Skip to main content
Log in

Electrochemical immunosensor for the detection of anti-thyroid peroxidase antibody by gold nanoparticles and ionic liquid-modified carbon paste electrode

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

In this work, a sandwich-type electrochemical immunosensor was designed based on the modification of the carbon paste electrode consisting of ionic liquid and graphite for the effective detection of anti-thyroid peroxidase antibody (anti-TPO). The ionic liquid carbon paste electrode surface was electrodeposited by biocompatible and electrically conductive gold nanoparticles (NPs) as a sensing platform. The human recombinant TPO (Ab1), anti-TPO antibody (Ag) and horseradish peroxidase (HRP)-anchored anti-TPO secondary antibody (HRP-Ab2) were successively immobilized on the Au NPs/CILE surface to construct the immunosensor. The immunosensor response signal was recorded by differential pulse voltammetry based on HRP catalysis in the reaction of H2O2 with O-aminophenol. An elevation in anti-TPO antibody concentration increased the current responses, probably due to the immobilization of a high amount of HRP-Ab2 on the electrodes for higher anti-TPO antibody concentration. The immunosensor, under the optimized circumstances, presented a low limit of detection (LOD) (6.0 ng mL−1) towards the anti-TPO antibody determination with a broad linear range (0.02–60.0 μg mL−1). Moreover, the prepared immunosensor showed good reproducibility and good stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. Medici, M., Porcu, E., Pistis, G., Teumer, A., Brown, S.J., Jensen, R.A., Peeters, R.P.: Identification of novel genetic loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS Genet. 10, e1004123 (2014)

    Article  Google Scholar 

  2. Taurog, A., Dorris, M.L., Doerge, D.R.: Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase. Arch. Biochem. Biophys. 330, 24–32 (1996)

    Article  CAS  Google Scholar 

  3. Czarnocka, B., Ruf, J., Ferrand, M., Carayon, P., Lissitzky, S.: Purification of the human thyroid peroxidase and its identification as the microsomal antigen involved in autoimmune thyroid diseases. FEBS. Lett. 190, 147–152 (1985)

    Article  CAS  Google Scholar 

  4. Williams, D.E., Le, S.N., Godlewska, M., Hoke, D.E., Buckle, A.M.: Thyroid peroxidase as an autoantigen in hashimoto’s disease: structure, function, and antigenicity. Horm. Metab. Res. 50, 908–921 (2018)

    Article  CAS  Google Scholar 

  5. Ai, J., Leonhardt, J.M., Heymann, W.R.: Autoimmune thyroid diseases: etiology, pathogenesis, and dermatologic manifestations. J. Am. Acad. Dermatol. 48, 641–662 (2003)

    Article  Google Scholar 

  6. Roy, G., Mugesh, G.: Selenium analogues of antithyroid drugs–recent developments. Chem. Biodivers. 5, 414–439 (2008)

    Article  CAS  Google Scholar 

  7. Liu, W., Li, J., Zhang, P., Hou, Q., Feng, S., Liu, L., Luo, Y.: A novel pan-cancer biomarker plasma heat shock protein 90alpha and its diagnosis determinants in clinic. Cancer. Sci. 110, 2941–2959 (2019)

    Article  CAS  Google Scholar 

  8. Li, W., Yuan, R., Chai, Y., Chen, S.: Reagentless amperometric cancer antigen 15–3 immunosensor based on enzyme-mediated direct electrochemistry. Biosens. Bioelectron. 25, 2548–2552 (2010)

    Article  CAS  Google Scholar 

  9. Zheng, J., Hu, Y., Bai, J., Ma, C., Li, J., Li, Y., Shi, M., Tan, W., Yang, R.: Universal surface enhanced Raman scattering amplification detector for ultrasensitive detection of multiple target analytes. Anal. Chem. 86, 2205–2212 (2014)

    Article  CAS  Google Scholar 

  10. Luo, Y., Wang, C., Jiang, T., Zhang, B., Huang, J., Liao, P., Fu, W.: Interference-free determination of ischemia-modified albumin using quantum dot coupled X-ray fluorescence spectroscopy. Biosens. Bioelectron. 51, 136–142 (2014)

    Article  CAS  Google Scholar 

  11. Han, S.H., Lee, K.R., Lee, D.G., Kim, B.Y., Lee, K.E., Chung, W.S.: Mutation analysis of BRCA1 and BRCA2 from 793 Korean patients with sporadic breast cancer. Clin. Genet. 70, 496–501 (2006)

    Article  Google Scholar 

  12. Lai, K.K., Renneberg, R., Mak, W.C.: Multifunctional protein particles with dual analytical channels for colorimetric enzymatic bioassays and fluorescent immunoassays. Biosens. Bioelectron. 32, 169–176 (2012)

