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ABSTRACT

Stroke remains one of the leading causes of
mortality and long-term and permanent dis-
ability worldwide despite technological inno-
vations and developments in pharmacotherapy.
In the last few decades, the growing data have
evidenced the role of the circadian system in
brain vulnerability to damage, the development
and evolution of stroke, and short-term and
long-term recovery. On the other hand, the
stroke itself can affect the circadian system via
direct injury of specific brain structures
involved in circadian regulation (i.e., hypotha-
lamus, retinohypothalamic tracts, etc.) and
impairment of endogenous regulatory mecha-
nisms, metabolic derangement, and a neuro-
genic inflammatory response in acute stroke.

Moreover, the disruption of circadian rhythms
can occur or exacerbate as a result of exogenous
factors related to hospitalization itself, the
conditions in the intensive care unit and the
ward (light, noise, etc.), medication (sedatives
and hypnotics), and loss of external factors
entraining the circadian rhythms. In the acute
phase of stroke, patients demonstrate abnormal
circadian variations in circadian biomarkers
(melatonin, cortisol), core body temperature,
and rest–activity patterns. The approaches
aimed at the restoration of disrupted circadian
patterns include pharmacological (melatonin
supplementation) and non-medication (bright
light therapy, shifting feeding schedules, etc.)
interventions; however, their effects on short-
and long-term recovery after stroke are not well
understood.
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Key Summary Points

Increasing evidence shows that the
circadian system is implicated in the
regulation of processes mediating
vulnerability to stroke, as well as stroke
evolution and post-stroke recovery.

The interaction between the circadian
system and brain damage is bidirectional,
and post-stroke circadian rhythm
disruption is commonly found via
assessment of the circadian variation in
the main circadian biomarkers and
parameters. The impact of these changes
on post-stroke recovery and long-term
prognosis is not well established and
needs further investigation.

The approaches to manage circadian
disruption include medication
(melatonin) and non-medication (bright
light therapy and resetting molecular
clocks by other external signals, such as
shifting feeding schedule and physical
activity). The evidence on their
applicability and efficiency in patients
with stroke is limited.

INTRODUCTION

In 2022, the American Heart Association (AHA)
updated and enhanced the approach to assess-
ing cardiovascular health ‘‘Life’s Essential 8’’ [1].
An important update is the inclusion of sleep
health as a new crucial component in optimiz-
ing and preserving cardiovascular health,
because sleep metrics provide an independent
additional predictive value for cardiovascular
events above the original seven metrics of car-
diovascular health (diet, physical activity,
nicotine exposure, body mass index, blood
lipids, blood glucose, and blood pressure). The
AHA, mainly focusing on sleep duration,
emphasizes the need for the investigation of
other sleep metrics in relation to cardiovascular

health. Sleep health extends far beyond the
recommended duration of sleep [2, 3], as it is a
multidimensional construct with multiple
interacting components (duration, timing, reg-
ularity, efficiency, satisfaction, and impact on
daytime alertness) [4] and it should also be
considered as a part of the circadian sleep–wake
cycle. Increasing evidence highlights the
important role of the circadian system in car-
diovascular functioning. Based on the 2016
report of the Global Burden of Disease 2016
Lifetime Risk of Stroke Collaborators, the global
lifetime risk of stroke for both men and women
aged 25 years or older has been increasing in the
last 3 decades and is estimated at 25% [5].

This review will focus on the role of circadian
factors in stroke, which remains one of the
leading causes of mortality and long-term dis-
ability worldwide [6, 7]. It is based on previously
conducted studies and does not contain any
new studies with human participants or animals
performed by any of the authors.

CIRCADIAN PATTERN OF STROKE
OCCURRENCE

Circadian Timing in Different Stroke
Types

Like other major cardiovascular events, the
incidence of stroke demonstrates an uneven
circadian pattern with two peaks, a major one in
the morning, between 06:00 and 12:00 [8–11],
and a lower one in the evening [12]. A meta-
analysis of 31 publications assessing the circa-
dian timing of 11,816 patients showed such a
double-peak distribution in both ischemic and
hemorrhagic strokes, although it is more clear
in ischemic stroke, and it is independent of age,
gender, vascular risk factors (such as hyperten-
sion, diabetes mellitus, hyperlipidemia, smok-
ing habits), prior cerebrovascular or
cardiovascular events, and previous treatment
with antiplatelet or anticoagulant drugs. In
ischemic stroke, the morning peak is typical for
all TOAST stroke subtypes, but is most pro-
nounced in the large artery atherosclerosis
subtype [10]. However, the National Institute of
Neurological Disorders and Stroke (NINDS) rt-
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PA Stroke Trial did not find clear circadian
variation in the onset of ischemic stroke which
might be due to the selection bias as patients
admitted to the hospital later than 3 h after
symptoms onset were not included in this study
[13].

Stroke Occurrence Timing and Prognosis

Although experimental studies confirm the
association of both occurrence and brain lesion
volume with the time of stroke onset [14], the
clinical data on the association between the
stroke occurrence time and the prognosis is
limited. A retrospective analysis of 3689
patients demonstrated that night-onset stroke
survivors had a worse 30-day prognosis, com-
pared to the patients with day-onset strokes.
This association was present only in ischemic
strokes, and among those, only in the car-
dioembolic subtype. The difference in the
prognosis was explained by the limited thera-
peutic window for thrombolytic therapy [15].
Similar conclusions were made on the basis of
the results of the prospective NINDS rt-PA
Stroke Trial [13]: patients with the stroke onset
between 00:00 and 06:00 were less likely to get
treatment within 90 min. In a recently pub-
lished large Korean study (n = 17,461), night-
onset strokes were more severe and were asso-
ciated with higher rates of early neurological
deterioration and a lower likelihood of a favor-
able functional outcome compared to day-onset
strokes independent of other covariates and
revascularization therapy. The association of
night-onset (versus day-onset) strokes with early
neurological deterioration was significant and
most pronounced in the large artery
atherosclerosis subtype compared to other
stroke subtypes [16]. On the basis of the data
from the Japanese Takashima Stroke Registry,
morning-onset strokes were associated with a
significantly higher risk of a 28-day lethal out-
come compared to afternoon-onset strokes
independently of age, gender, and stroke
severity [17].

