Skip to main content

Advertisement

Log in

Surface nanoarchitectured metal–organic frameworks-based sensor for reduced glutathione sensing: a review

  • Review
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Reduced glutathione (GSH) is a major biomarker related to a variety of diseases including cancers, cardiovascular disease, liver damage, autism in children, and others. Although the human body can synthesize GSH, it falls well short of meeting the needs of all of the body's functions. Consuming GSH-containing meals may help in solving the problem of low GSH levels. As a result, the development of an effective probe for measuring GSH in foods, agricultural products, nutritional supplements, and other products is critical for food safety and disease diagnostic. This, in turn, leads to the creation of metal–organic frameworks (MOFs) as nanoporous sensors for sensing of GSH in complicated samples such as urine, human serum samples, various foods, and vegetables, etc. Unfortunately, widely utilized sensors have numerous drawbacks such as selectivity, sensitivity, detection speed, simplicity, and so on. As a result, there is a great demand for the upgrading of extremely sensitive, selective, fast, and robust biosensors for GSH measurement. Presently, the structural design of MOFs has piqued the interest of researchers for detection of GSH owing to its remarkable and adaptable qualities such as high sensitivity, excellent selectivity in clinical samples, food components, agriculture goods, nutritional supplements, and so on. The methods and tactics for measuring GSH utilizing MOFs-based sensors, such as fluorescent, colorimetric, electrochemical, and ratiometric sensors, are summarized. In addition, detail explanation regarding synthesis of MOFs, fabrication of DNA conjugated MOFs, and enzyme-functionalized MOFs for specific sensing of GSH has been explored. Development of novel strategies for selective sensing of GSH with respect to all categories has been summarized. Remarkably, the low detection limit for GSH in the M to nM range was demonstrated by surface nanoarchitectured MOFs-centered biosensors. Finally, current challenges and future prospects for advanced applications of MOFs-based biosensors are highlighted. Eventually, this review may aid both academic and industrial researchers in the rational development of MOFs-based biosensors for GSH sensing.

Graphical abstract

Surface architectured MOFs mediated biosensor for reduced glutathione sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Copyright 2019, Elsevier]

Fig. 7

Copyright 2019, Elsevier]

Fig. 8

Copyright 2019, American Chemical Society.]

Fig. 9

Copyright 2020, Royal Society of Chemistry"

Fig. 10

Copyright 2019, American Chemical Society"

Fig. 11

Copyright 2016, Elsevier]

Fig. 12

Copyright 2019, Elsevier]

Fig. 13

Copyright 2021, Elsevier]

Similar content being viewed by others

References

  1. Wang, X.-B., Li, H.-J., Liu, C., Hu, Y.-X., Li, M.-C., Wu, Y.-C.: Simple turn-on fluorescent sensor for discriminating Cys/Hcy and GSH from different fluorescent signals. Anal. Chem. 93, 2244–2253 (2021)

    Article  CAS  PubMed  Google Scholar 

  2. He, L., Tao, H., Koo, S., Chen, G., Sharma, A., Chen, Y., Lim, I.-T., Cao, Q.-Y Kim, J. S.: Multifunctional fluorescent nanoprobe for sequential detections of Hg2+ ions and biothiols in live cells. ACS Appl. Bio Mater. 1, 871–878 (2018).

  3. Lu, S.C.: Regulation of glutathione synthesis. Mol. Aspects Med. 30, 42–59 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. Noctor, G., Queval, G., Mhamdi, A., Chaouch, S., Foyer, C.H.: Glutathione. Arabidopsis Book. (2011). https://doi.org/10.1199/tab.0142

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ugalde, J.M., Fuchs, P., Nietzel, T., Cutolo, E.A., Homagk, M., Vothknecht, U.C., Holuigue, L., Schwarzländer, M., Müller-Schüssele, S.J., Meyer, A.J.: Chloroplast-derived photo-oxidative stress causes changes in H2O2 and EGSH in other subcellular compartments. Plant Physiol. 186, 125–141 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mukherjee, S., Ghosh, S., Choudhury, S., Gupta, P., Adhikary, A., Chattopadhyay, S.: Pomegranate polyphenols attenuate inflammation and hepatic damage in tumor-bearing mice: crucial role of NF-κB and the Nrf2/GSH axis. J. Nutr. Biochem. 97, 108812 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. Wood, Z.A., Schröder, E., Harris, J.R., Poole, L.B.: Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32–40 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. Khan, Z.G., Patil, P.O.: A comprehensive review on carbon dots and graphene quantum dots based fluorescent sensor for biothiols. Microchem. J. (2020). https://doi.org/10.1016/j.microc.2020.105011

    Article  Google Scholar 

  9. Gawryluk, J.W., Wang, J.-F., Andreazza, A.C., Shao, L., Young, L.T.: Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int. J. Neuropsychopharmacol. 14, 123–130 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. Paolicchi, A., Dominici, S., Pieri, L., Maellaro, E., Pompella, A.: Glutathione catabolism as a signaling mechanism. Biochem. Pharmacol. 64, 1027–1035 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Pawlik-Skowrońska, B., Pirszel, J., Kalinowska, R., Skowroński, T.: Arsenic availability, toxicity and direct role of GSH and phytochelatins in As detoxification in the green alga Stichococcus bacillaris. Aquat. Toxicol. 70, 201–212 (2004)