    Article  CAS  Google Scholar 

  13. Ansari, S., Ansari, M.S., Satsangee, S.P., Alam, M.G., Jain, R.: Electrochemical sensing platform based on ZrO2/BiVO4 nanocomposite for gastro-prokinetic drug in human blood serum. J. Nanostructure. Chem. (2022). https://doi.org/10.1007/s40097-022-00473-6

    Article  Google Scholar 

  14. Taqvi, S.I.H., Solangi, A.R., Buledi, J.A., Khand, N.H., Junejo, B., Memon, A.F., Ameen, S., Bhatti, A., Show, P.L., Vasseghian, Y., Karimi-Maleh, H.: Plant extract-based green fabrication of nickel ferrite (NiFe2O4) nanoparticles: an operative platform for non-enzymatic determination of pentachlorophenol. Chemosphere 294, 133760 (2022)

    Article  CAS  Google Scholar 

  15. Buledi, J.A., Mahar, N., Mallah, A., Solangi, A.R., Palabiyik, I.M., Qambrani, N., Karimi, F., Vasseghian, Y., Karimi-Maleh, H.: Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: a potential method for environmental remediation. Food. Chem. Toxicol. 161, 112843 (2022)

    Article  CAS  Google Scholar 

  16. Khand, N.H., Palabiyik, I.M., Buledi, J.A., Ameen, S., Memon, A.F., Ghumro, T., Solangi, A.R.: Functional Co3O4 nanostructure-based electrochemical sensor for direct determination of ascorbic acid in pharmaceutical samples. J. Nanostructure Chem. 11, 455–468 (2021)

    Article  CAS  Google Scholar 

  17. Khand, N.H., Solangi, A.R., Ameen, S., Fatima, A., Buledi, J.A., Mallah, A., Memon, S.Q., Sen, F., Karimi, F., Orooji, Y.: A new electrochemical method for the detection of quercetin in onion, honey and green tea using Co3O4 modified GCE. J. Food. Meas. Charact. 15, 3720–3730 (2021)

    Article  Google Scholar 

  18. Bhavsar, K., Fairchild, A., Alonas, E., Bishop, D.K., La Belle, J.T., Sweeney, J., Joshi, L.: A cytokine immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy using electroplated printed circuit board electrodes. Biosens. Bioelectron. 25, 506–509 (2009)

    Article  CAS  Google Scholar 

  19. Lin, D., Wu, J., Ju, H., Yan, F.: Signal amplification for electrochemical immunosensing by in situ assembly of host–guest linked gold nanorod superstructure on immunocomplex. Biosens. Bioelectron. 45, 195–200 (2013)

    Article  CAS  Google Scholar 

  20. Zhao, Y., Liu, L., Kong, D., Kuang, H., Wang, L., Xu, C.: Dual amplified electrochemical immunosensor for highly sensitive detection of Pantoea stewartii sbusp. Stewartii. ACS Appl. Mater. Interfaces 6, 21178–21183 (2014)

    Article  CAS  Google Scholar 

  21. Pei, X., Zhang, B., Tang, J., Liu, B., Lai, W., Tang, D.: Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal. Chim. Acta 758, 1–18 (2013)

    Article  CAS  Google Scholar 

  22. Toufani, M., Kasap, S., Tufani, A., Bakan, F., Weber, S., Erdem, E.: Synergy of nano-ZnO and 3D-graphene foam electrodes for asymmetric supercapacitor devices. Nanoscale 12, 12790–12800 (2020)

    Article  CAS  Google Scholar 

  23. Seid, L., Lakhdari, D., Berkani, M., Belgherbi, O., Chouder, D., Vasseghian, Y., Lakhdari, N.: High-efficiency electrochemical degradation of phenol in aqueous solutions using Ni-PPy and Cu-PPy composite materials. J. Hazard Mater. 423, 126986 (2022)

    Article  CAS  Google Scholar 

  24. Berkani, M., Smaali, A., Kadmi, Y., Almomani, F., Vasseghian, Y., Lakhdari, N., Alyane, M.: Photocatalytic degradation of penicillin G in aqueous solutions: kinetic, degradation pathway, and microbioassays assessment. J. Hazard Mater. 421, 126719 (2022)

    Article  CAS  Google Scholar 

  25. Karthika, V., Kaleeswarran, P., Gopinath, K., Arumugam, A., Govindarajan, M., Alharbi, N.S., Benelli, G.: Biocompatible properties of nano-drug carriers using TiO2-Au embedded on multiwall carbon nanotubes for targeted drug delivery. Mater. Sci. Eng. C 90, 589–601 (2018)

    Article  CAS  Google Scholar 

  26. Doan, V.D., Huynh, B.A., Le Pham, H.A., Vasseghian, Y.: Cu2O/Fe3O4/MIL-101 (Fe) nanocomposite as a highly efficient and recyclable visible-light-driven catalyst for degradation of ciprofloxacin. Environ. Res. 201, 111593 (2021)

