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Abstract
In this paper, we obtain some best proximity point results by introducing the concepts of proximal p-contractions of the first 
type and proximal p -contractions of the second type on partial metric spaces. Thus, some famous results in the literature such 
as the main result of Altun et al. (Acta Math Hung 162:393–402, 2020) and Basha (J Approx Theory 163(11):1772–1781, 
2011) have been extended. Also, we provide some examples where our results are applicable and the results in Haghi et al. 
(Topol Appl 160:450–454, 2013) are not. Hence, our results are a real generalization of some results in metric spaces and 
partial metric spaces. Finally, we obtain sufficient conditions for the existence of the solution of nonlinear fractional dif-
ferential equations via our results.

Keywords Best proximity point · Partial metric space · Nonlinear fractional differential equations

Introduction

In 1922, Banach [7] proved a fundamental theorem, known 
as the Banach contraction principle, which is considered 
the beginning of the fixed point theory on metric spaces. 
Because of its applicability, many authors have studied to 
generalize this principle [15, 21]. One of the interesting and 
nice generalizations has been obtained by Popescu [19]. 
He presented a contractive condition, named p-contraction, 
which expands Banach contraction as follows:

Theorem 1 Let � ∶ (Ξ, �) → (Ξ, �) be a p-contraction map-
ping, that is, there exists q in [0, 1) satisfying

for all �, � ∈ Ξ where (Ξ, �) is a complete metric space. 
Hence, there is a point � in Ξ satisfying � = ��.

Recently, many authors extended the fixed point theory in 
different way by considering nonself mappings. Let Λ,Π be 
nonempty subsets of a metric space (Ξ, �) and � ∶ Λ → Π be 

a mapping. If Λ ∩ Π is empty, then there is no a point � in 
Λ such that �� = � . Therefore, it is reasonable to investi-
gate whether there is a point �∗ ∈ Λ satisfying �(�∗,��∗) 
is minimum. In this sense, Basha and Veeramani [10] 
gave the notion of best proximity point. We say that the 
point �∗ ∈ Λ is a best proximity point of � if it satisfies 
�(�∗,��∗) = �(Λ,Π) . Best proximity point theorems are 
logical expansions of fixed point results because every best 
proximity point turns into a fixed point when Λ = Π = Ξ . 
Thus, several authors have researched this subject [4, 5, 9, 
20, 23–25].

We now review several properties linked to the best prox-
imity point theory. We regard the following sets:

and

where �(Λ,Π) = inf {�(�, �) ∶ � ∈ Λ and � ∈ Π}.
We give the definitions of proximal contractions of the 

first and second kind [8].

Definition 1 Let (Ξ, �) be a metric space. A mapping 
� ∶ Λ → Π is called a proximal contraction of first kind if 
there exists q in [0, 1) such that, for all �1, �2,�1,�2 ∈ Λ,

�(��,��) ≤ q[�(�, �) + |�(�,��) − �(�,��)|], Λ0 = {� ∈ Λ ∶ �(�, �) = �(Λ,Π) for some � ∈ Π},

Π0 = {� ∈ Π ∶ �(�, �) = �(Λ,Π) for some � ∈ Λ},
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Definition 2 Let (Ξ, �) be a metric space. A mapping 
� ∶ Λ → Π is called a proximal contraction of second kind 
if there exists q in [0, 1) such that, for all �1, �2,�1,�2 ∈ Λ,

If every sequence {�r} in Λ satisfying �(�,�r) → �(�,Λ) 
for some � ∈ Π has a subsequence {�rk

} such that �rk
→ � 

for some � ∈ Λ , then Λ is said to be approximately compact 
with respect to Π.

For proximal contractions of the first and second kind, the 
following theorems are the primary results.

Theorem 2 ([8]) Let (Ξ, �) be a complete metric space, 
� ≠ Λ,Π ⊆ Ξ with Λ0 ≠ � where Π is approximatively 
compact with respect to Λ and Λ is closed. Suppose that 
� ∶ Λ → Π is a continuous proximal contraction of the first 
kind and 𝜙(Λ0) ⊆ Π0 . Then, there exists a unique element � 
in Λ such that �(�,��) = �(Λ,Π).

Theorem 3 ([8]) Let (Ξ, �) be a complete metric space and 
� ≠ Λ,Π ⊆ Ξwith Λ0 ≠ � where Λ is approximately compact 
with respect to Π and Λ is closed. Assume that � ∶ Λ → Π 
is a continuous proximal contraction of the second kind and 
𝜙(Λ0) ⊆ Π0 . Then, there exists an element � in Λ such that 
�(�,��) = �(Λ,Π) . Moreover, if �∗ is another best prox-
imity point of � , then �� and ��∗ are identical.