    Article  PubMed  Google Scholar 

  12. Wang, N., Liu, C., Yao, W., Zhou, H., Yu, S., Chen, H., Qiao, W.: A traceable, GSH/pH dual-responsive nanoparticles with spatiotemporally controlled multiple drugs release ability to enhance antitumor efficacy. Coll. Surf. B. 205, 111866 (2021)

    Article  CAS  Google Scholar 

  13. Hanko, M., Švorc, Ľ, Planková, A., Mikuš, P.: Overview and recent advances in electrochemical sensing of glutathione—a review. Anal. Chim. Acta. 1062, 1–27 (2019)

    Article  CAS  PubMed  Google Scholar 

  14. Yang, J., Li, Y., Wang, F., Wu, C.: Hepatoprotective effects of apple polyphenols on CCl4-induced acute liver damage in mice. J. Agric. Food Chem. 58, 6525–6531 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. Harfield, J.C., Batchelor-McAuley, C., Compton, R.G.: Electrochemical determination of glutathione: a review. Analyst. 137, 2285–2296 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. Gao, Q., Zhang, W., Song, B., Zhang, R., Guo, W., Yuan, J.: Development of a novel lysosome-targeted ruthenium (II) complex for phosphorescence/time-gated luminescence assay of biothiols. Anal. Chem. 89, 4517–4524 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. Guan, Q.L., Xing, Y.H., Liu, J., Han, C., Hou, C.Y., Bai, F.Y.: Bismuth-carboxylate ligand 1, 3, 6, 8-Tetrakis (p-benzoic acid) pyrene frameworks, photophysical properties, biological imaging, and fluorescent sensor for biothiols. J. Phys. Chem. 123, 23287–23296 (2019)

    CAS  Google Scholar 

  18. Kaymak, G., Kayhan, F.E., Ertug, N.D.Y.: International journal of agriculture, environment and food sciences. Int. J. Agric. Environ. Food Sci. 5, 107–121 (2021)

    Article  Google Scholar 

  19. Jiao, Y., Gao, Y., Meng, Y., Lu, W., Liu, Y., Han, H., Shuang, S., Li, L., Dong, C.: One-step synthesis of label-free ratiometric fluorescence carbon dots for the detection of silver ions and glutathione and cellular imaging applications. ACS Appl. Mater. Interfaces. 11, 16822–16829 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. Chen, A., Peng, X., Pan, Z., Shao, K., Wang, J., Fan, M.: Visual assay of glutathione in vegetables and fruits using quantum dot ratiometric hybrid probes. J. Agric. Food Chem. 66, 6431–6438 (2018)

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Z., Lou, Y., Guo, C., Jia, Q., Song, Y., Tian, J.-Y., Zhang, S., Wang, M., He, L., Du, M.: Visual assay of glutathione in vegetables and fruits using quantum dot ratiometric hybrid probes. Trends Food Sci Technol. 118, 569–588 (2021)

    Article  CAS  Google Scholar 

  22. Mehrotra, P.: Biosensors and their applications—a review. J Oral Biol Craniofac Res. 6, 153–159 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Polshettiwar, S.A., Deshmukh, C.D., Wani, M.S., Baheti, A.M., Bompilwar, E., Choudhari, S., Jambhekar, D., Tagalpallewar, A.: Recent trends on biosensors in healthcare and pharmaceuticals: an overview. Int. J. Pharm. Investig. 11, 131–136 (2021)

    Article  CAS  Google Scholar 

  24. Zhang, Q., Wu, Y., Xu, Q., Ma, F., Zhang, C.-Y.: Recent advances in biosensors for in vitro detection and in vivo imaging of DNA methylation. Biosens. Bioelectron. 171, 112712 (2021)

    Article  CAS  PubMed  Google Scholar 

  25. Nasu, Y., Shen, Y., Kramer, L., Campbell, R.E.: Structure-and mechanism-guided design of single fluorescent protein-based biosensors. Nat. Chem. Biol. 17, 509–518 (2021)

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y., Lyu, H. (2021) Application of biosensors based on nanomaterials in cancer cell detection. J Phys Conf Ser. IOP Publishing, p 012149 (2021)

  27. Maddali, H., Miles, C.E., Kohn, J., O’Carroll, D.M.: Optical biosensors for virus detection: prospects for SARS-CoV-2/COVID-19. Chem Bio Chem 22, 1176 (2021)

    Article  CAS  PubMed  Google Scholar 

  28. Haleem, A., Javaid, M., Singh, R.P., Suman, R., Rab, S.: Biosensors applications in medical field: a brief review. J. Sens. (2021). https://doi.org/10.1016/j.sintl.2021.100100

    Article  Google Scholar 

  29. Zhu, J., Xia, T., Cui, Y., Yang, Y., Qian, G.: A turn-on MOF-based luminescent sensor for highly selective detection of glutathione. J. Solid State Chem. 270, 317–323 (2019)

