Skip to main content
Log in

Design and synthesis of a new magnetic aromatic organo-silane star polymer with unique nanoplate morphology and hyperthermia application

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

In this study, new statistical magnetic organo-silane star polymers were designed, synthesized based on different surface functionalization processes of Fe3O4 magnetic nanoparticles and conducting the polymerization reaction between phenylenediamine derivatives and dichlorophenylsilane on their functionalized surfaces. Fourier-transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray (EDX), field-emission scanning electron microscope (FE-SEM) and transmittance electron microscope (TEM) images, X-ray diffraction (XRD) pattern, thermogravimetric (TG) analysis, vibrating-sample magnetometer (VSM), and dynamic light-scattering (DLS) and zeta potential measurements were employed to characterize the structural features. Based on the MTT assay and considering the highest concentration (1000 μg mL−1) of statistical magnetic organo-silane star polymer based on p-phenylenediamine as model derivative, the cell viability percentage of was reported 89.7%. In addition, the hyperthermia performance of this magnetic star polymer was evaluated by its exposure to an alternating magnetic field (AMF). Given the obtained results from different concentrations, the highest specific absorption rate (66.18 W g−1) was determined for 0.5 mg mL−1 of prepared sample. Therefore, it can be concluded that this new magnetic nanocomposite can be considered as an efficient agent for the next generation of therapeutic researches.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ren, J.M., et al.: Star polymers. Chem. Rev. 116, 6743–6836 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. Eivazzadeh-Keihan, R., Radinekiyan, F., Maleki, A., Bani, M.S., Azizi, M.: A new generation of star polymer: magnetic aromatic polyamides with unique microscopic flower morphology and in vitro hyperthermia of cancer therapy. J. Mater. Sci. 55, 319–336 (2020)

    Article  CAS  Google Scholar 

  3. Aloorkar, N., Kulkarni, A., Patil, R., Ingale, D.: Star polymers: an overview. Int. J. Pharm. Sci. Nanotechnol. 5, 1675–1684 (2012)

    Google Scholar 

  4. Wu, W., He, Q., Jiang, C.: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ali, A., et al.: Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eivazzadeh-Keihan, R., et al.: Synthesis of core-shell magnetic supramolecular nanocatalysts based on amino-functionalized calix [4] arenes for the synthesis of 4H-chromenes by ultrasonic waves. ChemistryOpen 9, 735–742 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Asgharnasl, S., Eivazzadeh-Keihan, R., Radinekiyan, F., Maleki, A.: Preparation of a novel magnetic bionanocomposite based on factionalized chitosan by creatine and its application in the synthesis of polyhydroquinoline, 1, 4-dyhdropyridine and 1, 8-dioxo-decahydroacridine derivatives. Int. J. Biol. Macromol. 144, 29–46 (2020)

    Article  CAS  PubMed  Google Scholar 

  8. Hajizadeh, Z., Maleki, A., Rahimi, J., Eivazzadeh-Keihan, R.J.S.: Halloysite nanotubes modified by Fe3O4 nanoparticles and applied as a natural and efficient nanocatalyst for the symmetricalhantzsch reaction. SILICON 12, 1247–1256 (2020)

    Article  CAS  Google Scholar 

  9. Esmaeili, M.S., Varzi, Z., Eivazzadeh-Keihan, R., Maleki, A., Ghafuri, H.: Design and development of natural and biocompatible raffinose-Cu2O magnetic nanoparticles as a heterogeneous nanocatalyst for the selective oxidation of alcohols. Mol. Catal. 492, 111037 (2020)

    Article  CAS  Google Scholar 

  10. Huang, C.-C., et al.: New insight on optical and magnetic Fe3O4 nanoclusters promising for near infrared theranostic applications. Nanoscale 7, 12689–12697 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. Eivazzadeh-Keihan, R., Radinekiyan, F., Asgharnasl, S., Maleki, A., Bahreinizad, H.: A natural and eco-friendly magnetic nanobiocomposite based on activated chitosan for heavy metals adsorption and the in-vitro hyperthermia of cancer therapy. J. Mater. Res. Technol. 9, 12244–12259 (2020)

    Article  CAS  Google Scholar 

  12. Mokhtarzadeh, A., et al.: Nanomaterial-based biosensors for detection of pathogenic virus. Trends. Anal. Chem. 97, 445–457 (2017)

