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Abstract
Cobalt oxide/zinc oxide core/shell nanoparticles (CZ NPs) were synthesized at low temperature by the sol–gel method. 
X-ray diffraction (XRD) was used for the detection of crystalline phases. Energy-dispersive analysis X-ray (EDAX) results 
for the sample as prepared showed that where only Co, Zn, C, and O was found, in forming CZ core/shell NPs. Transmis-
sion electron microscopy images indicated that the particles size of core/shell sample CZ NPs and the particles size were 
around 12 nm. The optical properties study by UV–Vis spectroscopy to estimate the bandgap of core/shell NPs. Frequency 
dependence dielectric was observed in core/shell NPs were prepared using the sol–gel method. Dielectric constant ε′ and 
dielectric loss ε″ for CZ NPs were found to decrease with increasing frequency.
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Introduction

To purvey novel functionalities and properties massive 
efforts have been made to fabricate metal-based composites 
as metal/metal or metal oxide composites [1]. Core/shell 
nanoparticles (NPs) are a particular type of nanostructured 
material and its properties depend on the core–shell volume 
ratio [2, 3]. Core/shell nanoparticles are one of the solutions 
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to obstacles in which an amendment in properties cannot be 
accomplished using one type of nanoparticles [4]. Employ-
ing a magnetic core can guide particles using an outer mag-
netic field. If a core/shell composite contains a magnetic 
core and semiconductor shell, the transmission and purging 
of the particles becomes potential [5]. Cobalt oxide Co3O4 
magnetic nanoparticles are interesting due to its numerous 
oxidation states [6]. Zinc oxide (ZnO) semiconductor nano-
particles are on the forefront of research due to their spe-
cial properties and massive usage [7]. ZnO-based materials 
are used in different applications, due to the photocatalytic 
nature, environmental sustainability, and low cost [8].

In the present work, we synthesized Co3O4/ZnO core/
shell NPs using the sol–gel method. Structure, morphol-
ogy, optical properties, dielectric, and magnetization were 
studied using EDAX, XRD, UV–Vis, TEM, and dielectric 
properties, respectively.

Materials and methods

Ammonium hydroxide Solution, Cobalt (ɪɪ) Chloride purum 
p.a., anhydrous, ≥ 98%, Zinc chloride 97.6% obtained from 
Holyland (Saudi Arabia), Ethanol absolute was purchased 
from Sigma Aldrich Co. Ltd (USA). Acetic acid, glacial bio-
chemical grade 99.86% purchased from ACROS.

Synthesis of ZnO (NPs)

For ZnO (NPs) prepared by a sol–gel method, we dissolved 
(1.35 g) of ZnCl2 in a mixture of 20 mL of water and 5 mL 
NH4OH and then added 80 mL of ethanol using a dropper 
for 60 min at 60 ºC while stirring for 2 h. The precipitate was 
filtered and washed several times with alcohol and deionized 
water then dried at 60 °C.

Synthesis of Co3O4/ZnO core/shell NPs nanoparticles

To prepare Co3O4/ZnO core/shell NPs, 1.29 g of CoCl2 and 
ZnO NPs (as-synthesized) were dissolved in a mixture of 
20 mL of water and 5 mL NH4OH and then added 80 mL of 
ethanol drop by drop for 60 min at 60 °C with stirring for 
3 hours until the sol was converted to gel. Finally, the dried 
gel was calcined at 300 °C for 4 h to obtain Co3O4/ZnO 
core/shell NPs.

Characterization and measurement

Co3O4/ZnO core/shell NPs nanoparticles were characterized 
by X-ray diffraction using Shimadzu 7000 Diffractometer 
operating with CuKα (λ = 0.15406 nm) with a scan rate of 
2 min−1 for 2θ values between 20° and 80°.

In EDAX attaching the particles to 12.5 mm diameter 
Al when accelerating voltage was 20.0 kV, working dis-
tance = 10 mm, Spot size = 4.5 (EDX). In secondary electron 
imaging mode at different magnifications, the images were 
digitally recorded at a resolution setting of 1024 × 884 pix-
els. EDX analysis was performed using EDAX Genesis XM4 
system. Standardless ZAF options were used to determine 
elemental contents.