    Article  CAS  Google Scholar 

  30. Zhu, W., Li, L., Zhou, Z., Yang, X., Hao, N., Guo, Y., Wang, K.: A colorimetric biosensor for simultaneous ochratoxin A and aflatoxins B1 detection in agricultural products. Food Chem. 319, 126544 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. de Almeida Ferraz, N. V., Vasconcelos, W. S., Silva, C. S., Junior, S. A., Amorim, C. G., Montenegro, M. D. C. B. S., da Cunha Areias, M. C.: Gold-copper metal-organic framework nanocomposite as a glassy carbon electrode modifier for the voltammetric detection of glutathione in commercial dietary supplements Sensors and Actuators. B: Chemical. 307, 127636 (2020).

  32. Zaidi, S.A., Shin, J.H.: A review on the latest developments in nanostructure-based electrochemical sensors for glutathione. Anal. Methods. 8, 1745–1754 (2016)

    Article  CAS  Google Scholar 

  33. Jalili, R., Khataee, A., Rashidi, M.-R., Luque, R.: Dual-colored carbon dot encapsulated metal-organic framework for ratiometric detection of glutathione. Sens. Actu. B Chem. 297, 126775 (2019)

    Article  CAS  Google Scholar 

  34. Sulaiman, I.C., Chieng, B., Osman, M., Ong, K., Rashid, J., Yunus, W.W., Noor, S., Kasim, N., Halim, N., Mohamad, A.: A review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles. Mikrochim Acta. 187, 1–22 (2020)

    Google Scholar 

  35. Halawa, M.I., Wu, F., Zafar, M.N., Mostafa, I.M., Abdussalam, A., Han, S., Xu, G.: Turn-on fluorescent glutathione detection based on lucigenin and MnO2 nanosheets. J Mater Chem B. 8, 3542–3549 (2020)

    Article  CAS  PubMed  Google Scholar 

  36. Khan, Z.G., Patil, P.O.: A comprehensive review on carbon dots and graphene quantum dots based fluorescent sensor for biothiols. Microchem. J. 157, 105011 (2020)

    Article  CAS  Google Scholar 

  37. Zheng, Y.-N., Liang, W.-B., Xiong, C.-Y., Zhuo, Y., Chai, Y.-Q., Yuan, R.: Universal ratiometric photoelectrochemical bioassay with target-nucleotide transduction-amplification and electron-transfer tunneling distance regulation strategies for ultrasensitive determination of microRNA in cells. Anal Chem. 89, 9445–9451 (2017)

    Article  CAS  PubMed  Google Scholar 

  38. Ma, X., Zhang, J., Zhang, C., Yang, X., Yu, A., Huang, Y., Zhang, S., Ouyang, G.: Targeting enrichment and correlation studies of glutathione and homocysteine in IgAVN patient urine based on a core–shell zr-based metal–organic framework. ACS Appl. Mater. Interfaces. 13, 40070–40078 (2021)

    Article  CAS  PubMed  Google Scholar 

  39. Wang, R., He, C., Chen, W., Fu, L., Zhao, C., Huo, J., Sun, C.: Design strategies of two-dimensional metal–organic frameworks toward efficient electrocatalysts for N2 reduction: cooperativity of transition metals and organic linkers. Nanoscale 13, 19247–19254 (2021)

    Article  CAS  PubMed  Google Scholar 

  40. Patil, P. O., More, M. P., Khan, Z. G., Tade, R. S., Deshmukh, P. K., Patil, A. G. Bari, S. B. (2019). Antibody-Mediated Diagnosis of Biomolecules, (Elsevier, pp. 165–193).

  41. Ghosh, S., Steinke, F., Rana, A., Alam, M., Biswas, S.: A metal‐organic framework with allyloxy functionalization for aqueous‐phase fluorescence recognition of Pd (II) ion European. Inorg. Chem. (2021).

  42. Patil, P.O., Pandey, G.R., Patil, A.G., Borse, V.B., Deshmukh, P.K., Patil, D.R., Tade, R.S., Nangare, S.N., Khan, Z.G., Patil, A.M.: Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: a review. Biosens. Bioelectron. 139, 111324 (2019)

    Article  CAS  PubMed  Google Scholar 

  43. Yan, J., Meng, Y., Yang, X., Luo, X., Guan, X.: Privacy-preserving localization for underwater sensor networks via deep reinforcement learning. IEEE Trans. Inf. Foren. Secur. 16, 1880–1895 (2020)

    Article  Google Scholar 

  44. Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Van Duyne, R.P., Hupp, J.T.: Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)

    Article  CAS  PubMed  Google Scholar 

  45. Dybtsev, D.N., Bryliakov, K.P.: Asymmetric catalysis using metal-organic frameworks. Coord. Chem. Rev. 437, 213845 (2021)

    Article  CAS  Google Scholar 

  46. Lawson, H.D., Walton, S.P., Chan, C.: Metal–organic frameworks for drug delivery: a design perspective. ACS Appl. Mater. Interfaces. 13, 7004–7020 (2021)