    Article  CAS  Google Scholar 

  13. Eivazzadeh-Keihan, R., et al.: Dengue virus: a review on advances in detection and trends–from conventional methods to novel biosensors. Microchim. Acta 186, 329 (2019)

    Article  Google Scholar 

  14. Eivazzadeh-Keihan, R., et al.: Recent progress in optical and electrochemical biosensors for sensing of Clostridium botulinum neurotoxin. Trends. Anal. Chem. 103, 184–197 (2018)

    Article  CAS  Google Scholar 

  15. Mohammadinejad, A., et al.: Development of biosensors for detection of alpha-fetoprotein: as a major biomarker for Hepatocellular carcinoma. Trends. Anal. Chem. 130, 115961 (2020)

    Article  CAS  Google Scholar 

  16. Eivazzadeh-Keihan, R., Pashazadeh, P., Hejazi, M., de la Guardia, M., Mokhtarzadeh, A.: Recent advances in nanomaterial-mediated bio and immune sensors for detection of aflatoxin in food products. Trends. Anal. Chem. 87, 112–128 (2017)

    Article  CAS  Google Scholar 

  17. Eivazzadeh-Keihan, R., et al.: Recent advances on nanomaterial based electrochemical and optical aptasensors for detection of cancer biomarkers. Trends. Anal. Chem. 100, 103–115 (2018)

    Article  CAS  Google Scholar 

  18. Eivazzadeh-Keihan, R., et al.: Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review. J. Adv. Res. 18, 185–201 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rao, W., Deng, Z.-S.: A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Crit. Rev. Biomed. Eng. 38, 101–106 (2010)

    Article  PubMed  Google Scholar 

  20. Guibert, C., Dupuis, V., Peyre, V., Fresnais, J.: Hyperthermia of magnetic nanoparticles: experimental study of the role of aggregation. J. Phys. Chem. C 119, 28148–28154 (2015)

    Article  CAS  Google Scholar 

  21. Ahmad, A., et al.: Hyperbranched polymer-functionalized magnetic nanoparticle-mediated hyperthermia and niclosamide bimodal therapy of colorectal cancer cells. ACS Biomater. Sci. Eng. 6, 1102–1111 (2019)

    Article  Google Scholar 

  22. Li, T.-J., et al.: In vivo anti-cancer efficacy of magnetite nanocrystal-based system using locoregional hyperthermia combined with 5-fluorouracil chemotherapy. Biomaterials 34, 7873–7883 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. Zamora-Mora, V., et al.: Magnetic core–shell chitosan nanoparticles: rheological characterization and hyperthermia application. Carbohydr. Polym. 102, 691–698 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. Fadhilah, H., Saepudin, E., Khalil, M. In: AIP conference proceedings 2020, vol. 1, p. 040003. AIP Publishing LLC

  25. Shen, L., Li, B., Qiao, Y.: Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials 11, 324 (2018)

    Article  PubMed Central  Google Scholar 

  26. Boyer, C., Whittaker, M.R., Bulmus, V., Liu, J., Davis, T.P.: The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater. 2, 23–30 (2010)

    Article  Google Scholar 

  27. Arias, J.L., Reddy, L.H., Couvreur, P.: Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J. Mater. Chem. 22, 7622–7632 (2012)

    Article  CAS  Google Scholar 

  28. Eivazzadeh-Keihan, R., et al.: A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy. Int. J. Biol. Macromol. 140, 407–414 (2019)

    Article  CAS  PubMed  Google Scholar 

  29. Furlan, D.M., et al.: Sisal cellulose and magnetite nanoparticles: formation and properties of magnetic hybrid films. J. Mater. Res. Technol. 8, 2170–2179 (2019)

    Article  CAS  Google Scholar 

  30. Diaz-Bleis, D., Vales-Pinzón, C., Freile-Pelegrín, Y., Alvarado-Gil, J.: Thermal characterization of magnetically aligned carbonyl iron/agar composites. Carbohydr. Polym. 99, 84–90 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. Seenuvasan, M., et al.: Fabrication, characterization and application of pectin degrading Fe3O4–SiO2 nanobiocatalyst. Mater. Sci. Eng. C 33, 2273–2279 (2013)

    Article  CAS  Google Scholar 

  32. Le, T.T.H., et al.: Optimizing the alginate coating layer of doxorubicin-loaded iron oxide nanoparticles for cancer hyperthermia and chemotherapy. J. Mater. Sci. 53, 13826–13842 (2018)