The explanations for the diurnal pattern of
stroke occurrence include circadian and/or
postural changes in some pathophysiological

factors observed at awakening and resumption
of physical and mental activities such as
increased platelet aggregation, decreased
thrombolysis, proinflammatory factors, surges
of blood pressure (BP) and heart rate (HR), and
higher catecholamine levels, reflecting a peak in
circadian sympathetic activity along with the
increased activity of the renin–angiotensin–al-
dosterone system [18, 19].

Circadian Misalignment in Stroke: Cause
or Consequence?

Both experimental and clinical studies provide
evidence of the impact of circadian misalign-
ment on stroke development (Fig. 1), including
an increase in the brain lesion volume,
demonstrated worse functional dysfunction,
and higher mortality which is likely due to the
imbalance in the expression of pro- and anti-
inflammatory cytokine genes in the brain
[20–22]. However, some authors suggest that
single light-induced circadian disruption is not
potent enough to cause increased cerebral vul-
nerability to ischemia, and other concomitant
factors or diseases are required [23]. Cantone
et al. demonstrated that exogenous air pollu-
tion could lead to the reprogramming of the
molecular circadian system (clock genes), which
is associated with the severity of subsequent
stroke (assessed by the National Institutes of
Health Stroke Scale (NIHSS) score) and 3-month
disability (evaluated by the modified Rankin
Scale, mRS) [24].

The circadian misalignment appears to be a
potential risk factor for cardiovascular events
including stroke. Even short-term (12-h) circa-
dian misalignment simulating a shift-work
inversion of the behavioral cycle results in the
increase in 24-h BP, reduced BP dipping,
enhanced inflammatory markers (such as C-re-
active protein, tumor necrosis factor alpha,
resistin, and interleukin-6), and caused auto-
nomic imbalance with diminished parasympa-
thetic tone [25]. In a large Japanese cohort
(n = 78,115), a self-reported irregular daily rou-
tine was significantly associated with an
increased risk of incident cardiovascular dis-
eases including stroke in women but not in men
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[26]. A meta-analysis of five studies by Li et al.
did not find an increased risk for the develop-
ment of ischemic stroke (non-significant com-
bined RR, 1.03; 95% CI 0.99–1.07) [27].
However, the association between shift work
and incident stroke might be modified by the
genetic variants, i.e., melatonin receptor
type 1B (MTNR1B) rs10830963 polymorphism
(G-allele displaying a protective role while
C-allele being unfavorable) or other factors [28].

Abnormal patterns in the circadian variation
of BP (non-dipping or extreme dipping [18, 19])
and HR [29] observed in diseases (and some-
times considered a sign of circadian misalign-
ment) represent predictive factors for stroke,
independently of awake and sleep systolic BP
[30, 31]. On the other hand, the available evi-
dence indicates that the abnormal circadian BP
patterns in acute stroke can develop secondary
to stroke resulting from the stroke-related
autonomic imbalance. Thus, patients in the
acute phase of stroke demonstrate diminished
BP variability throughout 24 h and decreased
day–night BP difference. These abnormalities
correlate with the changes in the circadian
variability in other neurohumoral factors, in

particular, the levels of endothelin-1 and brain
natriuretic peptide (BNP) [32–34]. Patients with
acute stroke also demonstrate increased cate-
cholamine levels. The loss of the circadian BP
profile and non-dipping patterns are also com-
mon (up to 90% of patients with stroke)
[35–38]. Some authors report the association
between the abnormal circadian BP pattern and
the specific location of the brain lesion [33, 36]
and other characteristics (e.g., the presence of
cortical microbleeds [39], asymptomatic lacunar
infarcts [40], and other signs of small vessel
disease [41], brain atrophy [42]), although the
data are controversial. Some results suggest that
post-stroke survivors with abnormal circadian
BP profiles (non-dippers, reverse dippers) are
more likely to have a poor outcome [38],
although some reports are conflicting [43].
Makikallio et al. found elevated levels of cortisol
and natriuretic peptides in half of patients with
stroke who died during the follow-up versus
stroke survivors. Cortisol levels were associated
with atrial natriuretic peptide (N-ANP) and
N-BNP levels, catecholamine levels
(r = 0.55–0.94, p\0.01 for all), and measures of
neurologic deficit (r = 0.36–0.44, p\ 0.05) on

Fig. 1 Association between stroke and circadian misalignment (desynchronosis)
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the 2nd and 7th days. High acute-phase cortisol
levels assessed either in the morning (RR = 5.4,
p\0.05) or in the evening (RR = 5.8, p\ 0.05)
predicted long-term mortality after stroke
analysis [44].

An imbalance in prothrombotic (plasmino-
gen activator inhibitor 1, PAI-1) [45] and
antithrombotic (tissue factor pathway inhi-
bitor) [46] factors, which show clear antiphasic
24-h rhythms independent of the sleep–wake
cycle, may play a contributing role to circadian
variation in stroke occurrence [47].

The potential impact of sleep-related factors
and disorders should be also considered. The
autonomic instability and abrupt surges of
sympathetic activity are typical in REM sleep
periods that are the longest in the early morn-
ing hours before awakening [48, 49]. Sleep dis-
orders per se can be a contributing factor, and
among them, sleep apnea is the most signifi-
cant. Untreated severe OSA doubles the risk of
stroke. According to expert consensus, the role
of insomnia, periodic limb movements, and
circadian misalignment is disputable and lacks
solid evidence [50].

On the other hand, the stroke itself can
result in the disruption of circadian rhythms.
Direct cerebral injury, compression of
hypothalamic structures, and impairment of
endogenous regulatory mechanisms, as well as
changes in cerebral blood flow, metabolic
derangement, and a neurogenic inflammatory
response are the main factors underlying circa-
dian disruption in acute stroke. In addition, the
disruption of the diurnal sleep/wake pattern
due to exogenous factors, such as hospitaliza-
tion itself, the conditions in the intensive care
unit, light conditions, loss of external zeitgebers
of circadian rhythm, and the use of sedative or
hypnotic drugs can affect circadian patterns
[51, 52].

CIRCADIAN SYSTEM AND STROKE

Circadian System Structure
and Regulation

In mammals, the circadian system comprises a
master pacemaker located in the

suprachiasmatic nucleus (SCN), which coordi-
nates and synchronizes cellular clocks in vari-
ous tissues and organs.