    Article  CAS  PubMed  Google Scholar 

  47. Yang, Y., Li, L., Yang, H., Sun, L.: Five lanthanide-based metal–organic frameworks built from a π-conjugated ligand with isophthalate units featuring sensitive fluorescent sensing for DMF and acetone molecules. Cryst. Growth Des. 21, 2954–2961 (2021)

    Article  CAS  Google Scholar 

  48. Nangare, S.N., Sangale, P., Patil, A.G., Boddu, S.H., Deshmuk, P.K., Jadhav, N.R., Tade, R.S., Patil, D.R., Pandey, A., Mutalik, S.: Surface architectured metal organic frameworks-based biosensor for ultrasensitive detection of uric acid: recent advancement and future perspectives. Microchem. J. (2021). https://doi.org/10.1016/j.microc.2021.106567

    Article  Google Scholar 

  49. Fu, Y., Chen, H., Guo, R., Huang, Y., Toroghinejad, M.R.: Extraordinary strength-ductility in gradient amorphous structured Zr-based alloy. J. Alloys Compd. 888, 161507 (2021)

    Article  CAS  Google Scholar 

  50. Du, C., Zhang, Z., Yu, G., Wu, H., Chen, H., Zhou, L., Zhang, Y., Su, Y., Tan, S., Yang, L.: A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. Chemosphere (2021). https://doi.org/10.1016/j.chemosphere.2020.129501

    Article  PubMed  PubMed Central  Google Scholar 

  51. Grancha, T., Carné-Sánchez, A., Zarekarizi, F., Hernández-López, L., Albalad, J., Khobotov, A., Guillerm, V., Morsali, A., Juanhuix, J., Gándara, F.: Synthesis of polycarboxylate rhodium (ii) metal–organic polyhedra (MOPs) and their use as building blocks for highly connected metal–organic frameworks (MOFs). Angew. Chem. Int. Ed. 60, 5729–5733 (2021)

    Article  CAS  Google Scholar 

  52. Alencar Filho, J. M. T., Sampaio, P. A., Carvalho, I. S., Silva, A. R., Pereira, E. C. V., Amariz, I. A. e., Nishimura, R. H. V., Araújo, E. C. d. C., Rolim-Neto, P. J., Rolim, L. A.: Metal organic frameworks (MOFs) with therapeutic and biomedical applications: a patent review. Expert Opin Ther Pat (2021).

  53. Wang, K., Li, Q., Ren, Z., Li, C., Chu, Y., Wang, Z., Zhang, M., Wu, H., Zhang, Q.: 2D metal–organic frameworks (MOFs) for high‐performance batcap hybrid devices small. 16, 2001987 (2020).

  54. Zhang, Y., Yuan, S., Day, G., Wang, X., Yang, X., Zhou, H.-C.: Luminescent sensors based on metal-organic frameworks. Coord. Chem. Rev. 354, 28–45 (2018)

    Article  CAS  Google Scholar 

  55. He, H., Zhu, Q.-Q., Yan, Y., Zhang, H.-W., Han, Z.-Y., Sun, H., Chen, J., Li, C.-P., Zhang, Z., Du, M.: Metal–organic framework supported Au nanoparticles with organosilicone coating for high-efficiency electrocatalytic N2 reduction to NH3. Appl. Catal. B. 302, 120840 (2022)

    Article  CAS  Google Scholar 

  56. Nguyen, J.G., Cohen, S.M.: Moisture-resistant and superhydrophobic metal—organic frameworks obtained via postsynthetic modification. J. Am. Chem. Soc. 132, 4560–4561 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cohen, S.M.: The postsynthetic renaissance in porous solids. J. Am. Chem. Soc. 139, 2855–2863 (2017)

    Article  CAS  PubMed  Google Scholar 

  58. Jiang, W., Fu, Q., Fan, H., Ho, J., Wang, W.: A highly selective fluorescent probe for thiophenols. Angew. Chem. Int. Ed. 46, 8445–8448 (2007)

    Article  CAS  Google Scholar 

  59. Sharma, S., Ghosh, S.K.: Metal–organic framework-based selective sensing of biothiols via chemidosimetric approach in water. ACS Omega 3, 254–258 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, B., Suo, T., Xie, S., Xia, A., Ma, Y.-J., Huang, H., Zhang, X., Hu, Q.: Rational design, synthesis, and applications of carbon dots@ metal–organic frameworks (CD@ MOF) based sensors. Trends Analyt Chem. 135, 116163 (2021)

    Article  CAS  Google Scholar 

  61. Zhang, Y., Dai, C., Liu, W., Wang, Y., Ding, F., Zou, P., Wang, X., Zhao, Q., Rao, H.: Ultrathin films of a metal-organic framework prepared from 2-methylimidazole, manganese (II) and cobalt (II) with strong oxidase-mimicking activity for colorimetric determination of glutathione and glutathione reductase activity. Microchim. Acta. 186, 1–9 (2019)

    Google Scholar 

  62. Chen, X., Wang, X., Cao, G., Wu, Y., Luo, H., Ji, Z., Shen, C., Huo, D., Hou, C.: Colorimetric and fluorescent dual-identification of glutathione based on its inhibition on the 3D ball-flower shaped Cu-hemin-MOF’s peroxidase-like activity. Microchim. Acta. 187, 1–10 (2020)

    Article  Google Scholar 

  63. Mahmoud, A. M., Alkahtani, S. A., El-Wekil, M. M.: Highly selective and sensitive electrochemical determination of cysteine based on complexation with gold nanoparticle–modified copper-based metal organic frameworks. Anal. Bioanal. Chem. 1–11 (2022).

