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Abstract
The Riesz fractional derivative has been employed to describe the spatial derivative in a variety of mathematical models. 
In this work, the accuracy of the finite element method (FEM) approximations to Riesz fractional derivative was enhanced 
by using adaptive refinement. This was accomplished by deducing the Riesz derivatives of the FEM bases to work on non-
uniform meshes. We utilized these derivatives to recover the gradient in a space fractional partial integro-differential equa-
tion in the Riesz sense. The recovered gradient was used as an a posteriori error estimator to control the adaptive refinement 
scheme. The stability and the error estimate for the proposed scheme are introduced. The results of some numerical examples 
that we carried out illustrate the improvement in the performance of the adaptive technique.

Keywords  Adaptive finite element method · Fractional partial integro-differential equation · Gradient recovery techniques · 
Riesz fractional derivative · Polynomial preserving recovery

Introduction

The class of partial integro-differential equations (PIDEs) is 
the one that combines the unknown function’s partial differ-
entiation and integration. It is used in many cases where the 
memory effect should be considered. PIDEs appear in differ-
ent fields of engineering and physics such as heat conduction 
[1], compression of poro-viscoelastic media [2], reaction 
diffusion problems [3], and nuclear reactor dynamics [4].

Many techniques are used to solve PIDEs. These include 
for example semianalytic techniques such as in [1] where 
He’s variational iteration technique is employed. Some 
numerical methods have been proposed like the finite dif-
ference method (FDM) [2]. Also, the collocation method 
is used to solve PIDE as in [3]. A Fixed-Point Theorem of 
type Monch–Krasnosel’skii is introduced in [5]. The authors 
of [6] considered a nonlinear form of PIDE that arises in 

viscoelasticity applications and solved it numerically using 
graded meshes. In [7], an approach that depends on unsu-
pervised deep learning is also used to solve PIDEs. Time 
fractional PIDEs are solved with different methods as in [8], 
where a compact FDM is utilized. Also, we see in [9] that a 
new FDM is proposed to approximate time fractional PIDE 
and the stability and convergence of the mentioned numeri-
cal scheme areas proved. PIDEs have been generalized to 
fractional order modeling and are referred to as fractional 
partial integro-differential equations (FPIDEs) as in [10].

During the past decades, great attention has been paid to 
the so-called fractional calculus, with which we can consider 
integration and differentiation not only of integer order but 
also of fractional ones. It is applied to generalize different 
types of differential equations. This produces fractional dif-
ferential equations, which are distinguished from integer 
ones as being able to describe the memory effect, which 
increases its modeling ability. Publications [11–14] have 
included a summary of fractional differential equations. 
Fractional derivatives are defined using many definitions, 
such as Caputo, Riemann–Liouville, Riesz fractional deriva-
tives, and many others.

The Riesz fractional derivative is usually used with space 
fractional derivatives. It was defined on finite and infinite 
domains as well. Riesz definition on infinite domains was con-
sidered in [15–20], where semianalytic techniques were used, 
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and in [21] where similarity solution was used. While Riesz 
definition on finite domains was considered in [22], where 
the McCormack numerical method was utilized. One of the 
numerical methods used to solve Riesz fractional partial dif-
ferential equations is the finite element method (FEM), as in 
[23, 24].

The FEM is a powerful method that is useful and effective 
in solving different types of differential equations. Recently, 
some appraised papers have been concerned with the FEM 
solution for fractional differential equations. Adolfsson [25] 
and [26] proposed a numerical method based on the FEM for 
integrating the constitutive response of fractional order vis-
coelasticity. Roop and Ervin [27–30] analyzed theoretically 
the approximation of the Galerkin finite element method to 
some kinds of fractional partial differential equations (FPDEs). 
Li [31] approximated numerically the fractional differential 
equations with subdiffusion and superdiffusion by using the 
difference method and the finite element method.