The circadian system is self-regulated and at
the cellular level functions via interaction
between circadian genes (the core genes include
CLOCK, BMAL1, two cryptochrome genes CRY1
and CRY2, three period genes PER1, PER2, PER3)
and their protein products. The oscillation cycle
of the transcription–translation feedback loop is
about 24 h entrained by the light–dark cycle.
The positive arm of the feedback loop involves
the protein products of circadian genes CLOCK
(or NPAS2 in brain tissue) and BMAL1. They
form a heterodimer in the cytoplasm which is
translocated to the cell nucleus where it binds
to the E-box promotion region of the circadian
genes Period (PER) and Cryptochrome (CRY)
driving their translation. In the negative arm of
the loop, the Per and Cry proteins form a het-
erodimer in the cytoplasm translocating to the
nucleus, where it binds to the complex
Clock–Bmal1 and thereby suppresses the tran-
scription–translation cascade [53, 54]. Another
pair of a regulatory loop includes circadian
genes encoding nuclear receptors Rev-erba and
RAR-related orphan receptors (RORa) binding
the promoter of the BMAL1 gene.

Routinely, the external signals reset molec-
ular clocks, and the main synchronizer is light
(photic signals); however, the circadian clocks
(in particular, peripheral ones) can be also
entrained by neural, humoral, and metabolic
(food-induced) signals [55].

Circadian Genes in Stroke

Circadian genes can play a role in stroke inci-
dence, evolution, and recovery via direct mod-
ulation of neuronal damage and recovery and
their impact on various cardiometabolic factors
and processes [47, 56–58]. Clock genes modu-
late microglia activation [59] and neuroinflam-
mation [60, 61], thus regulating the
vulnerability and tolerability to brain injury,
demonstrating neuroprotective effects [62–65].

The G-allele of the CLOCK gene was shown
to be protective against stroke in the PREDIMED
(PREvencion con DIeta MEditerranea) trial
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cohort; however, it is noteworthy that the
association between the CLOCK gene rs4580704
single nucleotide polymorphism (SNP) and
stroke risk was found only in the subcohort of
patients with type 2 diabetes mellitus [66], but
not in subjects without diabetes. Other genetic
variants of the CLOCK gene were shown to be
involved in the metabolic traits pathways [67],
suggesting the potential impact of the CLOCK
gene on cardiovascular risk.

Circadian genes are involved in vascular
function, tone regulation [68, 69], coagulation
factors, and thrombogenicity [70, 71] as shown
by experimental and clinical studies. It is note-
worthy that different circadian genes have a
discrete impact on the circadian variation of
these factors. Thus, some authors suggest that
Bmal1 and CLOCK are essential for circadian
blood pressure oscillations while NPAS2 is
important for the precise timing of the rhyth-
mic variability in the presence of CLOCK and
can substitute the latter one in the case of
CLOCK gene mutation/deficiency [68, 69].
CLOCK and BMAL1 are essential for maintain-
ing a diurnal variation in thrombogenesis, PAI-1
expression, and display opposite effects on time
to vessel occlusion [70, 71].

PER2 mutation is associated with impaired
endothelial function independent of car-
diometabolic risk factors, as well as the alter-
ation in a diurnal change in endothelial-
mediated vascular response. On the other hand,
the deficiency of PER2 plays a cardioprotective
role due to a lower apoptosis rate and lower
macrophage infiltration [56, 72, 73]. This can be
partly explained by the hypoxia-independent
but hypoxia-inducible factor 1-alpha (HIF-1a)-
mediated upregulation of vascular growth fac-
tors and angiogenesis [74]. One can hypothesize
that in various tissues, deficiency or impairment
of circadian genes might have different effects
playing either protective or deleterious roles
depending on the synchronization/desynchro-
nization state between the SCN and peripheral
clocks, as well as other factors.

Alternatively, clock genes are tuned via DNA
methylation, one of the mechanisms of gene
expression regulation [75] that is sensitive to
environmental pollution, e.g., particulate mat-
ter. In 55 patients with acute stroke, Cantone

et al. evaluated the effects of exposure to par-
ticulate matter experienced before stroke on
clock gene methylation levels, in order to
investigate their possible role in modulating
patients’ prognosis after the event. They found
that clock gene methylation was modified by
short-term particulate matter exposure. More-
over, DNA methylation of the studied clock
genes (i.e., CRY1, PER1) was associated with the
neurological disability assessed by mRS [24]. An
increased level of low-grade inflammation and
prothrombotic state is suggested as the biolog-
ical link between exposure to pollutants and
deteriorating cardiovascular health and can be
mediated by DNA methylation at clock genes.

Assessment of Circadian Rhythm
Parameters in Stroke

Challenges in Circadian Rhythm Evaluation
in Patients with Stroke
The evaluation of the circadian profile includes
various approaches, i.e., subjective (question-
naires, e.g., Horne–Östberg Morningness Even-
ingness Questionnaire (MEQ) and the Munich
Chronotype Questionnaire (MCTQ); sleep logs)
and objective ones (laboratory biomarkers such
as melatonin, cortisol diurnal patterns; rest–ac-
tivity periods by actigraphy; core body temper-
ature pattern, etc.). However, in patients with
stroke, implementation of these methods can
be limited because of neurological deficits (al-
tered consciousness, cognitive decline, amnesia,
aphasia, etc.) and other post-stroke changes.
Thus, paresis, low activity, as well as micro-
movements of the limbs can impede the actig-
raphy results [76], although recent
developments suggest various solutions to
overcome these problems (i.e., armband devices
[76] or ankle fixation of the device [77, 78], the
calculation of specific indices, such as the
Asymmetry Rate Index [79] for detecting the
asymmetry of spontaneous movements
between the paretic and non-paretic arm; or the
Proportional Integrating Measure [80] which is
the ratio between the mean motor activities of
both arms [67]). Post-stroke xerostomia preva-
lent in up to 50–60% of stroke survivors [81]
might limit saliva sampling, while post-stroke
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hyperthermia (a common feature in dien-
cephalic strokes) can affect the circadian profile
of core body temperature [82, 83]. Melatonin is
a reliable circadian marker not affected gener-
ally by the sleep–wake cycle, mood changes,
stress factors, etc. Cortisol displays a clear cir-
cadian variation, although the influence of
some environmental factors can be significant.
Moreover, the results may vary depending on
stroke characteristics, such as stroke severity,
location, the phase after stroke onset (acute,
subacute), etc. [84].