The Transmission Electron Microscopy (TEM) studies 
were performed [High Resolution Transmission Electron 
Microscope (HRTEM) JEOL–JEM-1011, Japan]. The sam-
ples for TEM were prepared by making suspension from the 
powder in deionized water. A drop of the suspension was put 
into the carbon gride and left to dry. The optical properties 
of Co3O4/ZnO core/shell NPs structures were characterized 
by UV–Vis absorption (UV–Vis spectrophotometer Model 
JASCO V-670, Japan instrument). The electrical properties 
were measured at room temperature by Hioki (LCR Hitester 
3532–50). The frequency dependence of electrical properties 
for prepared samples was measured from 50 Hz to 5 MHz.

Results and discussion

EDAX and XRD

The elemental contents of CZ core/shell NPs were deter-
mined using standard less ZAF option, as shown in Fig. 1. 
The spectra obtained during EDAX studies were used to 
carry out the quantitative analysis. Quantitative analysis in 
Fig. 1 proved high Cobalt contents (36.16%) in the exam-
ined samples. The presence of zinc, oxygen, and carbon, 
the contents of which amounted to 32.63, 23.59, and 7.62%, 
respectively, was also shown.

XRD patterns of Co3O4/ZnO core/shell NPs are detailed 
in Fig. 3. The XRD for Co3O4/ZnO core/shell NPs showed 
that the major peaks refer to ZnO hexagonal wurtzite struc-
ture in agreement with JCPDS card: 36-1451. The XRD pat-
terns of the CZ core/shell NPs in Fig. 2 are located at (2θ) 
match with the reflection of (100), (002), (101), (102), (110), 
(103), (200), (112), and (201) crystal planes, respectively 
[9, 10]. Co3O4 peaks appear as secondary phase attributed 
to cubic spinel Co3O4 JCPDS card: 42-1467. These peaks 
located at (2θ) match with the reflection of (220), (311), and 
(400) crystal planes [11]. In XRD, the core NPs are fading 
due to a considerable amount of ZnO NPs in the shell [12].

TEM

TEM images are used to study the morphological aspects 
of the CZ NPs. Figure 3a, b presents results which con-
firm the formation of CZ core/shell NPs and the images 
show nearly spherical nanoparticles. The TEM micrograph 
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showed CZ core/shell NPs. Figure 3a, b shows that the 
Co3O4 cores appear darker than the ZnO shell. The result 
of TEM shows that the particles size of our sample is 
around 12 nm.

In TEM images, a clear interface between the core and 
the shell can be observed. The edge of the shell shows 
lower intensity than the core (Fig. 3). It can occur as a 
result of [13]:

1.	 The molar mass of the material in the shell being 
smaller than in the core (ZCo3O4

) = 240.80 g∕mol,

ZZnO = 81.38 g∕mol.
2.	 The electron beam finding the smaller amount of mate-

rial at the edge of NPs.

Optical properties

The optical absorption spectra of CZ core/shell NPs were 
obtained in the wavelength range from 200 to 800 nm using 
UV–Vis spectrophotometer (JASCO V-670, Japan instru-
ment), as shown in Fig. 4a. The bulk zinc oxide (ZnO) 
has wide bandgap (WBG) of 3.37 eV, the semiconductors 
(WBG) are semiconductor materials which have a relatively 
large bandgap compared to conventional semiconductors 
[14], and the bulk Co3O4 has a bandgap between 2.85 and 
1.70 eV [15]. The optical absorption spectrum of CZ core/
shell NPs has been carried out using UV–Vis spectropho-
tometer. Figure 4a also shows the absorption peaks at 410 
and 262 nm for CZ core/shell NPs. The first band at 410 nm 