For the FEM to be more reliable, adaptive techniques can 
be used to control the error under some predefined tolerance. 
Adaptive techniques are procedures that iterate until the error 
reaches a predefined tolerance. A significant improvement is 
achieved by a posteriori treatment of the finite element data. 
This is a post-process called recovery, which is utilized in the 
implementation of the recovery-based error estimator. Then, 
the mesh is adaptively refined so that the accuracy satisfies the 
requirements of the user. Adaptive FEMs for different types 
of equations have been considered by many authors; see, 
[32–34]. Adaptive techniques sometimes depend on recovery 
techniques as in [35] where solution recovery is considered, 
and in [36–40] where gradient recovery is considered.

In [23], an algorithm was proposed to solve FPIDEs using 
FEM on a uniform mesh. In this work, we apply an adaptive 
FEM which is a recovery-based technique, and this causes 
the mesh to be nonuniform. We modified the algorithm in 
[23] so that it is applicable in the case of nonuniform mesh. 
This is illustrated by applying the gradient recovery technique 
known as the polynomial preserving recovery (PPR) technique 
to Riesz FPIDEs of the form

with an initial condition

and boundary conditions

where 0 < 𝛼 < 1, and u(x, t), f(x, t) are continuous functions.

(1)
�u

�t
=c

�1+�u(x, t)

�|x|1+� +

t

∫
0

K(t, s)u(x, s)ds + f (x, t),

x ∈ (a, b), t ∈ (0, T),

(2)u(x, 0) = �(x), a ≤ x ≤ b,

(3)u(a, t) = 0, u(b, t) = 0, 0 ≤ t ≤ T ,

Here, the space fractional derivative �
1+�u(x,t)

�|x|1+�  is the Riesz 
fractional derivative of order (1 + �) , defined by [41]

and

The outline of the paper is as follows: the fundamental rela-
tions of the Riesz approximation on nonuniform mesh are 
introduced in “Section Riesz approximation on nonuniform 
mesh”. The method of solution to the FPIDE is introduced in 
“Section Description of method”. “Section Gradient recov-
ery and adaptive refinement” is about the gradient recovery 
using the PPR technique and the proposed adaptive refine-
ment algorithm. “Section Error analysis and stability condi-
tion” contains the error analysis and the stability for the pro-
posed scheme. “Section 6” contains the numerical examples 
section where the results are presented and compared with 
the exact solution. The last section offers some conclusions 
regarding the work presented in this article.

Riesz approximation on nonuniform mesh

Here, the basic relations and lemmas that are utilized in the 
next sections are stated.

First, we refer to the finite domain by Ω = [a, b] and (, ) 
to be the inner product on the L2(Ω) space. Then, for some 
integer m,  the nodes x0, x1,… , xm−1, xm partition the domain 
Ω into m nonuniform subintervals. The set of all nodes in the 
partition forms the mesh Mh.

We denote the set of polynomials that are piecewise linear 
over the mesh nodes to be the space Vh, which is defined as 
follows:

where P1(Ωi) denotes the space of linear polynomials 
defined on Ωi . Then, the following is the representation of 
any v ∈ Vh

(4)
�1+�u(x, t)

�|x|1+� = −
1

2cos
�(1+�)

2

[
�1+�u(x, t)

�x1+�
+

�1+�u(x, t)

�(−x)1+�

]
,

(5)

�1+�u(x, t)

�x1+�
=

1

Γ(1 − �)

x

∫
a

(x − �)−�
�2

�x2
u(� , t)d� ,

�1+�u(x, t)

�(−x)1+�
=

1

Γ(1 − �)

b

∫
x

(� − x)−�
�2

�x2
u(� , t)d� .

(6)Vh =
{
v ∶ v|Ωi

∈ P1(Ωi), v ∈ C(Ω)
}

v =

m∑
j=0

v(xj)�j,
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where the nodal-based functions �0 , �1,..., �m of Vh are 
defined as follows:

where i is an integer that takes values from 1 to m − 1 , and

(7)�i(x) =

⎧
⎪⎨⎪⎩

x−xi−1

xi−xi−1
, x ∈

�
xi−1, xi

�
xi+1−x

xi+1−xi
, x ∈

�
xi, xi+1

�
0, otherwise.