Cortisol
The diurnal pattern of cortisol is commonly
disturbed and the cortisol levels are elevated in
acute stroke compared to reference levels, while
they tend to normalize 1 month post-stroke
[85, 86]. The elevated cortisol is associated with
a worse prognosis, more severe motor dysfunc-
tion [87], and post-stroke complications,
including post-stroke depression [88]. Murros
et al. found that evening cortisol (19:00 at
baseline and 1 week after admission to the
hospital) better predicted the prognosis and
severity of neural deficit than morning cortisol
(07:00) [87]. Also, patients with a more severe
stroke demonstrate a loss of the circadian pat-
tern [85, 89] or a more disturbed diurnal varia-
tion of cortisol, compared to mild strokes
[90, 91]. The majority of studies evaluated cor-
tisol once or twice daily [85–88], with only a
minority performing multiple measurements
[90, 91] during the day. The latter confirms that
in a non-severe stroke, the circadian variations
of cortisol are preserved although they demon-
strate an advanced circadian rhythm with ele-
vated values at each time point compared to
controls [64].

Melatonin
Similarly, the majority of studies vary by time of
the collection of samples, the type of biosam-
ples (serum, saliva, urine), the method of
melatonin assessment, etc., which limits the
direct comparisons of the results. The majority
of studies report abnormal melatonin levels
and/or patterns in patients with stroke [92–94].
Thus, in a cohort of 127 patients with anterior

strokes, the urinary excretion of both melatonin
and its metabolite 6-sulfatoxymelatonin was
significantly reduced compared to healthy
individuals [93]. Fiorina et al. showed decreased
levels of nocturnal melatonin urinary excretion
independent of the size of the cortical lesion
which remained low by the 14th day post-stroke
[94]. The lesions in the brainstem, lateral and
third ventricles, basal ganglion, frontal, fron-
toparietal, and parietotemporal lobes are asso-
ciated with the abolished circadian rhythm of
melatonin [89]. On the other hand, Beloosesky
et al. found a similar total 24-h amount of
melatonin in patients with stroke and controls,
with the preserved although 4-h delayed mela-
tonin secretion in the first post-stroke days and
restoration of the normal pattern by the 10th
day after stroke onset [95]. It should be noted
that this study included patients with extensive
cortical and deep strokes of both hemorrhagic
and ischemic types. The authors explain the
delayed rhythm of melatonin by potential
impairment in light perception at the SCN and
consider it as a factor contributing to post-
stroke hypothalamic-glandular axis dysregula-
tion. In moderate stroke, not involving directly
the regions regulating melatonin pineal pro-
duction, the circadian rhythm of serum mela-
tonin is sustained [90, 91], demonstrating a
clear although flattened periodic pattern [64].
Adamczak-Ratajczak et al. hypothesize that the
lower levels of melatonin are due to its
increased rapid utilization for the reduction of
oxidative damage within the acute phase of
cerebral ischemia [91]. Some authors demon-
strated that lower levels of melatonin were
associated with a worse prognosis (higher
30-day mortality) [96].

The disruption of the circadian pattern of
melatonin in patients with stroke can be related
to direct damage to SCN or brain areas partici-
pating in the regulation of SCN (paraventricular
nucleus of the hypothalamus (PVN), and inter-
mediolateral nucleus of the spinal cord (IML),
the thalamic intergeniculate leaflet (IGL), raphe
nuclei, parietal cortex) [97, 98] and pineal
activity or indirect influences [95], or disorder
in autonomic regulation [99].
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Core Body Temperature
Acute brain damage is associated with the
increase in body temperature and a disruption
or inversion in the core and brain temperature
rhythm [82, 100–103] (in particular, in lesions
involving the frontotemporal area, hypothala-
mus, and brainstem [104]). In patients with
stroke, the rise in body temperature starts 4–6 h
after stroke onset and is related to initial stroke
severity, usually observed in major strokes and
not evident in patients with mild-to-moderate
strokes, although some controversial data are
reported depending on the time of temperature
measurement, stroke severity, etc. [105, 106].
Hyperthermia within the first 24–72 h after
stroke onset (but more than 6–8 h after stroke
onset) has an unfavorable prognostic impact
being a negative predictor of the 3-month out-
come [105, 107, 108]. At the same, time low
body temperature at admission less than 6 h
after stroke onset is associated with more severe
stroke (which some authors explain by the
possible detrimental effect of lower temperature
on clot formation and lysis) and a negative
prognosis at discharge [109] and at a long-term
follow-up [108, 110]. In a retrospective study
[111], the peak body temperature positively
correlated with the NIHSS score, female gender,
rectal (vs. tympanic) temperature, dysphagia
assessed by swallowing test, intubation, high
C-reactive protein or signs of infection at
admission, and antipyretic treatment within
48 h.

However, only a few studies evaluated circa-
dian variation in body temperature in patients
with stroke. Some clinical observations indicate
a severe disruption of temperature circadian
rhythms [112]. It seems that the circadian
rhythm disruption is more prevalent and pro-
found in more severe strokes, in particular those
causing the development of disorders of con-
sciousness when both basal temperature and
brain temperature rhythms are severely dis-
rupted (or completely absent) [82, 102, 113].
This observation is confirmed by Takekawa et al.
in a mixed group of patients with ischemic
cardioembolic stroke (n = 11) and cerebral
hemorrhage (n = 22). The circadian rhythm was
preserved in conscious patients while infradian
rhythms of body temperature with a periodicity

of approximately 2.5 days (28.6–125.6 h; med-
ian 59.7 h) were present in those with disturbed
consciousness (39% of patients). They did not
find any association between the circadian vs.
infradian rhythm and lesion location, but there
was a correlation with the mRS. In a larger
cohort of patients with stroke mainly with
preserved consciousness (n = 50), the same
group found a strong correlation between the
mRS at a 3-month follow-up and the disruption
of the circadian rhythm assessed by both rectal
temperature and wrist motor activity (by an
accelerometer) independent of the mRS at
admission. No association was found between
the diurnal rhythm and the brain lesion
location.

