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ABSTRACT

18F-fluorodeoxyglucose (FDG) and 18F-sodium
fluoride (NaF) represent emerging PET tracers
used to assess atherosclerosis-related inflamma-
tion and molecular calcification, respectively. By
localizing to sites with high glucose utilization,
FDG has been used to assess myocardial viability
for decades, and its role in evaluating cardiac
sarcoidosis has come to represent a major appli-
cation. In addition to determining late-stage
changes such as loss of perfusion or viability, by

targeting mechanisms present in atherosclerosis,
PET-based techniques have the ability to charac-
terize atherogenesis in the early stages to guide
intervention. Although it was once thought that
FDG would be a reliable indicator of ongoing
plaque formation, micro-calcification as por-
trayed by NaF-PET/CT appears to be a superior
method of monitoring disease progression. PET
imaging with NaF has the additional advantage of
being able to determine abnormal uptake due to
coronary artery disease, which is obscured by
physiologic myocardial activity on FDG-PET/CT.
In this review, we discuss the evolving roles of
FDG, NaF, and other PET tracers in cardiac
molecular imaging.
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Key Summary Points

Early diagnosis of atherosclerosis is a
clinical necessity in order to allow for
timely intervention before irreversible
changes have taken place.

18F-fluorodeoxyglucose (FDG) is a PET
tracer with many uses and was first
described as a marker of vascular
inflammation associated with
atherosclerosis over 20 years ago.

More recently, PET imaging with 18F-
sodium fluoride (NaF) has gained
attention for the purpose of imaging
vascular micro-calcification, which is a
component of atheroma progression.

Although both FDG and NaF both appear
promising for the assessment of
atherogenesis, the close association
between NaF uptake and established
cardiovascular risk factors as well as
increased specificity of NaF uptake
allowing for visualization of coronary
artery involvement suggest that NaF may
be the optimal PET tracer for
atherosclerosis imaging.

INTRODUCTION

The 2020 American Heart Association (AHA)
statistical update reported that cardiovascular
diseases (CVD) are attributed to more than 1000
deaths daily worldwide [1]. Atherosclerosis, a
multi-factorial and progressive process, is a
major cause of CVD and related complications,
including stroke and peripheral vascular disease
[1]. Medical and lifestyle interventions are only
effective at reversing disease until a certain
point; therefore, it is of utmost importance to
detect atherosclerosis in the early stages.

The development of atherosclerosis usually
begins with endothelial cell dysfunction, trig-
gered by underlying cardiovascular risk factors
including hyperlipidemia, aging, hypertension,
or diabetes. This is followed by accumulation of
proinflammatory cells and fatty streak forma-
tion [2]. Later, molecular micro-calcification of
atheromatous plaque forms and progresses into
structural macro-calcification, gradually leading
to high risk of plaque rupture and vessel
occlusion [3]. In the past, numerous conven-
tional imaging techniques have been used in
identifying macro-calcification, including car-
diac magnetic resonance imaging (CMR), coro-
nary computed tomographic angiography
(CTA), intravascular ultrasonography, optical
coherence tomography, and coronary artery
calcium score (CACS) via CT; however, none of
these modalities demonstrate the ability to
detect micro-calcification in the early stages of
the disease [1, 4].

Molecular imaging with positron emission
tomography (PET), more common in the clini-
cal setting as the hybrid modality PET/com-
puted tomography (CT), is capable of detecting
early-stage disease by identifying specific chan-
ges in metabolism [5]. To date, 18F-fluo-
rodeoxyglucose (FDG) and 18F-sodium fluoride
(NaF) are among the two most widely studied
PET tracers in atherosclerosis imaging (Fig. 1)
[6–8]. In addition, many other tracers are in
current use within cardiac molecular imaging
[9]. We aim to review the properties and clinical
applications of emerging PET radiotracers in
nuclear cardiology, with an emphasis on early
detection of atherosclerosis with FDG and NaF.
This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors.