  64. Gui, R., Jin, H., Bu, X., Fu, Y., Wang, Z., Liu, Q.: Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord. Chem. Rev. 383, 82–103 (2019)

    Article  CAS  Google Scholar 

  65. Wang, K., Ren, H., Li, N., Tan, X., Dang, F.: Ratiometric fluorescence sensor based on cholesterol oxidase-functionalized mesoporous silica nanoparticle@ ZIF-8 core-shell nanocomposites for detection of cholesterol. Talanta 188, 708–713 (2018)

    Article  CAS  PubMed  Google Scholar 

  66. Gu, Q., Ng, H.Y., Zhao, D., Wang, J.: Metal–organic frameworks (MOFs)-boosted filtration membrane technology for water sustainability. APL Mater. 8, 040902 (2020)

    Article  CAS  Google Scholar 

  67. Liu, A.-J., Xu, F., Han, S.-D., Pan, J., Wang, G.-M.: Mixed-ligand strategy for the construction of photochromic metal–organic frameworks driven by electron-transfer between nonphotoactive units. Cryst. Growth Des. 20, 7350–7355 (2020)

    Article  CAS  Google Scholar 

  68. Zhang, Z.-H., Lan, J.-H., Yuan, L.-Y., Sheng, P.-P., He, M.-Y., Zheng, L.-R., Chen, Q., Chai, Z.-F., Gibson, J.K., Shi, W.-Q.: Rational construction of porous metal–organic frameworks for uranium (VI) extraction: the strong periodic tendency with a metal node. ACS Appl. Mater. Interfaces. 12, 14087–14094 (2020)

    Article  CAS  PubMed  Google Scholar 

  69. Wang, Y., Yan, J., Wen, N., Xiong, H., Cai, S., He, Q., Hu, Y., Peng, D., Liu, Z., Liu, Y.: Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials 230, 119619 (2020)

    Article  CAS  PubMed  Google Scholar 

  70. Karmakar, A., Prabakaran, V., Zhao, D., Chua, K.J.: A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications. Appl. Energy. 269, 115070 (2020)

    Article  CAS  Google Scholar 

  71. Li, H., Yang, W., Pan, Q.: Integration of fluorescent probes into metal–organic frameworks for improved performances. RSC Adv. 10, 33879–33893 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mancuso, J.L., Mroz, A.M., Le, K.N., Hendon, C.H.: Electronic structure modeling of metal–organic frameworks. Chem. Rev. 120, 8641–8715 (2020)

    Article  CAS  PubMed  Google Scholar 

  73. Butova, V.V.E., Soldatov, M.A., Guda, A.A., Lomachenko, K.A., Lamberti, C.: Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russ. Chem. Rev. 85, 280 (2016)

    Article  CAS  Google Scholar 

  74. Wang, J., Li, N., Xu, Y., Pang, H.: Two-dimensional MOF and COF nanosheets: synthesis and applications in electrochemistry Chem. Eur. J. 26, 6402–6422 (2020)

    Article  CAS  Google Scholar 

  75. Ghanbari, T., Abnisa, F. and Daud, W. M. A. W.: A review on production of metal organic frameworks (MOF) for CO2 adsorption. Sci. Total Environ. 707, 135090 (2020).

  76. Goetjen, T.A., Liu, J., Wu, Y., Sui, J., Zhang, X., Hupp, J.T., Farha, O.K.: Metal–organic framework (MOF) materials as polymerization catalysts: a review and recent advances. Chem Comm. 56, 10409–10418 (2020)

    Article  CAS  PubMed  Google Scholar 

  77. Tan, B., Luo, Y., Liang, X., Wang, S., Gao, X., Zhang, Z., Fang, Y.: Mixed-solvothermal synthesis of MIL-101 (Cr) and its water adsorption/desorption performance. J Ind Eng Chem. 58, 2983–2990 (2019)

    Article  CAS  Google Scholar 

  78. Rojas-Buzo, S., Bohigues, B., Lopes, C.W., Meira, D.M., Boronat, M., Moliner, M., Corma, A.: Tailoring Lewis/Brønsted acid properties of MOF nodes via hydrothermal and solvothermal synthesis: simple approach with exceptional catalytic implications. J Chem Sci (Bangalore). 12, 10106–10115 (2021)

    CAS  Google Scholar 

  79. Mohammadinezhad, A., Akhlaghinia, B.: Engineered superparamagnetic core–shell metal–organic frame-work (Fe3O4@Ni–Co-BTC NPs) with enhanced photocatalytic activity for selective aerobic oxidation of alcohols under solar light irradiation. Catal. Lett. 151, 107–123 (2021)

    Article  CAS  Google Scholar 

  80. Kumbhakar, P., Gowda, C. C., Mahapatra, P. L., Mukherjee, M., Malviya, K. D., Chaker, M., Chandra, A., Lahiri, B., Ajayan, P., Jariwala, D.: Emerging 2D metal oxides and their applications. Mater. Today. (2021).