Rest–Activity Patterns
The majority of studies of actimetry data in
patients with stroke are focused on the assess-
ment of physical activity patterns [114–116] or
sleep parameters [117–120], and only a limited
number of papers consider actigraphy-evaluated
diurnal rhythmicity metrics in post-stroke sur-
vivors, such as interdaily stability (IS, charac-
terizing the day-to-day stability of activity
patterns); intradaily variability (IV, evaluating
the fragmentation of activity rhythms); and the
amplitude of rest–activity rhythms [121]. Gon-
çalves et al. showed that patients with cere-
brovascular events had more fragmented
rhythms and reduced activity, compared to
controls [122]. An autopsy study by Sommer
et al. demonstrated that more disrupted 24-h
rest–activity rhythms were associated with a
higher burden of arteriolosclerosis and subcor-
tical infarcts at death in subjects with verified
small vessel disease [123]. In the Rotterdam
study, Zuurbier et al. demonstrated an associa-
tion between small vessel disease and 24-h
rhythm fragmentation independent of sleep
parameters, although lacunar infarcts were not
associated with any of the diurnal rhythmicity
measures [124]. The association between 24-h
rhythm fragmentation and stroke characteris-
tics and prognosis remains unclear.

The fragmentation of the 24-h rhythm is in
accord with sleep–wake disturbances often
found in stroke survivors. Bakken et al. investi-
gated sleep–wake patterns and found a large
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variation in sleep during night-time within the
first 2 weeks after stroke occurrence with sleep
disturbances registered more often in men than
in women [118]. Stroke survivors in the chronic
post-stroke phase spend more time in bed with
the intention of sleeping and actually asleep
and significantly more time awake overnight
than healthy controls; however, these measures
were unrelated to the severity of motor impair-
ment [120]. It was shown that the derivative
indices calculated as ratios between 24-h motor
activity registered from both affected and
unaffected arm better predicted the prognosis in
post-stroke survivors [80, 125]. Thus, the
Asymmetry Rate Index correlates with the
NIHSS [79] and 3-month mRS [125], while the
Proportional Integrating Measure predicted the
mRS at 3 months [80].

Circadian Gene Expression
Critically ill patients with hemorrhagic stroke
demonstrate complete loss of rhythmicity in
circadian gene (CRY1, CRY2, PER1, PER2, PER3,
RORA, NR1D1, BMAL1, CLOCK, and TIMELESS)
expression in peripheral tissues and no correla-
tion with either rest–activity rhythmicity or
melatonin rhythm [83]. The severity of
encephalopathy and exposure to adrenergic
agonist medications appear to be the main fac-
tors contributing to these changes [126, 127].

On the other hand, patients with mild-to-
moderate stroke seem to have preserved diurnal
variation in peripheral clock genes (NR1D1,
PER1, PER3, BMAL1), although they demon-
strate specific circadian desynchrony in both
positive and negative loops of the circadian
system, correlating with the diurnal changes in
melatonin and cortisol levels [90]. The associa-
tion of these changes with prognosis and treat-
ment effects is unknown.

CIRCADIAN SYSTEM AND POST-
STROKE RECOVERY

The circadian system is involved in the regula-
tion of tissue repair and regeneration after the
injury. Glial cell populations play a crucial role
in neuronal recovery after brain injury and
display both beneficial and detrimental effects

on the ischemic lesion zone [128, 129]. Bmal1
regulates the activation of microglia [130] and
astrocytes [131]. Clock genes modulate gluta-
mate uptake by regulating the expression and
activity of its transporters, thus being involved
in excitotoxicity [132] and neuronal cell death
regulation [133]. No less important is the
involvement of the circadian gene in the regu-
lation of inflammatory response, including the
immune function, i.e., trafficking of immune
cells, phagocytosis, secretion of cytokines,
chemokines, and other factors
[61, 72, 74, 132, 134, 135].

Angiogenesis is an important factor for post-
stroke recovery, and it is tightly related to the
activation and functioning of glial cells [136].
Clock genes (in particular, Cry1/2) are involved
in the regulation of different stages of the
angiogenesis process [137, 138]. Multiple
angiogenic factors are implicated in the post-
stroke angiogenesis, and vascular endothelial
growth factor (VEGF) is a protein that is a well-
known factor regulating and inducing angio-
genesis in various pathological conditions and
is associated with elevated transdifferentiation
of reactive astrocytes into neuroprogenitors and
new neurons [139]. Low-level light at night can
lead to a reduction in the hippocampal expres-
sion of VEGFA and brain-derived neurotrophic
factor (BDNF) and increased VEGFR1 [140].

Clock genes Rev-erba and RORa modulate
the expression of antioxidant enzymes and
reactive oxygen species production [141] and
can play a protective role in the inflammatory
response of microglia [142, 143].

The neurotrophic factors involved in the
regulation of post-stroke recovery demonstrate
clear 24-h rhythmicity, although influenced by
other endogenous factors (i.e., levels of sex
hormones) [144]. One of these factors, BDNF,
can modulate circadian system functioning via
the regulation of SCN plasticity [145, 146].
BDNF could act via GABA (c-aminobutyric
acid), NMDA (N-methyl-D-aspartate), or AMPA
(a-amino-3-hydroxy-5-methyl-4-isoxazole pro-
pionic acid) transmitter systems and regulate
the light-induced circadian resetting of the SCN
pacemaker. Local paracrine interactions
between BDNF and TrkB receptors could pro-
vide an endogenous signaling pathway for the
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intercellular regulation of cellular and meta-
bolic activity within the SCN and thus for
pacemaker cell synchronization [145, 147].

CIRCADIAN SYSTEM
AND TREATMENT DEVELOPMENTS
IN STROKE

Pharmacotherapy Development

Chronotherapy Approaches
Several therapeutical interventions are being
discussed in relation to circadian system func-
tioning in stroke. First, chronotherapy approa-
ches [148], in particular for antihypertensive
medications, are promoted by some groups of
authors, although recent evidence does not
provide any benefit of evening vs. morning
administration of antihypertensive drugs
regarding long-term cardiovascular outcomes
[149, 150].