On the other hand, Matthews [18] obtained another gen-
eralization of the Banach contraction principle by giving a 
famous notion called a partial metric. Then, numerous fixed 
point results in partial metric spaces have been obtained in 
various ways [1, 2, 6, 11, 22]. We now remind the concept 
of the partial metric space and its some properties.

Definition 3 ([18]) Let Ξ ≠ � and � ∶ Ξ × Ξ → [0,∞) . If � 
satisfies the following conditions, for all �, �, z ∈ Ξ , 

 (p1) �(�,�) = �(�, �) = �(�, �) if and only if � = �,

 (p2) �(�,�) ≤ �(�, �),

 (p3) �(�, �) = �(�,�),

 (p4) �(�, �) ≤ �(�, z) + �(z, �) − �(z, z),

then � is called partial metric, and (Ξ, �) is called partial 
metric space.

It can be easily seen that a metric space is a partial met-
ric space, but the converse may not happen. In fact, let 
Ξ = [0,∞) and � ∶ Ξ × Ξ → [0,∞) be a function defined 

�(�1,��1) = �(Λ,Π)

�(�2,��2) = �(Λ,Π)

}
⇒ �(�1, �2) ≤ q�(�1,�2).

�(�1,��1) = �(Λ,Π)

�(�2,��2) = �(Λ,Π)

}
⇒ �(��1,��2) ≤ q�(��1,��2).

by �(�, �) = max{�, �} for all �, � ∈ Ξ . Although (Ξ, �) 
is a partial metric space, it is not a metric space.

Let (Ξ, �) be a partial metric space. The sets

for all � ∈ Ξ and 𝜀 > 0 is called open ball.
Let � ∈ Ξ and {�r} be a sequence in Ξ . Hence, {�r} 

converges to � with respect to �� if and only if

If limr,m→∞ �(�r,�m) exists and is finite, then the sequence 
{�r} in Ξ is said to be a Cauchy sequence. Further, (Ξ, �) 
is said to be complete if every Cauchy sequence {�r} in Ξ 
converges to a point � ∈ Ξ with respect to �� such that

Let �s ∶ Ξ × Ξ → [0,∞) be a function defined by

Then, �s is a metric on Ξ.
We now give the following lemma which gives the rela-

tionship between �s and �.

Lemma 1 ([18]) Let (Ξ, �) be a partial metric space. 

 (i) {�r} is a Cauchy sequence in (Ξ, �s) if and only if 
{�r} is a Cauchy sequence in (Ξ, �).

 (ii) (Ξ, �s) is a complete metric space if and only if (Ξ, �) 
is a complete partial metric space.

 (iii) Consider a sequence {�r} in (Ξ, �) and � ∈ Ξ. Then, 
we get 

The following lemma is important because it gives the 
characterization of the closed set in partial metric spaces.

Lemma 2 ([1]) Let (Ξ, �) be a partial metric space and 
� ≠ Λ ⊆ Ξ . Define �(�,Λ) = inf {�(�, a) ∶ a ∈ Λ} . Then, 
we have

where Λ is closure of Λ with respect to ��.

Definition 4 ([18]) Let (Ξ, �) be a partial metric space and 
� ∶ Ξ → Ξ be a mapping. We say that � is a continuous 
mapping with respect to �� if

B𝜅(𝜛, 𝜀) = {𝜍 ∈ Ξ ∶ 𝜅(𝜛, 𝜍) < 𝜅(𝜛,𝜛) + 𝜀},

lim
r→∞

�(�r,�) = �(�,�).

�(�,�) = lim
m,r→∞

�(�r,�m).

�s(�, �) = 2�(�, �) − �(�,�) − �(�, �).

lim
r→∞

�s(�r,�) = 0 ⟺ �(�,�)

= lim
r→∞

�(�r,�) = lim
r,m→∞

�(�r,�m).

� ∈ Λ ⟺ �(�,Λ) = �(�,�),
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then

In the present paper, we introduce the new concepts 
of proximal p-contraction of the first type and proximal 
p-contraction of the second type on partial metric spaces. 
Then, we obtain some best proximity point results for such 
mappings. Hence, we generalize and extend some famous 
results in the literature such as the main result of [3] and 
[8]. Recently, Haghi et al. [13] proved that some results 
on partial metric spaces are equivalent to the results in 
the context of a metric spaces. But, this case is not valid 
for our main results. Therefore, we provide some impor-
tant examples where our results are applicable and their 
results are not. Hence, our results are a real generalization 
of some results in metric spaces and partial metric spaces. 
Finally, with the help of our results, we obtain sufficient 
conditions for the existence of the solution of nonlinear 
fractional differential equations.