    Article  CAS  Google Scholar 

  27. Vasseghian, Y., Doan, V.D., Nguyen, T.T.T., Vo, T.T.T., Do, H.H., Vu, K.B., Vu, Q.H., Lam, T.D., Tran, V.A.: Flexible and high-sensitivity sensor based on Ti3C2–MoS2 MXene composite for the detection of toxic gases. Chemosphere 291, 133025 (2022)

    Article  Google Scholar 

  28. Nguyen, T.H.A., Nguyen, V.C., Phan, T.N.H., Vasseghian, Y., Trubitsyn, M.A., Nguyen, A.T., Chau, T.P., Doan, V.D.: Novel biogenic silver and gold nanoparticles for multifunctional applications: green synthesis, catalytic and antibacterial activity, and colorimetric detection of Fe (III) ions. Chemosphere 287, 132271 (2022)

    Article  CAS  Google Scholar 

  29. Smaali, A., Berkani, M., Merouane, F., Vasseghian, Y., Rahim, N., Kouachi, M.: Photocatalytic-persulfate-oxidation for diclofenac removal from aqueous solutions: modeling, optimization and biotoxicity test assessment. Chemosphere 266, 129158 (2021)

    Article  CAS  Google Scholar 

  30. Lu, J., Liu, S., Ge, S., Yan, M., Yu, J., Hu, X.: Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube–graphene composite and functionalized mesoporous materials. Biosens. Bioelectron. 3, 29–35 (2012)

    Article  Google Scholar 

  31. Wu, Y., Chen, C., Liu, S.: Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing. Anal. Chem. 81, 1600–1607 (2009)

    Article  CAS  Google Scholar 

  32. Li, Y., Zhang, Y., Li, F., Li, M., Chen, L., Dong, Y., Wei, Q.: Sandwich-type amperometric immunosensor using functionalized magnetic graphene loaded gold and silver core-shell nanocomposites for the detection of Carcinoembryonic antigen. J. Electroanal. Chem. 795, 1–9 (2017)

    Article  CAS  Google Scholar 

  33. Dai, L., Li, Y., Wang, Y., Luo, X., Wei, D., Feng, R., Wei, Q.: A prostate-specific antigen electrochemical immunosensor based on Pd NPs functionalized electroactive Co-MOF signal amplification strategy. Biosens. Bioelectron. 132, 97–104 (2019)

    Article  CAS  Google Scholar 

  34. Yang, Y., Yan, Q., Liu, Q., Li, Y., Liu, H., Wang, P., Dong, Y.: An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of echinoidea-shaped Au@ Ag-Cu2O nanoparticles for prostate specific antigen detection. Biosens. Bioelectron. 99, 450–457 (2018)

    Article  CAS  Google Scholar 

  35. Beitollahi, H., Nekooei, S., Torkzadeh-Mahani, M.: Amperometric immunosensor for prolactin hormone measurement using antibodies loaded on a nano-Au monolayer modified ionic liquid carbon paste electrode. Talanta 188, 701–707 (2018)

    Article  CAS  Google Scholar 

  36. Ma, C., Zhao, C., Li, W., Song, Y., Hong, C., Qiao, X.: Sandwich-type electrochemical immunosensor constructed using three-dimensional lamellar stacked CoS2@C hollow nanotubes prepared by template-free method to detect carcinoembryonic antigen. Anal. Chim. Acta 1088, 54–62 (2019)

    Article  CAS  Google Scholar 

  37. Wei, D., Ivaska, A.: Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta 607, 126–135 (2008)

    Article  CAS  Google Scholar 

  38. Ding, C., Zhao, F., Ren, R., Lin, J.M.: An electrochemical biosensor for α-fetoprotein based on carbon paste electrode constructed of room temperature ionic liquid and gold nanoparticles. Talanta 78, 1148–1154 (2009)

    Article  CAS  Google Scholar 

  39. He, Y.N., Chen, H.Y., Zheng, J.J., Zhang, G.Y., Chen, Z.L.: Differential pulse voltammetric enzyme-linked immunoassay for the determination of Helicobacter pylori specific immunoglobulin G (IgG) antibody. Talanta 44, 823–830 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Iranian National Science Foundation (INSF) (Grant No. 95012096) and Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Beitollahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajik, S., Beitollahi, H. & Torkzadeh-Mahani, M. Electrochemical immunosensor for the detection of anti-thyroid peroxidase antibody by gold nanoparticles and ionic liquid-modified carbon paste electrode. J Nanostruct Chem 12, 581–588 (2022). https://doi.org/10.1007/s40097-022-00496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00496-z

Keywords

Navigation