Other treatments (antiplatelet [151], antico-
agulants [152], thrombolytic drugs [153, 154],
etc.) might have a greater capacity within the
chronotherapy approach, although further
investigation is needed [47]. Thus, as men-
tioned above, there is strong evidence con-
firming circadian variation in the activity of
fibrinolytic and prothrombotic factors, in par-
ticular, the balance between the tissue plas-
minogen activator (tPA) and its inhibitor, the
tissue plasminogen inhibitor-1 (PAI-1). The lat-
ter shows peak concentrations in the morning,
which can contribute to a higher risk of
atherothrombotic events, as well as to the lower
efficiency of fibrinolytic treatment. In a retro-
spective analysis, diurnal (from 09:00 to 21:00;
n = 92) tPA treatment (intravenously adminis-
tered alteplase 0.9 mg/kg, 10% in bolus, 1 h
infusion) was associated with higher rates of
middle cerebral artery (MCA) complete
recanalization assessed by transcranial duplex
compared to the group which was treated dur-
ing the night period (from 21:00 to 9:00;
n = 43): 45.6% vs. 23.2% (p = 0.01). Moreover,
those treated during the day demonstrated
better 3-month clinical outcomes evaluated by
the mRS [153]. However, the NINDS rt-PA

Stroke Trial (n = 624) did not find any associa-
tion between the stroke onset time (and rt-PA
treatment given within 3 h of stroke onset) and
3-month outcomes, although there was an
association with the occurrence of a symp-
tomatic intracranial hemorrhage within 36 h:
patients with stroke onset between 04:01 and
08:00 who received rt-PA had a lower risk of
having a symptomatic intracranial hemorrhage
[13]. Some authors explain such an effect by the
endogenous circadian rhythm in blood–brain
barrier permeability, which shows reduced
trafficking during the active phase compared to
other periods during the day [154].

The data regarding the protective effects of
antiplatelet drugs (in particular, low-dose
aspirin) [155] administered depending on the
time of the day are rather conflicting [151, 156].

Melatonin Supplementation
Second, the modulation of the circadian
rhythm by melatonin supplementation has been
widely discussed in the last decade. Acting via
MT2 receptors, melatonin provides a number of
neuroprotective effects including antioxidant,
anti-inflammatory, antiexcitotoxic, antiapop-
totic, and other properties [157–159]. In animal
models, exogenous melatonin reduces the brain
lesion size and neural loss [160, 161] and
improves functional outcomes [162, 163],
which can be related to the decrease in
ischemia–reperfusion injury via modulation of
the circadian gene expression leading to the
phase-delayed expression of PER1, PER2, and
Cry1, as well as expression of genes involved in
hypoxia-mediated signaling pathways
[164, 165]. Moreover, melatonin alleviates cir-
cadian disturbances and improves sleep,
increasing delta power and decreasing sleep
fragmentation in rats after an induced stroke
[166]. In clinical settings, melatonin supple-
mentation was associated with a lower risk of
post-stroke delirium (a single dose of 2 mg/day
at 20:00 within the first 24 h of ischemic stroke
onset) compared to the control group [167] and
with the shorter duration of mechanical venti-
lation and length of stay in the intensive care
unit in a cohort of patients with hemorrhagic
stroke (30 mg melatonin every night during a
stay at the intensive care unit) [168]. In early
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and late rehabilitation periods, melatonin
administration (3 mg daily for 3 months) led to
an increase in the BDNF level that correlated
with improved sleep, emotional status, and
quality of life [169, 170]. Regarding effects on
functional outcomes, a pilot randomized study
showed that 5-day treatment with melatonin in
the acute phase of stroke led to a greater
reduction in median NIHSS score, but not in
mRS at a 3-month follow-up [171]. Ongoing
trials aim to investigate both short- and long-
term effects of melatonin in patients with
stroke: Role of Melatonin in the Acute Phase of
Stroke as Measured by Interleukin 6 Biomarker,
NCT03843008; The Role of Circadian Factors in
Regulation of Neuroplasticity in Ischemic
Stroke (Interventional), NCT05247125.

Non-Medication Developments

A number of non-medication interventions, which
can reset molecular clocks and modulate circa-
dian rhythms, draw attention as potential neu-
roprotective strategies, in particular, bright light
therapy, physical exercise, and shift in food
intake.

Bright Light Therapy
Bright light therapy exhibits various effects
including mood improvement (even included
as a complementary or alternative treatment for
depressive disorders, in particular, for seasonal
depression, by various professional associations
[172, 173]), increasing alertness, and reduction
in fatigue and sleepiness in different cohorts
[174]. However, only a few studies evaluated the
effects of light in post-stroke survivors, and the
evidence on long-term effects is lacking. In a
placebo-controlled randomized study, light
therapy (10,000 lx, 30 min in the morning) was
shown to decrease insomnia symptoms, day-
time sleepiness, and fatigue, and improve the
emotional state in post-stroke survivors [175].
In post-stroke rehabilitation, naturalistic light
in the ward was associated with reduced fatigue,
increased levels of melatonin, and present
diurnal rhythmicity by discharge, while
patients staying at standard indoor light at
rehabilitation did not exhibit melatonin diurnal

rhythmicity at discharge [176]. However, the
study was uncontrolled and no long-term fol-
low-up after discharge was performed. In a
study involving patients with past brain injury,
including post-stroke subjects in a chronic
phase of stroke, bright light therapy was asso-
ciated with a reduction in subjective sleep
quality (sleep disturbance and insomnia symp-
toms) and improved psychomotor vigilance
[177]. More data is expected from the ongoing
trials assessing bright light therapy effects in
patients with stroke: Role of Melatonin in the
Acute Phase of Stroke as Measured by Inter-
leukin 6 Biomarker, NCT03843008; The Role of
Circadian Factors in Regulation of Neuroplas-
ticity in Ischemic Stroke (Interventional),
NCT05247125; Effects of Colored Light Expo-
sure on Sleep Disturbance, Fatigue, and Func-
tional Outcomes Following Acute Brain Injury,
NCT03125967.

Gene Therapy
Last but not least, gene therapy presents a
promising neuroprotective approach being
investigated in animal models [178–180], and
clock genes are a candidate potent target.

CONCLUSION

Despite the increasing evidence of the bidirec-
tional influence of the circadian system and
brain damage in stroke, there are a number of
gaps in understanding the precise underlying
mechanisms. Moreover, the data on the 24-h
variation of the main circadian biomarkers and
parameters in patients with stroke in acute,
subacute, and chronic phases are rather scarce,
and their clinical implications and association
with the prognosis are not fully understood.
The implementation of various approaches and
techniques for circadian rhythm entrainment in
patients with stroke appears to be a promising
complementary treatment for improving post-
stroke recovery. However, the criteria to select
the subgroups of patients who will benefit most
from these interventions are to be established.
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133. Chi-castañeda D, Ortega A. Circadian regulation of
glutamate transporters. Front Endocrinol.
2018;9(June):1–6. https://doi.org/10.3389/fendo.
2018.00340.

134. Vieira E, Mirizio GG, Barin GR, Fawzi N, Nimer S, La
SL. Clock genes, inflammation and the immune
system—implications for diabetes, obesity and
neurodegenerative diseases. Int J Mol Sci. 2020;21:
1–8.