18F-FLUORODEOXYGLUCOSE
(FDG)

Myocardial Injury and Inflammation

Myocardial tissue primarily utilizes fatty acids as
source of energy, but under ischemic condi-
tions, myocardial cells consume glucose as their
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primary energy source. Cardiomyocytes with
diminished blood supply can undergo an irre-
versible pattern of infarction and scar tissue
formation with total loss of contractile abilities
or can bear the stress with temporary, reversible
stunning with loss of contractile properties,
which is considered hibernating myocardium
[10].

As the most widely used PET tracer with
major applications in oncology, neurology,
infection, and inflammation, FDG serves as a
glucose analog and becomes trapped within
cells that demonstrate a high rate of glycolysis
[11]. This occurs when FDG is converted to
FDG-6-phosphate by hexokinase, accumulating
intracellularly without being further metabo-
lized. Since the 1980s, FDG has been used to
characterize myocardial viability in patients
with coronary artery disease [12]. Clinically,
FDG cardiac imaging is routinely performed in
combination with myocardial perfusion imag-
ing using either positron-emitting or single
photon-emitting radiotracers. Ischemic car-
diomyopathy can be associated with either
myocardial scar or hibernating myocardium.

Preserved myocardial perfusion and viability are
seen in healthy tissue, whereas both are reduced
in non-viable areas of myocardium. A region
with preserved (or elevated) FDG uptake but
reduced myocardial perfusion indicates viable
hibernating myocardium, which can be treated
by vascular intervention [13].

FDG uptake in the myocardium has also
been used to assess for cardiac sarcoidosis,
where it was found to be superior to perfusion
single-photon emission computed tomography
(SPECT) and delayed enhanced CMR to not
only diagnose but also monitor therapeutic
responses [14]. Methods of suppressing physio-
logic myocardial glucose uptake prior to FDG-
PET imaging have become a standard practice to
facilitate identification of abnormal activity.
Specifically, low-carbohydrate and ketogenic
dietary protocols have been shown to improve
detection of cardiac sarcoidosis [15–17]. Further
metabolism suppression can be accomplished
with the administration of heparin prior to
imaging [18]. Hybrid imaging with FDG-
PET/magnetic resonance imaging (MRI) has
been proposed to assess cardiac sarcoidosis,

Fig. 1 The development of a complicated atheromatous
plaque with hypothesized changes visible by imaging.
Although it is established that NaF uptake precedes
coronary artery calcium (CAC) visible on CT, new data
suggest that NaF uptake may be present earlier relative to

inflammation portrayed by FDG than previously thought
(blue arrows). Image reprinted without changes from
McKenney-Drake et al. [8] under the Creative Commons
Attribution 4.0 International License (CC BY). https://
creativecommons.org/licenses/by/4.0/
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representing a combination of two sensitive
modalities to assess for myocardial involve-
ment. PET-based methods can help differentiate
between acute and post-inflammatory reactions
in myocarditis and may also guide endomy-
ocardial biopsies or tailored treatment strate-
gies, such as escalating immunosuppressive
therapies during acute exacerbations of
inflammation.

Suspected cardiac infections, which are often
FDG avid due to inflammatory cell activation,
may warrant further evaluation by PET in cases
of inconclusive echocardiography [19]. While
the sensitivity and specificity of FDG-PET/CT
are both high for the diagnosis of prosthetic
valve endocarditis, the sensitivity is somewhat
lower for native valve endocarditis [20, 21].
High sensitivity and prognostic utility of FDG-
PET/CT has been demonstrated in the setting of
left ventricular assist device infections [22, 23].
Overall, there is increasing acceptance for clin-
ical use of FDG-PET/CT for the evaluation of
infection, and the endorsement of FDG-PET/CT
by the European Heart Rhythm Association as a
major criterion in the diagnosis of cardiac
implantable electronic device infection
emphasizes the fact that cardiac infections are
not excluded from this trend [24].

Vascular Inflammation

The significance of vascular uptake of FDG as a
potential indicator of atherosclerotic disease
was first observed by Yun et al. in 2001 [25]. In
the context of atherosclerosis, FDG tends to
accumulate in macrophages due to their
increased glucose utilization that results from
activation [26, 27]. The ability to identify clin-
ically relevant atheromas by FDG has been val-
idated by several studies [28, 29]. A study by
Ogawa et al. provided the histopathologic evi-
dence that vascular FDG uptake is associated
with macrophage infiltration and foam cell
formation [26]. The study further showed that
FDG uptake was higher when macrophages
were actively differentiating into foam cells,
rather than in the stage of completely differen-
tiated foam cells.