Main results

Considering partial metric spaces, we begin this section by 
giving the definition of approximately compact.

Definition 5 Let (Ξ, �) be a partial metric space, and 
� ≠ Λ,Π ⊆ Ξ . If every sequence {�r} in Λ satisfying 
�(�,�r) → �(�,Λ) for some � ∈ Π has a subsequence {�rk

} 
such that

for some � ∈ Λ , then Λ is said to be � -approximately com-
pact with respect to Π.

After that, we introduce the following definition of 
proximal p -contraction of the first type.

Definition 6 Let (Ξ, �) be a partial metric space and 
� ≠ Λ,Π ⊆ Ξ. A mapping � ∶ Λ → Π is said to be a proxi-
mal p-contraction of the first type if there exists q in [0, 1) 
such that, for all �1, �2,�1,�2 ∈ Λ with �1 ≠ �2,

Now, we give our first main result.

lim
r,m→∞

�(�r,�m) = lim
r→∞

�(�r,�
∗) = �(�∗,�∗),

lim
r,m→∞

�(��r,��m) = lim
r→∞

�(��r,��
∗) = �(��∗,��∗).

lim
k,l→∞

�(�rk
,�rl

) = lim
k→∞

�(�rk
,�) = �(�,�) = 0,

(1)
�(�1,��1) = �(Λ,Π)

�(�2,��2) = �(Λ,Π)

}
⇒ �(�1, �2) ≤ q

(
�(�1,�2)

+||�(�1,�1) − �(�2,�2)
||
)
.

Theorem 4 Let (Ξ, �) be a complete partial metric space and 
� ≠ Λ,Π ⊆ Ξ where Λ is closed and Π is a �-approximately 
compact with respect to Λ . Assume that the followings hold: 

 (i) Λ0 ≠ � and 𝜙(Λ0) ⊆ Π0.

 (ii) � ∶ Λ → Π is a proximal p-contraction of the first 
type.

Then, there exists �∗ in Λ such that �(�∗,��∗) = �(Λ,Π).
Proof Let �0 be an arbitrary point in Λ0. Because of the 
fact that 𝜙𝜛0 ∈ 𝜙(Λ0) ⊆ Π0, there exists �1 ∈ Λ0 satisfying

Similarly, since 𝜙𝜛1 ∈ 𝜙(Λ0) ⊆ Π0, there exists �2 ∈ Λ0 
satisfying

Performing this process again, one can create a sequence 
{�r} in Λ satisfying

for all r ≥ 1. Assume that �r0
= �r0+1

 for some r0 ≥ 1 , then, 
from (2), �r0+1

 is a best proximity point of � . We now get 
�r ≠ �r+1 for all r ≥ 1 . Because � is a proximal p-contrac-
tion of the first type, we have, for all r ≥ 1,

If there exists r0 ≥ 1 such that �(�r0−1
,�r0

) ≤ �(�r0
,�r0+1

) , 
then we have

which is a contradiction. Therefore, we can conclude that 
𝜅(𝜛r,𝜛r+1) < 𝜅(𝜛r−1,𝜛r) for all r ≥ 1 . Hence, we get

and so, for all r ≥ 1,

Using the last inequality, we have, for all r ≥ 1,

�(�1,��0) = �(Λ,Π).

�(�2,��1) = �(Λ,Π).

(2)�(�r+1,��r) = �(Λ,Π),

�(�r,�r+1) ≤ q
(
�(�r−1,�r) +

||�(�r,�r+1) − �(�r−1,�r)
||
)
.

𝜅(𝜛r0
,𝜛r0+1

) ≤q(𝜅(𝜛r0−1
,𝜛r0

)

+
|||𝜅(𝜛r0

,𝜛r0+1
) − 𝜅(𝜛r0−1

,𝜛r0
)
|||
)

=q
(
𝜅(𝜛r0−1

,𝜛r0
)

+𝜅(𝜛r0
,𝜛r0+1

) − 𝜅(𝜛r0−1
,𝜛r0

)
)

=q𝜅(𝜛r0
,𝜛r0+1

)

<𝜅(𝜛r0
,𝜛r0+1

),

�(�r,�r+1) ≤q(�(�r−1,�r) + �(�r−1,�r) − �(�r,�r+1)
)

=2q�(�r−1,�r) − q�(�r,�r+1),

�(�r,�r+1) ≤
(

2q

q + 1

)
�(�r−1,�r).
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Hence, we can obtain, for all m, r ≥ 1 with m > r,

Hence, limr,m→∞ �(�r,�m) = 0 , and so {�r} is a Cauchy 
sequence in Λ . Since Λ is a closed subset of complete partial 
metric space (Ξ, �) , there is �∗ in Λ satisfying