    Article  CAS  Google Scholar 

  33. Li, T.-J., et al.: Handheld energy-efficient magneto-optical real-time quantitative PCR device for target DNA enrichment and quantification. NPG Asia Mater. 8, e277 (2016)

    Article  CAS  Google Scholar 

  34. Adebayo, L.L., et al.: Facile preparation and enhanced electromagnetic wave absorption properties of Fe3O4@ PVDF nanocomposite. J. Mater. Res. Technol. 9, 2513–2521 (2020)

    Article  CAS  Google Scholar 

  35. Li, J., et al.: Three-dimensional graphene supported Fe3O4 coated by polypyrrole toward enhanced stability and microwave absorbing properties. J. Mater. Res. Technol. 9, 762–772 (2020)

    Article  CAS  Google Scholar 

  36. Bani, M.S., et al.: Casein-coated iron oxide nanoparticles for in vitro hyperthermia for cancer therapy. Spin 9, 1940003 (2019)

    Article  CAS  Google Scholar 

  37. Marutani, E., et al.: Surface-initiated atom transfer radical polymerization of methyl methacrylate on magnetite nanoparticles. Polymer 45, 2231–2235 (2004)

    Article  CAS  Google Scholar 

  38. Hu, H., et al.: Preparation of amino-functionalized magnetite nanoclusters by ring-opening polymerization and application for targeted magnetic resonance imaging. J. Mater. Sci. 48, 7686–7695 (2013)

    Article  CAS  Google Scholar 

  39. Rana, S., Jadhav, N.V., Barick, K., Pandey, B., Hassan, P.: Polyaniline shell cross-linked Fe3O4 magnetic nanoparticles for heat activated killing of cancer cells. Dalton. Trans. 43, 12263–12271 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. Ahmad, A., Khan, F., Mishra, R.K., Khan, R.: Precision cancer nanotherapy: evolving role of multifunctional nanoparticles for cancer active targeting. J. Med. Chem. 6, 10475–10496 (2019)

    Article  Google Scholar 

  41. Gupta, A., et al.: Correction to “Nanocarrier composed of magnetite core coated with three polymeric shells mediates LCS-1 delivery for synthetic lethal therapy of BLM-defective colorectal cancer cells.” Biomacromol 20, 4623–4623 (2019)

    Article  CAS  Google Scholar 

  42. Eivazzadeh-Keihan, R., Bahrami, N., Radinekiyan, F., Maleki, A., Mahdavi, M.: Palladium-coated thiourea core-shell nanocomposite as a new, efficient, and magnetic responsive nanocatalyst for the Suzuki-Miyaura coupling reactions. Mater. Res. Express 8, 026102 (2021)

    Article  CAS  Google Scholar 

  43. Stöber, W., Fink, A., Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)

    Article  Google Scholar 

  44. Ji, L., et al.: Facile synthesis of multiwall carbon nanotubes/iron oxides for removal of tetrabromobisphenol A and Pb (II). J. Mater. Chem. 22, 15853–15862 (2012)

    Article  CAS  Google Scholar 

  45. Villa, S., Riani, P., Locardi, F., Canepa, F.: Functionalization of Fe3O4 NPs by silanization: use of amine (APTES) and thiol (MPTMS) silanes and their physical characterization. Materials 9, 826 (2016)

    Article  PubMed Central  Google Scholar 

  46. Safaiee, M., Zolfigol, M.A., Afsharnadery, F., Baghery, S.: Synthesis of a novel dendrimer core of oxo-vanadium phthalocyanine magnetic nano particles: as an efficient catalyst for the synthesis of 3, 4-dihydropyrano [c] chromenes derivatives under green condition. RSC Adv. 5, 102340–102349 (2015)

    Article  CAS  Google Scholar 

  47. Farahi, M., Karami, B., Keshavarz, R., Khosravian, F.: Nano-Fe3O4@ SiO2-supported boron sulfonic acid as a novel magnetically heterogeneous catalyst for the synthesis of pyrano coumarins. RSC Adv. 7, 46644-46650 (2017)

    Article  CAS  Google Scholar 

  48. Vieira, E.G., et al.: Synthesis and characterization of 3-[(thiourea)-propyl]-functionalized silica gel and its application in adsorption and catalysis. N. J. Chem. 37, 1933–1943 (2013)