(8)

�0(x) =

{
x1−x

x1−x0
, x ∈

[
x0, x1

]
0, otherwise

,

�m(x) =

{
x−xm−1

xm−xm−1
, x ∈

[
xm−1, xm

]
0, otherwise.

Lemma 1  If i takes the values of 1, 2,… ,m − 1, the inner 
product between the basic functions is given by

Proof  Let i = j , from definition of inner product and the defi-
nition of �i(x) , we have:

For j = i − 1 , it follows that

(9)(�i(x),�j(x)) =
1

6

⎧⎪⎨⎪⎩

(xi − xi−1), j = i − 1,

(xi+1 − xi), j = i + 1,

2(xi+1 − xi−1), j = i,

0, otherwise.

(�i(x),�i(x)) =

xi

∫
xi−1

(x − xi−1)
2

(xi − xi−1)
2
dx +

xi+1

∫
xi

(xi+1 − x)2

(xi+1 − xi)
2
dx

=
(xi − xi−1)

3
+

(xi+1 − xi)

3
=

(xi+1 − xi−1)

3
.

For j = i + 1, we have

Otherwise, from the definition of �i(x) , the inner product 
will always equal zero. 	�  ◻

Lemma 2  If i takes the values of 1, 2,… ,m − 1, the frac-
tional derivative of order � for the basic functions will be 
given by

Proof  From the definition of the first order left Caputo 
derivative,

If xi−1 ≤ x ≤ xi , and from definition of �i(x) , we have

If xi ≤ x ≤ xi+1 , it follows that

(�i(x),�i−1(x)) =

xi

∫
xi−1

(x − xi−1)

(xi − xi−1)

(xi − x)

(xi − xi−1)
dx =

(xi − xi−1)

6
.

(�i(x),�i+1(x)) =

xi+1

∫
xi

(xi+1 − x)

(xi+1 − xi)

(x − xi)

(xi+1 − xi)
dx =

(xi+1 − xi)

6
.

(10)
���i(x)

�x�
=

1

Γ(2 − �)

⎧
⎪⎪⎨⎪⎪⎩

0, a ≤ x ≤ xi−1
(x−xi−1)

1−�

(xi−xi−1)
, xi−1 ≤ x ≤ xi

(x−xi−1)
1−�

(xi−xi−1)
−

(x−xi)
1−�

(xi−xi−1)
−

(x−xi)
1−�

(xi+1−xi)
, xi ≤ x ≤ xi+1

(x−xi−1)
1−�

(xi−xi−1)
−

(x−xi)
1−�

(xi−xi−1)
−

(x−xi)
1−�

(xi+1−xi)
+

(x−xi−1)
1−�

(xi+1−xi)
, xi+1 ≤ x ≤ b

(11)
���i(x)

�(−x)�
=

1

Γ(2 − �)

⎧⎪⎪⎨⎪⎪⎩

(xi+1−x)
1−�

(xi+1−xi)
−

(xi−x)
1−�

(xi−xi−1)
−

(xi−x)
1−�

(xi+1−xi)
+

(xi−1−x)
1−�

(xi−xi−1)
, a ≤ x ≤ xi−1

(xi+1−x)
1−�

(xi+1−xi)
−

(xi−x)
1−�

(xi−xi−1)
−

(xi−x)
1−�

(xi+1−xi)
, xi−1 ≤ x ≤ xi

(xi+1−x)
1−�

(xi+1−xi)
, xi ≤ x ≤ xi+1

0, xi+1 ≤ x ≤ b

���i(x)

�x�
=

1

Γ(1 − �)

x

∫
a

��i(�)

��

d�

(x − �)�
.