  81. Dang, Y.T., Hoang, H.T., Dong, H.C., Bui, K.-B.T., Nguyen, L.H.T., Phan, T.B., Kawazoe, Y., Doan, T.L.H.: Microwave-assisted synthesis of nano Hf-and Zr-based metal-organic frameworks for enhancement of curcumin adsorption. Microporous Mesoporous Mater. 298, 110064 (2020)

    Article  CAS  Google Scholar 

  82. Bobbitt, N.S., Mendonca, M.L., Howarth, A.J., Islamoglu, T., Hupp, J.T., Farha, O.K., Snurr, R.Q.: Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. 46, 3357–3385 (2017)

    Article  CAS  PubMed  Google Scholar 

  83. Hayes, B. L.: Microwave synthesis: chemistry at the speed of light. Cem Corporation. (2002).

  84. Zhu, L., Liang, G., Guo, C., Xu, M., Wang, M., Wang, C., Zhang, Z., Du, M.: A new strategy for the development of efficient impedimetric tobramycin aptasensors with metallo-covalent organic frameworks (MCOFs). Food Chem. 366, 130575 (2022)

    Article  CAS  PubMed  Google Scholar 

  85. Zhao, Z., Ding, J., Zhu, R., Pang, H.: The synthesis and electrochemical applications of core–shell MOFs and their derivatives. J. Mater. Chem. A. 7, 15519–15540 (2019)

    Article  CAS  Google Scholar 

  86. Ajdari, F.B., Kowsari, E., Shahrak, M.N., Ehsani, A., Kiaei, Z., Torkzaban, H., Ershadi, M., Eshkalak, S.K., Haddadi-Asl, V., Chinnappan, A.: A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord. Chem. Rev. 422, 213441 (2020)

    Article  Google Scholar 

  87. Stock, N., Biswas, S.: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)

    Article  CAS  PubMed  Google Scholar 

  88. Thorne, M.F., Gómez, M.L.R., Bumstead, A.M., Li, S., Bennett, T.D.: Mechanochemical synthesis of mixed metal, mixed linker, glass-forming metal–organic frameworks. Green Chem. 22, 2505–2512 (2020)

    Article  CAS  Google Scholar 

  89. Song, F., Cao, Y., Zhao, Y., Jiang, R., Xu, Q., Yan, J., Zhong, Q.: Ion-exchanged ZIF-67 synthesized by one-step method for enhancement of CO2 adsorption. J. Nanomater. (2020). https://doi.org/10.1155/2020/1508574

    Article  Google Scholar 

  90. Li, S., Wang, L., Zhang, X., Chai, H., Huang, Y.: A Co, N co-doped hierarchically porous carbon hybrid as a highly efficient oxidase mimetic for glutathione detection. Sens. Actu. B Chem. 264, 312–319 (2018)

    Article  CAS  Google Scholar 

  91. Liu, Y., Zhou, M., Cao, W., Wang, X., Wang, Q., Li, S., Wei, H.: Light-responsive metal–organic framework as an oxidase mimic for cellular glutathione detection. Anal. Chem. 91, 8170–8175 (2019)

    Article  CAS  PubMed  Google Scholar 

  92. Wang, J., Li, W., Zheng, Y.-Q.: Nitro-functionalized metal–organic frameworks with catalase mimic properties for glutathione detection. Analyst. 144, 6041–6047 (2019)

    Article  CAS  PubMed  Google Scholar 

  93. Jangi, S.R.H., Akhond, M.: Synthesis and characterization of a novel metal-organic framework called nanosized electroactive quasi-coral-340 (NEQC-340) and its application for constructing a reusable nanozyme-based sensor for selective and sensitive glutathione quantification. Microchem. J. 158, 105328 (2020)

    Article  Google Scholar 

  94. Wang, N., Xie, M., Wang, M., Li, Z., Su, X.: UiO-66-NH2 MOF-based ratiometric fluorescent probe for the detection of dopamine and reduced glutathione. Talanta 220, 121352 (2020)

    Article  CAS  PubMed  Google Scholar 

  95. Dalapati, R., Sakthivel, B., Ghosalya, M.K., Dhakshinamoorthy, A., Biswas, S.: A cerium-based metal–organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. Cryst. Eng. Comm. 19, 5915–5925 (2017)

    Article  CAS  Google Scholar 

  96. Jin, T., Li, Y., Jing, W., Li, Y., Fan, L., Li, X.: Cobalt-based metal organic frameworks: a highly active oxidase-mimicking nanozyme for fluorescence “turn-on” assays of biothiol. Chem Comm. 56, 659–662 (2020)