A strong correlation between FDG-avid
lesions and atherosclerotic plaques in different
arteries has been observed, including in the
aorta, coronary arteries, vertebral arteries, and
carotid arteries [6, 29–31]. When Rudd et al.
used autoradiography to compare the difference
in the FDG uptake between symptomatic and
asymptomatic carotid lesions, the authors
found that the accumulation of FDG is 27%
higher in symptomatic carotid lesions than in
contralateral asymptomatic lesions, and no
measurable uptake was detected in normal car-
otid arteries [32]. Studies have shown promising
utility of FDG in evaluating the risk of ischemic
events [33, 34]. FDG-PET/CT has also shown
potential in the ability to assess the effects on
medical therapy on the evolution of atheromas
[35, 36].

Despite the significant correlation between
FDG and atherogenesis as noted by multiple
studies, discrepancies have been found between
the accumulation of FDG and structural chan-
ges detected by the anatomic imaging modali-
ties, especially CT [37, 38]. According to a study
by Meirelles et al., disease progression in
advanced stages may be accompanied by sub-
dued inflammation, reducing the sensitivity of
FDG in such cases [39]. As such, FDG uptake is
not generally associated with macro-calcifica-
tion visible on CT. Results reported by Ben-
Haim et al. [40] and Dunphy et al. [37] show
only 7% and 2% of cases with CT calcification
had corresponding FDG uptake, respectively. In
addition to the aforementioned nuances in FDG
association with disease activity, the correlation
between cardiovascular risk factors and FDG
uptake is poorly understood. Risk factors
including age, dyslipidemia, smoking history,
hypertension, diabetes, etc., are known to play a
vital role in the process of atherosclerosis [2]. To
date, studies have only been able to successfully
prove the clear association between age and
FDG avidity [41, 42]. A major limitation of
using FDG-PET/CT to assess atherosclerosis is
the impracticality of determining disease in the
coronary arteries [43]. Expected physiologic
uptake of FDG by the myocardium is much
higher than the subtle changes in uptake
resulting from plaque formation in the coro-
nary arteries. Thus, given the limitations of FDG
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in this domain, it is expected that NaF-PET/CT
will play a major role in PET-based atheroscle-
rosis imaging [44, 45].

18F-SODIUM FLUORIDE (NAF)

Vascular Micro-calcification

Unlike the nonspecific nature of FDG uptake,
NaF localizes specifically to areas of ongoing
calcification [46]. Therefore, NaF-PET images are
not affected by physiologic myocardial uptake
and therefore can detect early signs of coronary
plaque micro-calcification in atherosclerosis.
Because micro-calcification is mainly composed
of inorganic hydroxyapatite, NaF-PET/CT is able
to identify thin-cap fibroatheromas, which
represent rupture-prone areas (Fig. 2) [47]. NaF
was originally introduced as a radiotracer in
nuclear medicine by Blau et al. for skeletal
imaging given its high uptake by bone [48]; it is
therefore important to avoid osseous structures
when attempting to quantify vascular uptake of
NaF.

NaF-PET has also shown higher sensitivity
and specificity than FDG-PET in detecting and
characterizing atherosclerosis [49–62]. Further-
more, NaF uptake in atherosclerotic plaque
correlates with cardiovascular risk factors but
not with coronary calcium scoring [63, 64]. This
emphasizes the role of NaF-PET in assessing
early rather than late atherosclerotic disease
burden. Strong correlations have been found
between NaF activity and different cardiovas-
cular risk factors including advancing age, dys-
lipidemia, diabetes mellitus, and hypertension
[65–68]. Moreover, NaF uptake has also been
found to be correlated with vital and laboratory
values such as blood pressure and the triglyc-
erides-to-high-density lipoprotein ratio [60, 61].
Associations between vascular NaF uptake and
cardiovascular scoring systems including Fram-
ingham Risk Score (FRS) [69], atherosclerotic
cardiovascular disease (ASCVD) risk scores, and
CHADS-VASc score have been described as well
[70]. However, there is a debate regarding the
effect of gender on these correlations [65, 66].
According to McKenney-Drake et al., cardio-
vascular micro-calcification as shown by NaF-

PET/CT has a potential role in risk stratification
and the ability to detect arterial calcifications
earlier than by CT [49].