(12)

���i(x)

�x�
=

1

Γ(1 − �)

x

∫
xi−1

1

(xi − xi−1)

d�

(x − �)�

=
1

Γ(2 − �)

(x − xi−1)
1−�

(xi − xi−1)
.
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If x ≥ xi+1, we have

If x ≤ xi−1, �i(x) equal zero and �
��i(x)

�x�
= 0.

Also, from the definition of the first order right Caputo 
derivative

If x ≤ xi−1, and from definition of �i(x), , we have

If xi−1 ≤ x ≤ xi, it follows that

(13)

���i(x)

�x�
=

1

Γ(1 − �)

⎡
⎢⎢⎣

xi

∫
xi−1

1

(xi − xi−1)

d�

(x − �)�

+

x

∫
xi

−1

(xi+1 − xi)

d�

(x − �)�

⎤
⎥⎥⎦

=
1

Γ(2 − �)

�
(x − xi−1)

1−�

(xi − xi−1)
−

(x − xi)
1−�

(xi − xi−1)

−
(x − xi)

1−�

(xi+1 − xi)

�
.

(14)

���i(x)

�x�
=

1

Γ(1 − �)

⎡
⎢⎢⎣

xi

∫
xi−1

1

(xi − xi−1)

d�

(x − �)�

+

xi+1

∫
xi

−1

(xi+1 − xi)

d�

(x − �)�

⎤⎥⎥⎦
=

1

Γ(2 − �)

�
(x − xi−1)

1−�

(xi − xi−1)
−

(x − xi)
1−�

(xi − xi−1)
−

(x − xi)
1−�

(xi+1 − xi)

+
(x − xi−1)

1−�

(xi+1 − xi)

�
.

(15)
���i(x)

�(−x)�
=

−1

Γ(1 − �)

b

∫
x

��i(�)

��

d�

(� − x)�
.

(16)

���i(x)

�(−x)�
=

−1

Γ(1 − �)

⎡
⎢⎢⎣

xi

∫
xi−1

1

(xi − xi−1)

d�

(� − x)�

+

xi+1

∫
xi

−1

(xi+1 − xi)

d�

(� − x)�

⎤⎥⎥⎦

=
1

Γ(2 − �)

�
(xi+1 − x)1−�

(xi+1 − xi)
−

(xi − x)1−�

(xi − xi−1)

−
(xi − x)1−�

(xi+1 − xi)
+

(xi−1 − x)1−�

(xi − xi−1)

�
.

If xi ≤ x ≤ xi+1 , we have

If x ≥ xi+1, �i(x) equal zero and �
��i(x)

�(−x)�
= 0.

From (12)–(18), Lemma 2 is proved. 	�  ◻

Lemma 3  Let B = (xj − xj−1) and M = (xj+1 − xj), , then, for 
i = 1, 2,… ,m − 1, we have

where

(17)

���i(x)

�(−x)�
=

−1

Γ(1 − �)

⎡
⎢⎢⎣

xi

∫
x

1

(xi − xi−1)

d�

(� − x)�

+

xi+1

∫
xi

−1

(xi+1 − xi)

d�

(� − x)�

⎤
⎥⎥⎦

=
1

Γ(2 − �)

�
(xi+1 − x)1−�

(xi+1 − xi)

−
(xi − x)1−�

(xi − xi−1)
−

(xi − x)1−�

(xi+1 − xi)

�
.

(18)

���i(x)

�(−x)�
=

−1

Γ(1 − �)

⎡
⎢⎢⎣

xi+1

∫
x

−1

(xi+1 − xi)

d�

(� − x)�

⎤
⎥⎥⎦

=
1

Γ(2 − �)

�
(xi+1 − x)1−�

(xi+1 − xi)

�
.

(19)

xi

∫
xi−1

(
���j(x)

�x�
−

���j(x)

�(−x)�
)dx =

1

Γ(3 − �)
g
(3)

i,j
,

(20)

xi+1

∫
xi

(
���j(x)

�x�
−

���j(x)

�(−x)�
)dx =

1

Γ(3 − �)
g
(4)

i,j
,
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Proof  From Eq. (19) along with Lemma 2, we get for j = i

where B = (xj − xj−1) and M = (xj+1 − xj).