    Article  CAS  PubMed  Google Scholar 

  97. Chen, H.-L., Li, R.-T., Wu, K.-Y., Hu, P.-P., Zhang, Z., Huang, N.-H., Zhang, W.-H., Chen, J.-X.: Experimental and theoretical validations of a one-pot sequential sensing of Hg2+ and biothiols by a 3D Cu-based zwitterionic metal-organic framework. Talanta 210, 120596 (2020)

    Article  CAS  PubMed  Google Scholar 

  98. Huang, N.-H., Li, R.-T., Fan, C., Wu, K.-Y., Zhang, Z., Chen, J.-X.: Rapid sequential detection of Hg2+ and biothiols by a probe DNA-MOF hybrid sensory system. J. Inorg. Biochem. 197, 110690 (2019)

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, Y., Zhang, W., Chen, K., Yang, Q., Hu, N., Suo, Y., Wang, J.: Highly sensitive and selective colorimetric detection of glutathione via enhanced Fenton-like reaction of magnetic metal organic framework. Sens. Actu. B Chem. 262, 95–101 (2018)

    Article  CAS  Google Scholar 

  100. Jiang, Y., Yang, Q.-M., Xu, Q.-J., Lu, S.-Y., Hu, L.-Y., Xu, M.-W., Liu, Y.-S.: Metal organic framework MIL-53 (Fe) as an efficient artificial oxidase for colorimetric detection of cellular biothiols. Anal. Biochem. 577, 82–88 (2019)

    Article  CAS  PubMed  Google Scholar 

  101. Zhu, S., Wang, S., Xia, M., Wang, B., Huang, Y., Zhang, D., Zhang, X., Wang, G.: Intracellular imaging of glutathione with MnO2 Nanosheet@Ru (bpy)32+–UiO-66 nanocomposites. ACS Appl. Mater. Interfaces. 11, 31693–31699 (2019)

    Article  CAS  PubMed  Google Scholar 

  102. Hu, Z., Jiang, X., Xu, F., Jia, J., Long, Z., Hou, X.: Colorimetric sensing of bithiols using photocatalytic UiO-66 (NH2) as H2O2-free peroxidase mimics. Talanta 158, 276–282 (2016)

    Article  CAS  PubMed  Google Scholar 

  103. Wang, Y., Liu, X., Wang, M., Wang, X., Ma, W., Li, J.: Facile synthesis of CDs@ ZIF-8 nanocomposites as excellent peroxidase mimics for colorimetric detection of H2O2 and glutathione. Sens. Actu. B Chem. 329, 129115 (2021)

    Article  CAS  Google Scholar 

  104. Nangare, S.N., Patil, S.R., Patil, A.G., Khan, Z.G., Deshmukh, P.K., Tade, R.S., Mahajan, M.R., Bari, S.B., Patil, P.O.: Structural design of nanosize-metal–organic framework-based sensors for detection of organophosphorus pesticides in food and water samples: current challenges and future prospects. J. Nanostruct Chem. (2021). https://doi.org/10.1007/s40097-021-00449-y

    Article  Google Scholar 

  105. Strianese, M., Staiano, M., Ruggiero, G., Labella, T., Pellecchia, C., D’Auria, S.: Fluorescence-based biosensors. Spectro. Method Anal. (2012). https://doi.org/10.1007/978-1-61779-806-1_9

    Article  Google Scholar 

  106. Huang, N.-H., Liu, Y., Li, R.-T., Chen, J., Hu, P.-P., Young, D.J., Chen, J.-X., Zhang, W.-H.: Sequential Ag+/biothiol and synchronous Ag+/Hg2+ biosensing with zwitterionic Cu2+-based metal–organic frameworks. Analyst. 145, 2779–2788 (2020)

    Article  CAS  PubMed  Google Scholar 

  107. Zhao, V.X.T., Wong, T.I., Zheng, X.T., Tan, Y.N., Zhou, X.: Colorimetric biosensors for point-of-care virus detections. Mater. Sci. Technol. 3, 237–249 (2020)

    CAS  Google Scholar 

  108. Liu, T., Zhou, M., Pu, Y., Liu, L., Li, F., Li, M., Zhang, M.: Silver nanoparticle-functionalized 3D flower-like copper (II)-porphyrin framework nanocomposites as signal enhancers for fabricating a sensitive glutathione electrochemical sensor. Sens. Actuators B Chem. 342, 130047 (2021)

    Article  CAS  Google Scholar 

  109. Ghasempour, H., Wang, K.-Y., Powell, J.A., ZareKarizi, F., Lv, X.-L., Morsali, A., Zhou, H.-C.: Metal–organic frameworks based on multicarboxylate linkers. Coord. Chem. Rev. 426, 213542 (2021)

    Article  CAS  Google Scholar 

  110. Nguyen, H.-T.T., Tran, K.-N.T., Van Tan, L., Tran, V.A., Doan, V.-D., Lee, T., Nguyen, T.D.: Microwave-assisted solvothermal synthesis of bimetallic metal-organic framework for efficient photodegradation of organic dyes Mater. Chem. Phys. 272, 125040 (2021)