In a prospective clinical study by Joshi et al.
that compares both FDG and NaF radiotracers,
the latter was shown to be superior in identify-
ing culprit lesions from non-culprit lesions
among patients with acute coronary syndrome
[71]. In another study by Doris et al., it was
shown that coronary NaF activity has the ability
to provide insight into disease within the
coronary circulation by identifying coronary
segments with more rapid progression of coro-
nary calcification (Fig. 3) [72]. Kwiecinski et al.
found that increased coronary NaF activity is
able to serve as a reliable prediction model of
both fatal or non-fatal myocardial infarction,
independently from age, sex, risk factors, seg-
ment involvement, coronary calcium scores,
presence of coronary stents, coronary stenosis,
REACH, SMART scores, the Duke coronary
artery disease index, and recent myocardial
infarction [73]. To date, stress testing and con-
ventional coronary angiography can only
identify obstructive lesions but do not have the
ability to detect high-risk plaques which could
potentially cause acute thrombosis. When
compared with the high-risk plaque features on
intravascular ultrasound (positive remodeling,
micro-calcification, and necrosis of the lipid
core), Lee et al. demonstrated a significant
association with coronary plaques with high
focal NaF avidity [74].

The question of quantification of radiotracer
activity in an atherosclerotic plaque on PET is
difficult given the small size of atheromas and
the low resolution of PET [75]. The maximum
standardized uptake value (SUVmax) is the
most commonly used parameter to measure
tracer activity. The use of the target-to-blood
pool ratio (TBR) in NaF imaging, a calculation
derived by dividing the raw standard uptake
value (SUV) to the venous blood pool SUV
remains controversial [30]. Global assessment
with NaF-PET/CT could potentially overcome
the difficulty in quantifying atherosclerotic
plaques by defining a region of interest that
encompasses the entire affected vessel [43, 76].
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Valvular Calcification

Calcification is a major mechanism causing
aortic stenosis [77], the most frequent form of
valvular heart disease in the Western world
[78]. On CT, the degree of calcification of the
aortic valve can be determined quantitatively
and precisely, and it appears to correspond with
the hemodynamic severity of the aortic stenosis
[79, 80]. Hence, the ESC/EACTS Guidelines on
Valvular Heart Disease suggest that CT calcium
scoring should be used as a first-line test in cases
with discordant grading [81]. However, NaF-
PET/CT imaging has the advantage of being able

to determine the degree by which active calci-
fication is occurring [82]. In addition, histolog-
ical markers of calcification activity coincide
with NaF [83]. Thus, patients with more severe
disease have the highest degree of tracer uptake
[12], explaining why disease progression is fas-
ter in patients with severe AS. New calcification
could be identified in the areas of elevated NaF
activity reported on the baseline scan if patients
undergo repeat CT calcium scoring [83]. As a
result, baseline NaF uptake can predict disease
progression and related adverse cardiovascular
events. Hence, it might also be used to assess
the effects of novel drugs on disease activity

Fig. 2 CT, fused NaF-PET/CT, and IVUS images from
three patients with unstable angina. While lesions with
spotty calcification (a–d) and a large necrotic core (e–h)
were NaF avid, the fibrotic lesion (i–l) did not

demonstrate focal uptake. Image reprinted without
changes from Li et al. [47] under the Creative Commons
Attribution 4.0 International License (CC BY). https://
creativecommons.org/licenses/by/4.0/
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besides assessing the durability of transcatheter
aortic valve replacements. Additionally, PET/
MRI offers simultaneous imaging of calcifica-
tion activity in the aortic valve using NaF in
addition to detailed assessment of markers of
myocardial decompensation. Hence, further
testing for signs of calcification in bioprosthetic
valves as an early marker of valve degradation
using PET/MRI may be possible.