(21)

g
(3)

i,j
=

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
(xi−xj−1)

2−�

B
−

(xi−xj)
2−�

B
−

(xi−xj)
2−�

M
+

(xi−xj+1)
2−�

M
)

−(
(xi−1−xj−1)

2−�

B
−

(xi−1−xj)
2−�

B
−

(xi−1−xj)
2−�

M
+

(xi−1−xj+1)
2−�

M
)
, j ≤ i − 2

(xi−xi−2)
2−�

B
−

(xi−xi−1)
2−�

B
− 2M1−� − B1−� , j = i − 1

2B1−� +M1−� −
(xi+1−xi−1)

2−�

M
+

(xi−xi−1)
2−�

M
, j = i

−(
(xj−xi)

2−�

B
−

(xj−1−xi)
2−�

B
−

(xj+1−xi)
2−�

M
+

(xj−xi)
2−�

M
)

+(
(xj−xi−1)

2−�

B
−

(xj−1−xi−1)
2−�

B
−

(xj+1−xi−1)
2−�

M
+

(xj−xi−1)
2−�

M
)
, j ≥ i + 1

,

(22)g
(4)

i,j
=

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
(xi+1−xj−1)

2−�

B
−

(xi+1−xj)
2−�

B
−

(xi+1−xj)
2−�

M
+

(xi+1−xj+1)
2−�

M
)

−(
(xi−xj−1)

2−�

B
−

(xi−xj)
2−�

B
−

(xi−xj)
2−�

M
+

(xi−xj+1)
2−�

M
)

, j ≤ i − 1

(xi+1−xi−1)
2−�

B
−

(xi+1−xi)
2−�

B
− 2M1−� − B1−� , j = i

2B1−� +M1−� −
(xj+1−xi)

2−�

M
+

(xj−xi)
2−�

M
, j = i + 1

−(
(xj−xi+1)

2−�

B
−

(xj−1−xi+1)
2−�

B
−

(xj+1−xi+1)
2−�

M
+

(xj−xi+1)
2−�

M
)

+(
(xj−xi)

2−�

B
−

(xj−1−xi)
2−�

B
−

(xj+1−xi)
2−�

M
+

(xj−xi)
2−�

M
)

, j ≥ i + 2

.

(23)

xi

∫
xi−1

(
���j(x)

�x�

−
���j(x)

�(−x)�
)dx

=
1

Γ(2 − �)

xi

∫
xi−1

(x − xi−1)
1−�

(xi − xi−1)

−
(xi+1 − x)1−�

(xi+1 − xi)
+

(xi − x)1−�

(xi − xi−1)
+

(xi − x)1−�

(xi+1 − xi)
dx

=
1

Γ(3 − �)

[
2B1−� +M1−�

−
(xi+1 − xi−1)

2−�

M
+

(xi − xi−1)
2−�

M

]
,

For j = i − 1, we have

If j ≤ i − 2, it follows that

(24)

xi

∫
xi−1

(
���j(x)

�x�
−

���j(x)

�(−x)�
)dx

=
1

Γ(2 − �)

xi

∫
xi−1

(x − xi−2)
1−�

(xi−1 − xi−2)

−
(x − xi−1)

1−�

(xi−1 − xi−2)
−

(x − xi−1)
1−�

(xi − xi−1)
−

(xi − x)1−�

(xi − xi−1)
dx

=
1

Γ(3 − �)

[
(xi − xi−2)

2−�

B

−
(xi − xi−1)

2−�

B
− 2M1−� − B1−�

]
.
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If j ≥ i + 1 , we have

From (23)–(26), it is proved that

where g(3)
i,j

 is defined as in (21).
In the same way, Eq. (20) is proved where g(4)

i,j
 is defined 

as in (22). 	�  ◻

Description of method

Consider the FPIDE with the Riesz space fractional deriva-
tive of the form (1)–(3). The equations can be written as 
follows:

