantly improve cardiac function and
reduce fibrosis production in left anterior
descending artery (LAD)-ligation rats. More-
over, scutellarin can significantly decrease the
expression of pro-fibrosis cytokine and inflam-
mation-associated factors TGFb1 and fibrosis-
related glycoprotein fibronectin. Scutellarin
remarkably attenuates elevated phosphoryla-
tion of p38-MAPK and ERK1/2 in infarcted
myocardium and cardiac fibroblasts induced by
Ang II [127]. Other studies also show scutellarin
has a potential cardiac protective role in cardiac
ischemia, as it attenuates the increase of intra-
cellular free calcium during hypoxia in neonatal
cardiomyocytes [249–251]. Moreover, scutel-
larin could inhibit cardiac fibrosis by suppress-
ing EMT in rats with cardiac fibrosis induced by
isoprenaline, and it also reduces the synthesis of
collagen I and collagen III and increases
microvascular density [252]. These results sug-
gest that scutellarin is a potential drug which
could be further investigated in cardiac fibrosis.

Ulmus wallichiana Planchon

Ulmus wallichiana Planchon which belongs to
the Ulmaceae family is a traditional Indian
herbal medicine used as an astringent, emol-
lient, expectorant, demulcent, and diuretic. It
contains quercetin analogue flavonoids.
Ethanolic extracts (EE) and butanoic fractions
(BF) from U. wallichiana are useful for anabolic
effects on osteoporotic bone by enhancing
osteoblast differentiation in ovariectomized rats
[253]. It also can regulate osteoblast differenti-
ation by regulating cytokeratin 14 via mTOR/
Akt signaling. Besides, EE and BF also lower
blood glucose in diabetic rats [254]. Syed et al.
demonstrated that rats with cardiac hypertro-
phy induced by isoprenaline (ISO) present sig-
nificantly reduced blood pressure and heart rate
after treatment of EE and BF from U. wallichiana
(orally, 500 and 50 mg/kg/day, respectively). In
addition, activities of circulating renin, Ang II,
ACE are notably decreased and NO, cGMP levels
are markedly increased by EE and BF. Levels of
ANP, BNP, TNFa, IL-6, MMP-9, b1-AR, and
TGFb1 are decreased and NOS3, ACE2, and Mas
are increased by these two extracts, respectively,
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suggesting that U. wallichiana can protect
against ISO-induced cardiac hypertrophy [255].

Zingerone

Zingerone, an active chemical compound from
Zingiber officinale, is used in spice oils because of
its spicy aroma in the food. Research discovered
that it exerts a protective role against fructose-
induced NAFLD. Muniandy Narayanan and
Jesudoss discovered that intragastric intubation
of NAFLD rats with 100 mg/kg/day of zingerone
could markedly reduce microvesicular steatosis
and sinusoidal fibrosis, and inhibit the infiltra-
tion of inflammatory cells compared with the
group without zingerone treatment, indicating
that zingerone act as an anti-fibrosis factor in
NAFLD [256]. Another study illustrates that
zingerone inhibits cardiac fibrosis. It improves
reduced catalase activity, reduces expression of
angiotensin receptor 1, and inhibits production
of oxidative stress factor 8-isoprostane and uric
acid. Moreover, zingerone remarkedly reduces
TGFb1 expression and inhibits fibrosis in STZ-
induced diabetic rats [257].

DISCUSSION

Cardiac fibrosis contributes to cardiac remodel-
ing in multiple heart diseases and is character-
ized by elevated cardiac fibroblast activity and
excessive ECM synthesis and accumulation.
Current studies indicate that angiotensin-con-
verting enzyme inhibitors (ACEIs), Ang II
receptor II blockers (ARBs), and beta-blockers
can attenuate increased cardiac fibrosis induced
by different injuries [258, 259]. However, these
drugs have some limitations. Some beta-block-
ers, such as metoprolol, induce cardiac fibrosis
by regulation of a G-protein-independent sig-
naling pathway [260]. It is also known that
chronic inhibition of Ang II can lead to an
escape phenomenon. Some studies demonstrate
that chronic treatment with ACEI can enhance
cardiac fibrosis in rats subjected to early ovarian
failure [261].

Natural herbal plants and their active bio-
components have a huge potential as anti-fi-
brosis treatments in cardiologic diseases. They

exert anti-inflammation, anti-oxidative stress,
anti-proliferation, and anti-migration effects on
cardiac fibroblasts and myofibroblasts.
Although many of them are still being investi-
gated in the laboratory and few have entered
clinical practice, many of them have a great
potential for treating cardiologic diseases on the
basis of in vivo and in vitro experiments. Herbal
plants can be natural, safe, and easily accessible.
Numerous experiments demonstrated that her-
bal plants exhibit a range of benefits for dis-
eases, and their anti-inflammatory, anti-
oxidative stress, and anti-fibrosis synthesis
properties imply a great significance in
therapeutics.

Despite advantages, the challenges of these
natural products should also be considered
before their application in clinical trials and
clinical practice. Natural products have multiple
targets, which may lead to off-target activity,
and their effects on humans could be either
beneficial or detrimental. Secondly, efficient
extraction and purification of an effective
component from herbal plants is a long and
difficult process. It is hard to extract effective
biocomponents with 100% purity, which causes
imprecision in relevant studies. The identifica-
tion of effective components is even more
challenging. Obtaining a specific amount of
plant extract will often require a large amount
of raw herbal plants, which can sometimes be
time consuming and expensive. It is more
challenging to make an extract effective in
clinical practice with little dose but high effec-
tiveness. Furthermore, different methods for
extracting effective components have promi-
nent impacts on the production of bioactive
components, which need to be carefully selec-
ted before extraction. More intriguingly, some-
times an active component with lower and
higher doses could lead to totally opposite
results and this also requires deep investigation.
Another big concern is that the current herbal
plant research about cardiac fibrosis is still far
from enough. The underlying mechanisms of
effective extracts from herbal plants, such as
their bioactivity, metabolism, specificity, drug
interactions, delivered methods, and side
effects, etc., are still largely unknown and wait-
ing to be further explored. All in all, extracts
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from natural herbal plants are promising thera-
peutics for cardiac fibrosis.
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