Cardiac Amyloidosis

The two types of cardiac amyloidosis are
acquired monoclonal immunoglobulin light-
chain (AL) and transthyretin-related (familial
and wild-type/senile) amyloidosis (ATTR). CMR
is routinely used in the assessment of cardiac
amyloidosis. However, CMR is unable to

differentiate between AL and ATTR amyloidosis.
Because there is higher NaF activity in ATTR
cardiac amyloidosis but not AL amyloidosis,
NaF-PET/CT may be a viable non-invasive
method to discriminate ATTR from AL [84]. This
variation in tracer uptake shows that the kind of
amyloid deposits in the myocardium influences
calcium homeostasis locally. In patients with
ATTR amyloidosis, NaF uptake could be effec-
tive for disease monitoring and amyloid depo-
sition localization [85].

In addition to NaF, PET tracers which target
amyloid fibrils, including 11C-Pittsburgh com-
pound B (11C-PiB), 18F-florbetaben, 18F-florbe-
tapir, and 18F-flutemetamol, have been
proposed to image cardiac amyloidosis [86]. A
study by Park et al. utilizing autoradiography
suggested that 18F-florbetapir binds AL to a
higher degree than to ATTR [87]. A similar

Fig. 3 Baseline and repeat imaging of two coronary plaques
in the same patient. Contrast-enhanced CT coronary
angiography (A, C) and fused PET/CT (B) demonstrate
NaF activity localized to calcification present in the left main
stem. CT coronary angiography 1 year later (D, E) demon-
strates increased CT calcification at this site. By contrast, CT
coronary angiography (F, H) and PET/CT (G) showed a

non-NaF avid calcified plaque in a proximal obtuse marginal
branch, which was not found to have increased calcification
after 1 year (I, J). Image reprinted without changes from
Doris et al. [72] under the Creative Commons Attribution
4.0 International License (CC BY). https://creativecommons.
org/licenses/by/4.0/
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pattern of differential uptake among cardiac
amyloidosis subtypes has been described using
18F-florbetaben [88]. A meta-analysis by Kim
et al. reported high sensitivity and specificity of
amyloid PET in the diagnosis of cardiac amy-
loidosis, suggesting that amyloid PET imaging
may play an additional role in identifying
amyloid subtypes [89].

OTHER RADIOTRACERS

Myocardial Perfusion Imaging

82Rb is a radiotracer that is absorbed from the
blood by the myocardium via the Na?/K?-
ATPase [90]. It has been widely utilized with PET
and has become an important technique for
determining myocardial blood flow and coro-
nary reserve (Fig. 4) [91, 92]. As such, it is widely
accepted as a standard for coronary artery dis-
ease imaging [93]. In a recent prospective study
done by Gaudieri et al. on 517 hypertensive
subjects of which 26% had resistant hyperten-
sion, 82Rb-PET was able to perform risk stratifi-
cation by assessing coronary vascular function
[94]. According to the authors, subjects with
resistant hypertension and coronary vascular
dysfunction have the highest risk of cardiovas-
cular events. However, the practical usage of
82Rb-PET is limited by a short half-life and a
long positron range. Other PET tracers proposed
for perfusion imaging suffer from similar tech-
nical concerns which limit their widespread
adoption. For example, 15O-water produces
images with a low signal-to-noise ratio, and
13 N-ammonia still has a longer positron range
compared to 18F-labeled tracers [95, 96].

18F-flupiridaz is a pyridazinone derivative
that targets the mitochondrial complex I of the
electron transport chain with high affinity. The
method of localization for this radiotracer is
deemed cardioselective because mitochondria
make up roughly 20–30% of the cellular volume
of the myocardium, resulting in higher
myocardial uptake compared to the lungs and
liver [97]. 18F-flurpiridaz has shown to be
advantageous in detecting myocardial blood
flow [98]. It has demonstrated a high level of
uptake in the heart, and it has a high

myocardial extraction fraction, permitting
easier quantification using PET [99]. Myocardial
perfusion imaging with 18F-flurpiridaz-PET was
found to have superior diagnostic ability com-
pared to 99mTc-labeled SPECT in women, obese
individuals, and those undergoing pharmaco-
logical stress testing in a phase III clinical trial
[100]. Therefore, abnormalities in myocardial
perfusion may be assessed by 18F-flupiridaz,
which has the potential to become a routine
clinical test.