Moreover, from (2) and (3), it can be seen that

Therefore, �(�∗,��r) → �(�∗,Π) as r → ∞ . Since Π is a 
�-approximately compact with respect to Λ , there exists a 
subsequence {��rk

} of {��r} such that

for some �∗ ∈ Π . Therefore, from (2) and Lemma 1 (iii), 
we have

and so taking the limit as k → ∞, we have

Hence, we get �∗ ∈ Λ0 . Also, due to the fact that 
𝜙𝜛∗ ∈ 𝜙(Λ0) ⊆ Π0 , there exists z ∈ Λ0 such that

�(�r,�r+1) ≤
(

2q

q + 1

)
�(�r−1,�r)

≤
(

2q

q + 1

)2

�(�r−2,�r−1)

⋮

≤
(

2q

q + 1

)r

�(�0,�1).

�(�r ,�m) ≤�(�r ,�r+1) + �(�r+1,�r+2) + ... + �(�m−1,�m)

≤
(

2q
q + 1

)r

�(�0,�1) +
(

2q
q + 1

)r+1

�(�0,�1)

+⋯ +
(

2q
q + 1

)m−1

�(�0,�1)

=

[

1 +
2q

q + 1
+⋯ +

(

2q
q + 1

)m−r−1
]

(

2q
q + 1

)r

�(�0,�1)

≤

(

2q
q+1

)r

1 − 2q
q+1

�(�0,�1).

(3)lim
r,m→∞

�(�r,�m) = lim
r→∞

�(�r,�
∗) = �(�∗,�∗) = 0.

�(�∗,Π) ≤�(�∗,��r)

≤�(�∗,�r+1) + �(�r+1,��r)

=�(�∗,�r+1) + �(Λ,Π)

≤�(�∗,�r+1) + �(�∗,Π).

lim
k,l→∞

�(��rk
,��rl

) = lim
k→∞

�(��rk
, �∗) = �(�∗, �∗) = 0,

�(Λ,Π) ≤�(�∗, �∗)

≤�(�∗,�rk+1
) + �(�rk+1

,��rk
) + �(��rk

, �∗)

=�(�∗,�rk+1
) + �(Λ,Π) + �(��rk

, �∗),

�(�∗, �∗) = �(Λ,Π).

We can consider �r+1 ≠ z for all r ≥ 1 . Otherwise, since 
�r ≠ �r+1 for all r ≥ 1, we can find subsequences satisfy-
ing �rk+1

≠ z for all k ≥ 1 . Then, from (2 ) and (4), we have

for all r ≥ 1. Taking the limit as r → ∞ in the last inequality, 
from (3) and (5), we get

which implies �∗ = z . Hence, from (4), there exists �∗ in 
Λ such that �(�∗,��∗) = �(Λ,Π) .   ◻

The following example is important as it shows that 
the approach of Haghi et  al. [13] cannot be applied to 
Theorem 4.

Example 1 Let Ξ = ({0} ∪ [1,∞)) × ({0} ∪ [1,∞)) and 
� ∶ Ξ × Ξ → [0,∞) defined by

where � = (�1,�2) and � = (�1, �2) ∈ Ξ . Then, (Ξ, �) is a 
complete partial metric space. Also, for all � ∈ Ξ, we have

and

Consider the sets

and

Then, we have �(Λ,Π) = 12, Λ0 = Λ and Π0 = Π . Fur-
ther, it can be seen that Λ is closed. If we define a mapping 
� ∶ Λ → Π by 

then we get 𝜙(Λ0) ⊆ Π0 and � is continuous mapping with 
respect to �� . Also, the mapping � satisfies (1) for q =

16

17
 . 

Indeed, let �, v,�, � be arbitrary points in Λ with � ≠ v 
satisfying

(4)�(z,��∗) = �(Λ,Π).

(5)
�(�r+1, z) ≤ q

(
�(�r,�

∗) + ||�(�r,�r+1) − �(�∗, z)||
)
,

�(�∗, z) ≤ q�(�∗, z),

�(�, �) =

{ �1

2
+�2 , � = �

�1 + �1 +max{�2, �2} , otherwise
,

B𝜅

(
𝜛,

𝜛1

3

)
= {𝜛} for all 𝜛1 > 0,

B�

(
(0,�2), �

)
= {0} ×

{
{0} ∪ [1,�2 + �)

}
.

Λ = {(3, 8), (1, 11)},

Π = {(1, 7), (0, 10)}.