(25)

xi

∫
xi−1

(
���j(x)

�x�
−

���j(x)

�(−x)�
)dx

=
1

Γ(2 − �)

xi

∫
xi−1

(x − xj−1)
2−�

(xj − xj−1)

−
(x − xj)

2−�

(xj − xj−1)
−

(x − xj)
2−�

(xj+1 − xj)
+

(x − xj+1)
2−�

(xj+1 − xj)
− 0 dx

=
1

Γ(3 − �)

[
(
(xi−xj−1)

2−�

B
−

(xi−xj)
2−�

B
−

(xi−xj)
2−�

M
+

(xi−xj+1)
2−�

M
)

−(
(xi−1−xj−1)

2−�

B
−

(xi−1−xj)
2−�

B
−

(xi−1−xj)
2−�

M
+

(xi−1−xj+1)
2−�

M
)

]
.

(26)

xi

∫
xi−1

(
���j(x)

�x�
−

���j(x)

�(−x)�
)dx

=
1

Γ(2 − �)

xi

∫
xi−1

0 −
(xj+1 − x)1−�

(xj+1 − xj)
+

(xj − x)1−�

(xj − xj−1)

+
(xj − x)1−�

(xj+1 − xj)
−

(xj−1 − x)1−�

(xj − xj−1)
dx

=
1

Γ(3 − �)

[
−(

(xj−xi)
2−�

B
−

(xj−1−xi)
2−�

B
−

(xj+1−xi)
2−�

M
+

(xj−xi)
2−�

M
)

+(
(xj−xi−1)

2−�

B
−

(xj−1−xi−1)
2−�

B
−

(xj+1−xi−1)
2−�

M
+

(xj−xi−1)
2−�

M
)

]
.

xi

∫
xi−1

(
���j(x)

�x�
−

���j(x)

�(−x)�
)dx =

1

Γ(3 − �)
g
(3)

i,j
,

where

The weak form of this problem is given by

(27)

�u

�t
= −

c

2 cos
�(1+�)

2

(
�1+�u(x, t)

�x1+�
+

�1+�u(x, t)

�(−x)1+�
)

+

t

∫
0

K(t, s)u(x, s)ds + f (x, t)

= −�
�

�x
H(x, t) +

t

∫
0

K(t, s)u(x, s)ds + f (x, t),

(28)� =
c

2 cos
�(1+�)

2

, H(x, t) =
��u(x, t)

�x�
−

��u(x, t)

�(−x)�
.
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Discretizing the first order time derivative by the finite dif-
ference method (FDM) with a time step Δt as follows:

also, using the trapezoidal rule to approximate the integral 
term as follows

we get

Letun
h
=

m∑
j=0

un
j
�j(x) ∈ Vh(a, b), while Vh(a, b) represents the 

space of functions that are continuous and piecewise linear 
regarding the partition of the space, and they take the value 
of zero at the boundaries, and un

j
= uh(xj, tn). Also choosing 

every function v to be �i(x), i = 1, 2,… ,m , it follows that

From definition (7), it follows that

(29)

(
�u

�t
, v) = �(H,

�v

�x
)

+ (

t

∫
0

K(t, s)u(x, s)ds, v) + (f , v), ∀ v ∈ Vh

(30)�u

�t
=

un − un−1

Δt
,

(31)

t

∫
0

K(t, s)u(x, s)ds =
Δt

2
K(tn, t0)u(x, t0)

+ Δt

n−1∑
j=1

K(tn, tj)u(x, tj) +
Δt

2
K(tn, tn)u(x, tn),

(32)

(un, v) − (un−1, v) =�Δt(Hn,
�v

�x
) +

(Δt)2

2
(K(tn, t0)u(x, t0), v)

+ (Δt)2(

n−1∑
j=1

K(tn, tj)u(x, tj), v)

+
(Δt)2

2
(K(tn, tn)u(x, tn), v) + Δt(f , v).