135. Wang X, Li L. Circadian clock regulates in flam-
mation and the development of neurodegenera-
tion. Front Cell Infect Microbiol.
2021;11(September):1–16. https://doi.org/10.3389/
fcimb.2021.696554.

136. Zhang Y, Liu L, Zhao X, Yan S, Zeng F, Zhou D. New
insight into ischemic stroke: circadian rhythm in
post-stroke angiogenesis. Front Pharmacol.
2022;13(August):1–16. https://doi.org/10.3389/
fphar.2022.927506.

292 Cardiol Ther (2023) 12:275–295

https://doi.org/10.1159/000157882
https://doi.org/10.1159/000157882
https://doi.org/10.1038/s41598-018-26279-7
https://doi.org/10.1038/s41598-018-26279-7
https://doi.org/10.4061/2011/936298
https://doi.org/10.4061/2011/936298
https://doi.org/10.1016/j.arrct.2021.100150
https://doi.org/10.1016/j.arrct.2021.100150
https://doi.org/10.1177/15459683211029889
https://doi.org/10.1177/15459683211029889
https://doi.org/10.1016/0006-3223(90)90523-5
https://doi.org/10.1016/0006-3223(90)90523-5
https://doi.org/10.1016/j.slsci.2014.09.013
https://doi.org/10.1161/STROKEAHA.120.030870
https://doi.org/10.1161/STROKEAHA.120.030870
https://doi.org/10.1111/ene.12775
https://doi.org/10.1111/ene.12775
https://doi.org/10.3390/s21072479
https://doi.org/10.3390/s21072479
https://doi.org/10.1097/CCM.0000000000004333.Factors
https://doi.org/10.1097/CCM.0000000000004333.Factors
https://doi.org/10.1097/CCM.0000000000004334.Stress-Induced
https://doi.org/10.1097/CCM.0000000000004334.Stress-Induced
https://doi.org/10.3389/fimmu.2020.00294
https://doi.org/10.3389/fimmu.2020.00294
https://doi.org/10.17116/jnevro202212201115
https://doi.org/10.17116/jnevro202212201115
https://doi.org/10.1161/STROKEAHA.108.533166.Astrocytes
https://doi.org/10.1161/STROKEAHA.108.533166.Astrocytes
https://doi.org/10.1002/glia.23754
https://doi.org/10.1002/glia.23754
https://doi.org/10.3389/fphys.2013.00313
https://doi.org/10.3389/fphys.2013.00313
https://doi.org/10.3389/fendo.2018.00340
https://doi.org/10.3389/fendo.2018.00340
https://doi.org/10.3389/fcimb.2021.696554
https://doi.org/10.3389/fcimb.2021.696554
https://doi.org/10.3389/fphar.2022.927506
https://doi.org/10.3389/fphar.2022.927506


137. Tsuzuki K, Shimizu Y, Suzuki J, et al. Adverse effect
of circadian rhythm disorder on reparative angio-
genesis in hind limb ischemia. J Am Heart Assoc.
2021;10(16):e020896. https://doi.org/10.1161/
JAHA.121.020896.

138. Xu L, Liu Y, Cheng Q, Shen Y, Yuan Y, Jiang X.
Bmal1 downregulation worsens critical limb ische-
mia by promoting inflammation and impairing
angiogenesis. Front Cardiovasc Med.
2021;8(August):1–16. https://doi.org/10.3389/fcvm.
2021.712903.

139. Matsuo R, Ago T, Kamouchi M, et al. Clinical sig-
nificance of plasma VEGF value in ischemic stroke—
research for biomarkers in ischemic stroke (REBIOS)
study. BMC Neurol. 2013;13:1–8.

140. Walker W 2nd, Borniger J, Gaudier-Diaz M, et al.
Acute exposure to low-level light at night is suffi-
cient to induce neurological changes and depres-
sive-like behavior. Mol Psychiatry. 2020;25(5):
1080–93. https://doi.org/10.1038/s41380-019-0430-
4.Acute.

141. Sengupta S, Yang G, Donnell JCO, et al. The circa-
dian gene Rev-erba improves cellular bioenergetics
and provides preconditioning for protection against
oxidative stress. Free Radic Biol Med. 2016;93:
177–89. https://doi.org/10.1016/j.freeradbiomed.
2016.02.004.The.

142. Wolff SEC, Wang XL, Jiao H, et al. The effect of Rev-
erba agonist SR9011 on the immune response and
cell metabolism of microglia. Front Immunol. 2020.
https://doi.org/10.3389/fimmu.2020.550145.

143. Zang M, Zhao Y, Gao L, et al. The circadian nuclear
receptor RORa negatively regulates cerebral ische-
mia-reperfusion injury and mediates the neuropro-
tective effects of melatonin. BBA Mol Basis Dis.
2020. https://doi.org/10.1016/j.bbadis.2020.
165890.

144. Cain SW, Chang A, Vlasac I, et al. Circadian
rhythms in plasma brain-derived neurotrophic fac-
tor differ in men and women. J Biol Rhythms.
2017;32(1):75–82. https://doi.org/10.1177/
0748730417693124.

145. Liang F, Walline R, Earnest DJ. Circadian rhythm of
brain-derived neurotrophic factor in the rat
suprachiasmatic nucleus. Neurosci Lett. 1998;242:
89–92.

146. Girardet C, Lebrun B, Cabirol-Pol M-J, et al. Brain-
derived neurotrophic factor/TrkB signaling regu-
lates daily astroglial plasticity in the suprachias-
matic nucleus: electron-microscopic evidence in
mouse. Glia. 2013;61:1172–7. https://doi.org/10.
1002/glia.22509.

147. Liang F, Allen G, Earnest D. Role of brain-derived
neurotrophic factor in the circadian regulation of
the suprachiasmatic pacemaker by light. J Neurosci.
2000;20(8):2978–87.

148. Smolensky M, Hermida R, Geng Y-J. Chronotherapy
of cardiac and vascular disease: timing medications
to circadian rhythms to optimize treatment effects
and outcomes. Curr Opin Pharmacol. 2020;57:41–8.
https://doi.org/10.1016/j.coph.2020.10.014.

149. Mackenzie IS, Rogers A, Poulter NR, et al. Cardio-
vascular outcomes in adults with hypertension with
evening versus morning dosing of usual antihyper-
tensives in the UK (TIME study): a prospective,
randomised, open-label, blinded-endpoint clinical
trial. Lancet. 2022;400(10361):1417–25. https://doi.
org/10.1016/S0140-6736(22)01786-X.