�(�1,�2) =

{
(1, 7) , �1 = 3

(0, 10) , �1 = 1
,
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Then, we get � = � ≠ v = � ∈ {(3, 8), (1, 11)}. In this case, 
we have

Thus, all hypotheses of Theorem 4 are satisfied, and so � 
has a best proximity point in Λ . Now, consider the standard 
metric � defined by

as in Proposition 2.1 of [13]. However, for � = � = (3, 8) 
and � = v = (1, 11) ∈ Λ , we have

for all q ∈ [0, 1) . Therefore, � does not satisfy (1) with 
respect to �.

Taking Λ = Π = Ξ in Theorem 4, we obtain the following 
fixed point result.

Corollary 1 Let � ∶ (Ξ, �) → (Ξ, �) be a mapping where 
(Ξ, �) is a complete partial metric space. Then, there is a 
point �∗ in Ξ satisfying �∗ = ��∗ if there is q in [0, 1) 
satisfying, for all � ≠ �,

Now, we introduce the following definition of proximal 
p-contraction of the second type.

Definition 7 Let (Ξ, �) be a partial metric space and 
� ≠ Λ,Π ⊆ Ξ. A mapping � ∶ Λ → Π is said to be proximal 
p-contraction of the second type if there exists q in [0, 1) 
such that, for all �1, �2,�1,�2 ∈ Λ with ��1 ≠ ��2,

Now, we give our second main result.

Theorem 5 Let (Ξ, �) be a complete partial metric space and 
� ≠ Λ,Π ⊆ Ξ where Π is closed and Λ is a �-approximately 
compact with respect to Π. Assume that the followings hold: 

�(�,��) = �(Λ,Π)

�(v,��) = �(Λ,Π).

�(�, v) =15

≤16

17

{
15 +

||||
3

2
+ 8 −

1

2
− 11

||||
}

=q{�(�, �) + |�(�,�) − �(v, �)|}.

�(�, �) =

{
0 , � = �

�(�, �) , � ≠ �
,

𝜃(𝜉, v) = 15 > 15q = q{𝜃(𝜛, 𝜍) + |𝜃(𝜉,𝜛) − 𝜃(v, 𝜍)|},

(6)�(��,��) ≤ q(�(�, �) + |�(�,��) − �(�,��)|).

�(�1,��1) = �(Λ,Π)

�(�2,��2) = �(Λ,Π)

}
⇒ �(��1,��2)

≤ q

(
�(��1,��2)

+||�(��1,��1) − �(��2,��2)
||
)
.

 (i) Λ0 ≠ � and 𝜙(Λ0) ⊆ Π0.
 (ii) � ∶ Λ → Π is a proximal p-contraction of the second 

type.
 (iii) � is a continuous mapping with respect to ��.

Then, there exists �∗ in Λ such that �(�∗,��∗) = �(Λ,Π).
Proof Let �0 ∈ Λ0 be any point. Since 𝜙𝜛0 ∈ 𝜙(Λ0) ⊆ Π0, 
there exists �1 ∈ Λ0 satisfying

Similarly, since 𝜙𝜛1 ∈ 𝜙(Λ0) ⊆ Π0, there exists �2 ∈ Λ0 
satisfying

Repeating this process, we can construct a sequence {�r} in 
Λ such that, for all r ≥ 1,

Assume that ��r0
= ��r0+1

 for some r0 ≥ 1 , then from 
(7), �r0+1

 is a best proximity point of � . We now get 
��r ≠ ��r+1 for all r ≥ 1 . Because � is a proximal p-con-
traction of the second type, we have, for all r ≥ 1,

S u p p o s e  t h a t  t h e  i n e q u a l i t y 
�(��r0−1

,��r0
) ≤ �(��r0

,��r0+1
) holds for some r0 ≥ 1 , 

then we have

This is a contradiction. Thus, we can conclude that 
𝜅(𝜙𝜛r,𝜙𝜛r+1) < 𝜅(𝜙𝜛r−1,𝜙𝜛r) for all r ≥ 1 . Therefore, 
we get

and so, for all r ≥ 1,

Using the last inequality, we have

�(�1,��0) = �(Λ,Π).

�(�2,��1) = �(Λ,Π).

(7)�(�r+1,��r) = �(Λ,Π).

�(��r,��r+1) ≤ q
(
�(��r−1,��r)

+||�(��r,��r+1) − �(��r−1,��r)
||
)
.

𝜅(𝜙𝜛r0
,𝜙𝜛r0+1

) ≤q(𝜅(𝜙𝜛r0−1
,𝜙𝜛r0

)

+
|||𝜅(𝜙𝜛r0

,𝜙𝜛r0+1
) − 𝜅(𝜙𝜛r0−1

,𝜙𝜛r0
)
|||
)

=q
(
𝜅(𝜙𝜛r0−1

,𝜙𝜛r0
) + 𝜅(𝜙𝜛r,𝜙𝜛r+1)

−𝜅(𝜙𝜛r0−1
,𝜙𝜛r0

)
)

=q𝜅(𝜙𝜛r0
,𝜙𝜛r0+1

)

<𝜅(𝜙𝜛r0
,𝜙𝜛r0+1

).