Fig. 1   EDAX images for CZ core/shell NPs

Fig. 2   XRD pattern in CZ core/shell NP
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indicates change transfer or the second band appears at 
262 nm; this absorption peak around 262 nm was observed. 
These absorption peaks in the UV region can be attributed 
to the local Plasmon resonance [16]. To determine the opti-
cal bandgap of the CZ core/shell NPs, we plotted (αhѵ)2 
versus hѵ, where α is the absorption coefficient, and hѵ is 
the photon energy [17]. A typical plot is shown in Fig. 4b. 
The bandgap of the CZ core/shell NPs was evaluated from 
the plot to be 4.97 eV, which showed blue shift compared to 
bulk ZnO and bulk Co3O4. The blue shift is due to a reduc-
tion in the particles size, as TEM result showed that the ZnO 
shells are fragile and Co3O4 p-type magnetic semiconductor 
at core next to n type of ZnO in shell influences on the prop-
erties of NPs and makes a blue shift in CZ core/shell NPs 
[18]. The p–n-type core–shell heterojunction can reinforce 
the charge separation effect under UV [19]. In addition, we 
observed another beak with gap energy 2.75 eV.

Dielectric properties

Dielectric constant (ε′) and dielectric loss (ε″) frequency 
of CZ core/shell NPs as a function of frequency range 
(50 Hz–5 MHz) at room temperature are shown in Fig. 5. 
The spectrum for CZ core/shell NPs sample show that 
dielectric constant (ε′) decreases exponentially with the 

increase of frequency. The dielectric constant (ε′) proxi-
mate a constant value at high frequencies due to the short-
age of dipoles to twirl quickly leading to a delay between 
applied field and frequency of wobbling dipole [20]. The 

Fig. 3   a, b TEM images for CZ core/shell NPs

Fig. 4   Optical absorption spectra of the CZ NPs core/shell in the 
wavelength range from 200 to 800 nm (a) and plot of (αhѵ)2 versus hѵ 
for the CZ NPs core/shell (b)

Fig. 5   Dielectric constant ε′ and dielectric loss ε″ as a function of 
frequency for CZ NPs core/shell at room temperatures
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high values of ε′ at low frequencies may be attributed to 
the interfacial polarization which is appearing in materials 
composed of different phases [21]. In addition, in Fig. 5, it is 
clearly shown that dielectric loss (ε″) at room temperatures 
decreases with the frequency of CZ core/shell NPs.

The frequency dependence of ε′′ in Fig. 5 can be inter-
preted, by the following equation approbating to the free 
electron theory: ε″ = δ/2 π ε0f, where f is frequency, δ is the 
electrical conductivity, and ε0 is the dielectric constant in a 
vacuum. Figure 6 shows the relationship between conductiv-
ity and frequency. The conductivity of CZ core/shell NPs 
generates from its free electrons. In addition, ε″  is critical 
to the absorbing frequency which becomes a defiance for 
technological applications [22]. σac presents a flat frequency 
plateau at lower frequencies as is shown in Fig. 6. However, 
the conductivity, as a frequency-dependent behavior, shows 
itself at higher frequencies. It may be due to hopping-type 
conduction at a high-frequency range [23].

The decrease in particles size to nanometric scale has 
been found to produce massive reduction in the tan δ (D) 
value, as shown in Fig.  7. The value of tan δ depends 
on many factors such as synthesis methods and sample 
composition.

ε′, ε″, and tan of CZ core/shell NPs exhibit the electrical 
energy storage capacity and average loss in the materials 
[24]. The dielectric constant (ε′) and the tan δ values of 
investigated CZ core/shell NPs at 1 kHz are 7.8 and 1.77, 
respectively. It was also observed that the dielectric constant 
(ε′) of CZ core/shell NPs at 1 kHz under room temperature 
is less than the values of ZnO (40 nm) [25] and higher than 
ε′ value of Co3O4 (36 nm) [26] that measured in the previ-
ous studies where the ε′ value were about 40 and 7 for ZnO 
and Co3O4 at 1 kHz under room temperature, respectively.

Conclusion

CZ core/shell NPs with nearly spherical nanoparticles have 
been synthesized successfully by the sol–gel method. The 
particles size CZ core/shell was around 12 nm. The optical 
properties study by UV–Vis spectroscopy to estimate the 
bandgap of core/shell NPs, and band-gap value of CZ core/
shell NPs is higher than bandgap of bulk ZnO and Co3O4. 
The dielectric measurements indicate that the dielectric con-
stant of CZ core/shell NPs decreases, in the high-frequency 
range.
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