    CAS  Google Scholar 

  111. Lei, L., Yao, Z., Zhou, J., Zheng, W., Wei, B., Zu, J., Yan, K.: Hydrangea-like Ni/NiO/C composites derived from metal-organic frameworks with superior microwave absorption. Carbon 173, 69–79 (2021)

    Article  CAS  Google Scholar 

  112. Lu, X.F., Fang, Y., Luan, D., Lou, X.W.D.: Metal–organic frameworks derived functional materials for electrochemical energy storage and conversion: a mini review. Nano Lett. 21, 1555–1565 (2021)

    Article  CAS  PubMed  Google Scholar 

  113. Abdolalian, P., Morsali, A., Tizhoush, S.K.: Sono-synthesis of basic metal-organic framework for reusable catalysis of organic reactions in the eco-friendly conditions. J. Solid State Chem. 303, 122525 (2021)

    Article  CAS  Google Scholar 

  114. Lee, H. K., Lee, J. H., Moon, H. R.: Mechanochemistry as a reconstruction tool of decomposed metal–organic frameworks. Inorg. Chem. (2021).

  115. Zhao, Y., Zeng, H., Zhu, X.-W., Lu, W., Li, D.: Metal–organic frameworks as photoluminescent biosensing platforms: mechanisms and applications. Chem. Soc. Rev. (2021).

  116. Li, H., Sun, Y., Li, Y., Du, J.: Alkaline phosphatase activity assay with luminescent metal organic frameworks-based chemiluminescent resonance energy transfer platform. Microchem. J. 160, 105665 (2021)

    Article  CAS  Google Scholar 

  117. Zhao, Y., Wang, J., Zhu, W., Liu, L., Pei, R.: The modulation effect of charge transfer on photoluminescence in metal–organic frameworks. Nanoscale 13, 4505–4511 (2021)

    Article  CAS  PubMed  Google Scholar 

  118. Liu, X., Kirlikovali, K.O., Chen, Z., Ma, K., Idrees, K.B., Cao, R., Zhang, X., Islamoglu, T., Liu, Y., Farha, O.K.: Small molecules, big effects: tuning adsorption and catalytic properties of metal–organic frameworks. Chem. Mater. 33, 1444–1454 (2021)

    Article  Google Scholar 

  119. Feng, Y., Wang, Y., Ying, Y.: Structural design of metal–organic frameworks with tunable colorimetric responses for visual sensing applications. Coord. Chem. Rev. 446, 214102 (2021)

    Article  CAS  Google Scholar 

  120. Guo, H., Wang, X., Wu, N., Xu, M., Wang, M., Zhang, L., Yang, W.: In-situ synthesis of carbon dots-embedded europium metal-organic frameworks for ratiometric fluorescence detection of Hg2+ in aqueous environment. Anal. Chim. Acta. 1141, 13–20 (2021)

    Article  CAS  PubMed  Google Scholar 

  121. Ryu, U., Jee, S., Rao, P.C., Shin, J., Ko, C., Yoon, M., Park, K.S., Choi, K.M.: Recent advances in process engineering and upcoming applications of metal–organic frameworks. Coord. Chem. Rev. 426, 213544 (2021)

    Article  CAS  PubMed  Google Scholar 

  122. Teo, W. L., Zhou, W., Qian, C., Zhao, Y.: Industrializing metal–organic frameworks: Scalable synthetic means and their transformation into functional materials. Mater. Today. (2021).

  123. Zhang, Y., Guo, J., Han, G., Bai, Y., Ge, Q., Ma, J., Lau, C.H., Shao, L.: Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Sci. Adv. 7, eabe8706 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, Y., Li, Y., Zhuang, X., Tian, C., Fu, X., Luan, F.: Ru (bpy)32+ encapsulated cyclodextrin based metal organic framework with improved biocompatibility for sensitive electrochemiluminescence detection of CYFRA21–1 in cell. Biosens. Bioelectron. (2021). https://doi.org/10.1016/j.bios.2021.113371

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ji, Y., Wu, Z., Zhang, P., Qiao, M., Hu, Y., Shen, B., Li, B., Zhang, X.: Enzyme-functionalized magnetic framework composite fabricated by one-pot encapsulation of lipase and Fe3O4 nanoparticle into metal–organic framework. Biochem. Eng. J. 169, 107962 (2021)

    Article  CAS  Google Scholar 

  126. Li, S., Hu, C., Chen, C., Zhang, J., Bai, Y., Tan, C.S., Ni, G., He, F., Li, W., Ming, D.: Molybdenum disulfide supported on metal–organic frameworks as an ultrasensitive layer for the electrochemical detection of the ovarian cancer biomarker CA125. ACS Appl. Bio Mater. 4, 5494–5502 (2021)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin O. Patil.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Z.G., Patil, M.R., Nangare, S.N. et al. Surface nanoarchitectured metal–organic frameworks-based sensor for reduced glutathione sensing: a review. J Nanostruct Chem 12, 1053–1074 (2022). https://doi.org/10.1007/s40097-022-00480-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00480-7

Keywords

Navigation