�(��r,��r+1) ≤q(�(��r−1,��r)

+�(��r,��r−1) − �(��r,��r+1)
)

=2q�(��r−1,��r) − q�(��r,��r+1),

�(��r,��r+1) ≤
(

2q

q + 1

)
�(��r−1,��r).
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for all r ≥ 1 . Now, for m, r ≥ 1 with m > r , we obtain

Therefore, we have limr,m→∞ �(��r,��m) = 0 . Thus, 
{��r} is a Cauchy sequence in Π . Because of the fact that 
Π is a closed subset of complete partial metric space (Ξ, �) , 
there is �∗ ∈ Π satisfying

Moreover, from (7), it can be seen that

Hence, we get �(�∗,�r+1) → �(�∗,Λ) as r → ∞ . Since Λ is 
a �-approximately compact with respect to Π , there exists a 
subsequence {�rk

} of {�r} such that

for some �∗ ∈ Λ . Since � is a continuous mapping with 
respect to � , we get

Hence, we get

�(��r,��r+1) ≤
(

2q

q + 1

)
�(��r−1,��r)

≤
(

2q

q + 1

)2

�(��r−2,��r−1)

⋮

≤
(

2q

q + 1

)r

�(��0,��1),

�(��r ,��m) ≤ �(��r ,��r+1) + �(��r+1,��r+2)

+⋯ + �(��m−1,��m)

≤
(

2q
q + 1

)r

�(��0,��1) +
(

2q
q + 1

)r+1

�(��0,��1)

+⋯ +
(

2q
q + 1

)m−1

�(��0,��1)

=

[

1 +
2q

q + 1
+⋯ +

(

2q
q + 1

)m−r−1
]

(

2q
q + 1

)r

�(��0,��1)

≤

(

2q
q+1

)r

1 − 2q
q+1

�(��0,��1).

lim
r,m→∞

�(��r,��m) = lim
r→∞

�(��r, �
∗) = �(�∗, �∗) = 0.

�(�∗,Λ) ≤�(�∗,�r+1)

≤�(�∗,��r) + �(�r+1,��r)

=�(�∗,��r) + �(Λ,Π)

≤�(�∗,��r) + �(�∗,Λ).

(8)lim
k,l→∞

�(�rk
,�rl

) = lim
k→∞

�(�rk
,�∗) = �(�∗,�∗) = 0,

(9)

lim
k,l→∞

�(��rk
,��rl

) = lim
r→∞

�(��rk
,��∗) = �(��∗,��∗)

and so taking the l imit  as  k → ∞, we have 
�(�∗,��∗) = �(Λ,Π).   ◻

The following example is important as it shows that 
the approach of Haghi et  al. [13] cannot be applied to 
Theorem 5.

Example 2 Let (Ξ, �) be as in Example 1. Let 
Λ = {(4, 9), (2, 12)} and Π = {(2, 9), (1, 11)} . Then, we 
have �(Λ,Π) = 15 , Λ0 = Λ and Π0 = Π . Since the sin-
gle point {(�1,�2)} is closed whenever 𝜛1 > 0 for all 
� = (�1,�2) ∈ Π , Π is closed. Also, it can be seen that 
Λ is �-approximately compact with respect to Π . Define a 
mapping � ∶ Λ → Π by

Hence, � is a continuous mapping with respect to �� . Fur-
ther, we have 𝜙(Λ0) ⊆ Π0 . We will demonstrate that � is a 
proximal p-contraction of the second type for q =

29

31
 . Let 

�, v,�, � be arbitrary points in Λ with �� ≠ �v satisfying

Then, we get �� = �� ≠ �v = �� ∈ {(2, 9), (1, 11)}. In this 
case, we have

Thus, all hypotheses of Theorem 5 are satisfied, and so � 
has a best proximity point in Λ . Now, consider the metric 
� defined by

as in Proposition 2.1 of [13]. However, for �� = �� = (2, 9) 
and �v = �� = (1, 11) , we have

�(Λ,Π) ≤�(�∗,��∗)

≤
{

�(�∗,�rk+1
) + �(�rk+1

,��rk
) + �(��rk

,��∗)

−�(�rk+1
,�rk+1

) − �(��rk
,��rk

)

}

=

{
�(�∗,�rk+1

) + �(Λ,Π) + �(��rk
,��∗)

−�(�rk+1
,�rk+1

) − �(��rk
,��rk

)

}
,

�� =

{
(2, 9) , � = (4, 9)

(1, 11) , � = (2, 12).
,

�(�,��) = �(Λ,Π)

�(v,��) = �(Λ,Π)
.