    Article  CAS  Google Scholar 

  49. Lu, X.-W., Wu, W., Chen, J.-F., Zhang, P.-Y., Zhao, Y.-B.: Preparation of polyaniline nanofibers by high gravity chemical oxidative polymerization. Ind. Eng. Chem. Res. 50, 5589–5595 (2011)

    Article  CAS  Google Scholar 

  50. Halim, M., Hudaya, C., Kim, A.-Y., Lee, J.K.: Phenyl-rich silicone oil as a precursor for SiOC anode materials for long-cycle and high-rate lithium ion batteries. J. Mater. Chem. A 4, 2651–2656 (2016)

    Article  CAS  Google Scholar 

  51. Launer, P.: Infrared analysis of organosilicon compounds: spectra-structure correlations. Inc. Burnt Hills, New York (1987)

  52. Zhou, H., Zhou, Q., Zhou, Q., Ni, L., Chen, Q.: Highly heat resistant and thermo-oxidatively stable borosilane alkynyl hybrid polymers. RSC Adv. 5, 12161–12167 (2015)

    Article  CAS  Google Scholar 

  53. Mouradzadegun, A., Ganjali, M.R., Mostafavi, M.A.: Design and synthesis of a magnetic hierarchical porous organic polymer: a new platform in heterogeneous phase-transfer catalysis. Appl. Organomet. Chem. 32, e4214 (2018)

    Article  Google Scholar 

  54. Wei, S., et al.: Multifunctional composite core–shell nanoparticles. Nanoscale 3, 4474–4502 (2011)

    Article  CAS  PubMed  Google Scholar 

  55. Darwish, M.S., Nguyen, N.H., Ševců, A., Stibor, I.: Functionalized magnetic nanoparticles and their effect on Escherichia coli and Staphylococcus aureus. J. Nanomater. 2015, 416012-416022 (2015)

    Article  Google Scholar 

  56. Eivazzadeh-Keihan, R., Radinekiyan, F., Madanchi, H., Aliabadi, H.A.M., Maleki, A.: Graphene oxide/alginate/silk fibroin composite as a novel bionanostructure with improved blood compatibility, less toxicity and enhanced mechanical properties. Carbohydr. Polym. 248, 116802 (2020)

    Article  CAS  PubMed  Google Scholar 

  57. Eivazzadeh-Keihan, R., et al.: Chitosan hydrogel/silk fibroin/Mg (OH)2 nanobiocomposite as a novel scaffold with antimicrobial activity and improved mechanical properties. Sci. Rep. 11, 1–13 (2021)

    Article  Google Scholar 

  58. Eivazzadeh-Keihan, R., et al.: Alginate hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: a novel scaffold with biological and antibacterial activity and improved mechanical properties. Int. J. Biol. Macromol. 162, 1959–1971 (2020)

    Article  CAS  PubMed  Google Scholar 

  59. Kaushik, K., Kaushal, N., Kalla, N.R.: Conversion of apoptosis to necrosis and the corresponding alteration in the oxidative milieu of male germ cells of rat under acute heat stress: an experimental study. Int. J. Reprod. Biomed. 16, 577 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hatamie, S., et al.: Graphene/cobalt nanocarrier for hyperthermia therapy and MRI diagnosis. Colloids Surf. B 146, 271–279 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial support from the Research Council of the Iran University of Science and Technology (IUST) and Young Scientists Festival (YSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Maleki.

Ethics declarations

Conflict of interest

The authors whose names are listed in this article have no competing interests or other conflict of interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

40097_2021_401_MOESM1_ESM.pdf

Supplementary file1. Additional supporting information including the schematic synthesis processes of magnetic organo-silane star polymers, FE-SEM image of model statistical magnetic aromatic organo-silane star polymer and as well, the spectral FT-IR, EDX, FE-SEM and TG analyses of other magnetic derivatives can be observed in the online version of this article at the publisher’s web site. (PDF 1200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eivazzadeh-Keihan, R., Maleki, A. Design and synthesis of a new magnetic aromatic organo-silane star polymer with unique nanoplate morphology and hyperthermia application. J Nanostruct Chem 11, 751–767 (2021). https://doi.org/10.1007/s40097-021-00401-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00401-0

Keywords

Navigation