18F-Flubrobenguane

18F-flubrobenguane, also referred to as 18F-
LMI1195, is a 18F-labeled norepinephrine (NE)
transporter ligand demonstrating clinical pro-
mise for its ability to evaluate cardiac sympa-
thetic function as a PET radiotracer [101]. 11C-
metahydroxyephedrine (11C-HED) is a NE
transporter ligand PET tracer similar to 18F-flu-
brobenguane but has limited use due to its short
half-life. Uptake of 18F-flubrobenguane has been
shown to closely mimic the physiologic NE
uptake mechanism, thereby allowing for evalu-
ation of cardiac neuronal integrity and func-
tion. Physiologic NE is stored in presynaptic
vesicles and released upon neural impulse into
the synaptic cleft via vesicular exocytosis. At the
post-synaptic cleft, adrenoreceptors are acti-
vated. NE is then transported to the presynaptic
cleft for reuptake and is stored before the next
firing impulse. It has been demonstrated that
blockage of the NE transporter via a selective NE
transporter inhibitor, desipramine, reduces
uptake of 18F-flubrobenguane considerably,
suggesting that 18F-flubrobenguane closely
mimics NE turnover [102]. Furthermore, early
data have shown that 18F-flubrobenguane pro-
vides a well-tolerated non-invasive assessment
of cardiac regional denervation and hetero-
geneity of innervation [103].

PET imaging with 18F-flubrobenguane allows
for evaluation of damage to the cardiac nervous
system, thereby identifying individuals at high
risk for cardiac events. For example, heart fail-
ure has been associated with increased sympa-
thetic activity within the heart. This increase in
NE release downregulates the NE transporter
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responsible for its reuptake, thereby increasing
synaptic concentrations of NE. Higher concen-
trations of NE desensitize beta-adrenoceptors,
which would otherwise slow progression of
cardiac disease [104]. Since regional cardiac
sympathetic dysfunction has been associated
with incidence of ventricular arrhythmias and
sudden cardiac death (SCD), PET can be used to
guide management and stage patients for
implantable cardioverter-defibrillator place-
ment [105]. In the Prediction of ARrhythmic
Events with PET (PAREPET) trial, patients were
imaged with echocardiography, 11C-HED PET,
13N-ammonia PET for perfusion, and FDG-PET
for viability to assess predictors of SCD [106].
Results from the PAREPET trial showed that
sympathetic denervation imaged by 11C-HED
PET could predict cause-specific SCD [107]. A
later analysis showed that regional rather than
global parameters derived from 11C-HED PET

were superior in determining SCD risk [108].
The PAREPET II trial aims to evaluate the role of
18F-flubrobenguane in characterizing left ven-
tricular sympathetic denervation, with SCD
serving as the primary endpoint [109]. The
results of this ongoing trial may clarify the role
of imaging sympathetic function by PET in
determining which patients would benefit from
an implantable cardioverter-defibrillator.

CONCLUSIONS

Early detection of atherogenesis with FDG and
NaF represents an exciting development within
cardiac PET. Furthermore, evaluation of
inflammation and ATTR amyloid deposition
affecting the myocardium can be detected with
FDG and NaF, respectively. Cardiac sarcoidosis
in particular is a domain that can benefit from

Fig. 4 99mTc-sestamibi SPECT (A) and 82Rb-PET/CT
(B) studies performed in a 56-year-old woman. Ischemia
involving the circumflex artery (arrow) was evident by
82Rb-PET after administration of dipyridamole, demon-
strating the superior sensitivity of this technique. Image

reprinted without changes from Chatal et al. [92] under
the Creative Commons Attribution 4.0 International
License (CC BY). https://creativecommons.org/licenses/
by/4.0/
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the additional characterization only available
by FDG-PET. A large number of additional
tracers, both in constant routine use as well as
newly introduced, are under investigation into
their utility in assessing the consequences of
ischemic cardiomyopathy. As future studies
provide further validation for these tracers and
clarify their optimal usages, it is expected that
patient care and our scientific understanding of
CVD will continue to benefit from the knowl-
edge provided by cardiac PET imaging.
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