�(��,�v) =14

≤29

31

{
14 +

||||
1

2
+ 11 − 10

||||
}

=q{�(��,��) + |�(��,��) − �(�v,��)|}.

�(�, �) =

{
0, � = �

�(�, �), � ≠ �
,



Mathematical Sciences 

for all q ∈ [0, 1) . Therefore, � does not satisfy (1) with 
respect to �.

If we take Λ = Π = Ξ in Theorem 5, then we present the 
following fixed point result.

Corollary 2 Let � ∶ (Ξ, �) → (Ξ, �) be a continuous mapping 
with respect to �� where (Ξ, �) is a complete partial metric 
space. Then, there is a point �∗ in Ξ satisfying �∗ = ��∗ 
if there exists q in [0, 1) such that for all �, � ∈ Ξ with 
�� ≠ ��,

Nonlinear fractional differential equations

The existence and uniqueness of the solution to nonlinear 
fractional differential equations are examined in this sec-
tion. First, let us recall some basic definitions of fractional 
calculus (see [12, 14, 16, 17, 26, 27]). The Caputo deriva-
tive of h of order 𝛼 > 0 is defined by

where h ∶ [0,∞) → ℝ is a continuous function and 
r = [�] + 1 with [�] denoting the integer part of a positive 
real number � , and Γ is the gamma function

The following nonlinear fractional differential equation 
of Caputo type

with integral boundary conditions

where h ∶ [0, 1] ×ℝ → ℝ is a continuous function, and 
1 < 𝛼 ≤ 2 , 0 < 𝛿 < 1 , � ∈ C[0, 1] . Since h is a continuous, 
it is clear that Eq. (10 ) is equal to the integral equation.

𝜃(𝜙𝜉,𝜙v) = 14 > 14q = q{𝜃(𝜙𝜛,𝜙𝜍) + |𝜃(𝜙𝜉,𝜙𝜛) − 𝜃(𝜙v,𝜙𝜍)|},

�(�2�,�2�) ≤ q
(
�(��,��) +

|||�(�
2�,��) − �(�2�,��)

|||
)
.

CD�(h(�)) =
1

Γ(r − �)

�

∫
0

(� − �)r−�−1h(r)(�)d�,

(10)CD�(h(�)) = h(�,�(�)),

�(0) = 0 and �(1) =

�

∫
0

�(�)d�,

Theorem 6 Assume the following conditions are true:

(i) for all � ∈ C[0, 1] and � ∈ [0, 1], the mapping 
� ∶ Ξ → Ξ

is a continuous mapping.

(ii) there is q ∈ [0, 1) such that

Then, the problem (10) has a solution.

Proof Let Ξ = C[0, 1] and � ∶ Ξ × Ξ → [0,∞) be a function 
defined by

for all �, v ∈ Ξ and � ∈ [0, 1]. Hence, (Ξ, �) is a complete 
partial metric space. Now, we will demonstrate that � holds 
(6). For all �, � ∈ Ξ and � ∈ [0, 1], we have

(11)

�(�) =
1

Γ(�)

�

∫
0

(� − �)�−1h(�,�(�))d�

−
2�

(2 − �2)Γ(�)

1

∫
0

(1 − �)�−1h(�,�(�))d�

+
2�

(2 − �2)Γ(�)

�

∫
0

⎛⎜⎜⎝

�

∫
0

(� − m)�−1h(m,�(m))dm

⎞⎟⎟⎠
d�.

��(�) =
1

Γ(�)

�

∫
0

(� − �)�−1h(�,�(�))d�

−
2�

(2 − �2)Γ(�)

1

∫
0

(1 − �)�−1h(�,�(�))d�

+
2�

(2 − �2)Γ(�)

�

∫
0

⎛⎜⎜⎝

�

∫
0

(� − m)�−1h(m,�(m))dm

⎞⎟⎟⎠
d�,

�h(�,�(�))� + �h(�, �(�))�

≤ Γ(� + 1)

5
q

⎧⎪⎨⎪⎩

��(�)� + ��(�)�
+
�����
sup�∈[0,1] ��(�)� + sup�∈[0,1] ���(�)�
− sup�∈[0,1] ��(�)� − sup�∈[0,1] ���(�)�

�����

⎫⎪⎬⎪⎭
.