150. Stergiou G, Brunström M, MacDonald T, et al.
Bedtime dosing of antihypertensive medications:
systematic review and consensus statement: Inter-
national Society of Hypertension position paper
endorsed by World Hypertension League and
European Society of Hypertension. J hypertens.
2022;40(10):1847–58. https://doi.org/10.1097/HJH.
0000000000003240.

151. Bonten TN, Snoep JD, Assendelft WJJ, et al. Time-
dependent effects of aspirin on blood pressure and
morning platelet reactivity: a randomized cross-
over trial. Hypertension. 2015;65(4):743–50.
https://doi.org/10.1161/HYPERTENSIONAHA.114.
04980.

152. Brunner-Ziegler S, Jilma B, Schörgenhofer C, et al.
Comparison between the impact of morning and
evening doses of rivaroxaban on the circadian
endogenous coagulation rhythm in healthy sub-
jects. J Thromb Haemost. 2016;14(2):316–23.
https://doi.org/10.1111/jth.13213.

153. Vilas D, Gomis M, Blanco M, et al. Circadian
rhythms in the efficacy of intravenous alteplase in
patients with acute ischemic stroke and middle
cerebral artery occlusion. Chronobiol Int.
2012;29(10):1383–9. https://doi.org/10.3109/
07420528.2012.728655.

154. Liu JA, Walton JC, DeVries AC, Nelson RJ. Disrup-
tions of circadian rhythms and thrombolytic ther-
apy during ischemic stroke intervention. Front
Neurosci. 2021;15(June):1–15. https://doi.org/10.
3389/fnins.2021.675732.

155. Miciak-Lawicka E, Begier-Krasinska B, Tykarski A,
Krasinski Z. Does the timing of aspirin administra-
tion influence its antiplatelet effect—review of lit-
erature on chronotherapy. Kardiochir
Torakochirurgia Pol. 2018;15(2):125–9. https://doi.
org/10.5114/kitp.2018.76479.

Cardiol Ther (2023) 12:275–295 293

https://doi.org/10.1161/JAHA.121.020896
https://doi.org/10.1161/JAHA.121.020896
https://doi.org/10.3389/fcvm.2021.712903
https://doi.org/10.3389/fcvm.2021.712903
https://doi.org/10.1038/s41380-019-0430-4.Acute
https://doi.org/10.1038/s41380-019-0430-4.Acute
https://doi.org/10.1016/j.freeradbiomed.2016.02.004.The
https://doi.org/10.1016/j.freeradbiomed.2016.02.004.The
https://doi.org/10.3389/fimmu.2020.550145
https://doi.org/10.1016/j.bbadis.2020.165890
https://doi.org/10.1016/j.bbadis.2020.165890
https://doi.org/10.1177/0748730417693124
https://doi.org/10.1177/0748730417693124
https://doi.org/10.1002/glia.22509
https://doi.org/10.1002/glia.22509
https://doi.org/10.1016/j.coph.2020.10.014
https://doi.org/10.1016/S0140-6736(22)01786-X
https://doi.org/10.1016/S0140-6736(22)01786-X
https://doi.org/10.1097/HJH.0000000000003240
https://doi.org/10.1097/HJH.0000000000003240
https://doi.org/10.1161/HYPERTENSIONAHA.114.04980
https://doi.org/10.1161/HYPERTENSIONAHA.114.04980
https://doi.org/10.1111/jth.13213
https://doi.org/10.3109/07420528.2012.728655
https://doi.org/10.3109/07420528.2012.728655
https://doi.org/10.3389/fnins.2021.675732
https://doi.org/10.3389/fnins.2021.675732
https://doi.org/10.5114/kitp.2018.76479
https://doi.org/10.5114/kitp.2018.76479


156. Snoep JD, Hovens MMC, Pasha SM, et al. Time-de-
pendent effects of low-dose aspirin on plasma renin
activity, aldosterone, cortisol, and catecholamines.
Hypertension. 2009;54:1136–43. https://doi.org/10.
1161/HYPERTENSIONAHA.109.134825.

157. Andrabi SS, Parvez S, Tabassum H. Melatonin and
ischemic stroke: mechanistic roles and action. Adv
Pharmacol Sci. 2015. https://doi.org/10.1155/2015/
384750.

158. Shinozuka K, Staples M, Borlongan CV. Melatonin-
based therapeutics for neuroprotection in stroke.
Int J Mol Sci. 2013;14(5):8924–47. https://doi.org/
10.3390/ijms14058924.

159. Chern CM, Liao JF, Wang YH, Shen YC. Melatonin
ameliorates neural function by promoting endoge-
nous neurogenesis through the MT2 melatonin
receptor in ischemic-stroke mice. Free Radical Biol
Med. 2012;52(9):1634–47. https://doi.org/10.1016/
j.freeradbiomed.2012.01.030.

160. Liu ZJ, Ran YY, Qie SY, et al. Melatonin protects
against ischemic stroke by modulating micro-
glia/macrophage polarization toward anti-inflam-
matory phenotype through STAT3 pathway. CNS
Neurosci Ther. 2019;25(12):1353–62. https://doi.
org/10.1111/cns.13261.

161. Ran Y, Ye L, Ding Z, et al. Melatonin protects
against ischemic brain injury by modulating PI3K/
AKT signaling pathway via suppression of PTEN
activity. ASN Neuro. 2021;13:1–16. https://doi.org/
10.1177/17590914211022888.

162. Wei N, Pu Y, Yang Z, Pan Y, Liu L. Therapeutic
effects of melatonin on cerebral ischemia reperfu-
sion injury: role of Yap-OPA1 signaling pathway
and mitochondrial fusion. Biomed Pharmacother.
2019;110(119):203–12. https://doi.org/10.1016/j.
biopha.2018.11.060.

163. Cai H, Liang J, Liu Z, et al. Causal effects of sleep
traits on ischemic stroke and its subtypes: a Men-
delian randomization study. Nat Sci Sleep. 2020;12:
783–90. https://doi.org/10.2147/NSS.S265946.

164. Rhim T, Lee DY, Lee M. Hypoxia as a target for tis-
sue specific gene therapy. J Control Release.
2013;172(2):484–94. https://doi.org/10.1016/j.
jconrel.2013.05.021.
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