�(�, v) =

{
sup�∈[0,1} |�(�)|, � = v

sup�∈[0,1] |�(�)| + sup�∈[0,1] |v(�)|, � ≠ v
,
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which implies that

Hence, we get

|��(�)| + |��(�)| =
|

|

|

|

|

|

|

1
Γ(�)

�

∫
0

(� − �)�−1h(�,�(�))d�

−
2�

(2 − �2)Γ(�)

1

∫
0

(1 − �)�−1h(�,�(�))d�

+
2�

(2 − �2)Γ(�)

�

∫
0

⎛

⎜

⎜

⎝

�

∫
0

(� − m)�−1h(m,�(m))dm
⎞

⎟

⎟

⎠

d�
|

|

|

|

|

|

|

+
|

|

|

|

|

|

|

1
Γ(�)

�

∫
0

(� − �)�−1h(�, �(�))d�

−
2�

(2 − �2)Γ(�)

1

∫
0

(1 − �)�−1h(�, �(�))d�

+
2�

(2 − �2)Γ(�)

�

∫
0

⎛

⎜

⎜

⎝

�

∫
0

(� − m)�−1h(m, �(m))dm
⎞

⎟

⎟

⎠

d�
|

|

|

|

|

|

|

≤ 1
Γ(�)

⎧

⎪

⎨

⎪

⎩

�

∫
0

|� − �|�−1(|h(�,�(�))| + |h(�, �(�))|)d�
⎫

⎪

⎬

⎪

⎭

+
2�

(2 − �2)Γ(�)

⎧

⎪

⎨

⎪

⎩

1

∫
0

(1 − �)�−1(|h(�,�(�))| + |h(�, �(�))|)d�
⎫

⎪

⎬

⎪

⎭

+
2�

(2 − �2)Γ(�)

⎧

⎪

⎨

⎪

⎩

�

∫
0

⎛

⎜

⎜

⎜

⎝

�

∫
0

(� − m)�−1
⎛

⎜

⎜

⎜

⎝

|h(m,�(m))|

+|h(m, �(m))|

⎞

⎟

⎟

⎟

⎠

dm
⎞

⎟

⎟

⎟

⎠

d�
⎫

⎪

⎬

⎪

⎭

≤ sup
�∈[0,1]

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

�

∫
0

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

|�−�|�−1
Γ(�)

Γ(�+1)
5

×q

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

|�(�)| + |�(�)|

+

|

|

|

|

|

|

|

|

|

|

|

|

|

|

sup�∈[0,1] |�(�)|

+ sup�∈[0,1] |��(�)|

− sup�∈[0,1] |�(�)|

− sup�∈[0,1] |��(�)|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

d�

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

+
2�

(2 − �2)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1

∫
0

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(1−�)�−1
Γ(�)

Γ(�+1)
5

×q

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

|�(�)| + |�(�)|

+

|

|

|

|

|

|

|

|

|

|

|

|

|

|

sup�∈[0,1] |�(�)|

+ sup�∈[0,1] |��(�)|

− sup�∈[0,1] |�(�)|

− sup�∈[0,1] |��(�)|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

d�

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

+
2�

(2 − �2)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

�

∫
0

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

∫
0

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(�−m)�−1
Γ(�)

Γ(�+1)
5

×q

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

|�(m)| + |�(m)|

+

|

|

|

|

|

|

|

|

|

|

|

|

|

|

supm∈[0,1] |�(m)|

+ supm∈[0,1] |��(m)|

− supm∈[0,1] |�(m)|

− supm∈[0,1] |��(m)|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

dm

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

d�

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

≤ Γ(� + 1)
5

q{�(�, �) + |�(�,��) − �(�,��)|}

× sup
�∈[0,1]

{

1
Γ(� + 1)

+
2�

(2 − �2)

(

1
Γ(� + 1)

+ 1
Γ(� + 1)

)}

≤q{�(�, �) + |�(�,��) − �(�,��)|}

sup
�∈[0,1]

|��(�)| + sup
�∈[0,1]

|��(�)| ≤ q{�(�, �) + |�(�,��) − �(�,��)|}.

�(��,��) ≤ q{�(�, �) + |�(�,��) − �(�,��)|}.

As a result, all of Corollary 1’s hypotheses are met, and 
thus � has a fixed point. Consequently, there is a solution 
to nonlinear fractional differential equation of Caputo type 
(10).   ◻

Conclusion

Using best proximity point theory on complete partial met-
ric spaces, we aim to expand several famous conclusions 
that have already been in the literature. We first introduce 
some new concepts, named proximal p -contractions of the 
first type and proximal p-contractions of the second type, 
and then prove some best proximity point theorems for such 
mappings on partial metric spaces. We also get some nota-
ble examples where our results are valid and the results in 
[13] are not. Hence, our results are a real generalization of 
some of the results that exist in standard metric spaces and 
partial metric spaces. Finally, with the help of our results, we 
obtain sufficient conditions for the existence of the solution 
of nonlinear fractional differential equations.
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