(33)

(

m∑
j=0

un
j
�j(x),�i(x)) −

(Δt)2

2
(K(tn, tn)u(x, tn),�i(x))

− �Δt(

m+1∑
j=1

un
j

b

∫
a

(
���j(x)

�x�
−

���j(x, t)

�(−x)�
).
��i(x)

�x
dx)

= (

m∑
j=0

un−1
j

�j(x),�i(x)) +
(Δt)2

2
(K(tn, t0)u(x, t0),�i(x))

+ (Δt)2(

n−1∑
j=1

K(tn, tj)u(x, tj),�i(x)) + Δt(f (x, tn),�i(x)).

From Lemma 1 and Lemma 3, it follows that

Now, we have a system of linear equations that can be solved 
for un

i
.

Gradient recovery and adaptive refinement

There are many techniques that were developed for the 
recovery of the gradient, and these techniques have been 
used in practice due to their efficiency as a posteriori error 
estimators, ease of implementation, and superconvergence 
(see [42–48] and references therein).

In [43, 49], the PPR technique was introduced for the 
recovery of the gradient, which works methodically in FEMs 
of different orders. It possesses a superconvergence property, 
which means that the a posteriori error estimator based on 
recovery is asymptotically precise.

(34)

(

m∑
j=0

un
j
�j(x),�i(x)) −

(Δt)2

2
(K(tn, tn)u(x, tn),�i(x))

− �Δt(

m+1∑
j=1

un
j

(xi − xi−1)

xi

∫
xi−1

(
���j(x)

�x�
−

���j(x, t)

�(−x)�
)dx

−

m+1∑
j=1

un
j

(xi+1 − xi)

xi+1

∫
xi

(
���j(x)

�x�
−

���j(x, t)

�(−x)�
)dx)

= (

m∑
j=0

un−1
j

�j(x),�i(x)) +
(Δt)2

2
(K(tn, t0)u(x, t0),�i(x))

+ (Δt)2(

n−1∑
j=1

K(tn, tj)u(x, tj),�i(x)) + Δt(f (x, tn),�i(x)).

(35)

1

6
((xi − xi−1)u

n
i−1

+ 2(xi+1 − xi−1)u
n
i

+ (xi+1 − xi)u
n
i+1

)

−
(Δt)2

2
(K(tn, tn)u(x, tn),�i(x))

− �Δt(

m+1∑
j=1

un
j
(

g
(3)

i,j

(xi − xi−1)
−

g
(4)

i,j

(xi+1 − xi)
))

=
1

6
((xi − xi−1)u

n−1
i−1

+ 2(xi+1

− xi−1)u
n−1
i

+ (xi+1 − xi)u
n−1
i+1

)

+
(Δt)2

2
(K(tn, t0)u(x, t0),�i(x))

+ (Δt)2(

n−1∑
j=1

K(tn, tj)u(x, tj),

�i(x)) + Δt(f (x, tn),�i(x)).
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The way the PPR technique works to recover the gradient 
at a mesh node d can be illustrated as follows:

Let Mh denotes the set of mesh nodes. For any node 
d ∈ Mh, we first construct a patch of elements which is 
denoted by �d, which contains the union of elements in the 
first n layers around d,  i.e.,

where Eh is the set of mesh elements and �d(d, 0) = {d}.

Then, we define a polynomial Pd that best fits the FEM 
solution (uh) at the mesh nodes in �d in the least squares 
sense. This polynomial is the least squares approximation of 
uh at d. Then, the recovered gradient Rh is defined as follows:

Depending on the recovered gradient, an adaptive procedure 
is applied, and it can be illustrated as follows: The procedure 
starts with an initial mesh and the system is solved for the 
FEM solution. Then, using the PPR technique, the recov-
ered gradient Rh is calculated. After that, the error ( ek ) in 
the finite element gradient on every element is calculated 
using the recovered gradient instead of the exact one. When 
compared to some predefined tolerance � , the maximum 
error is checked so that the algorithm ends if the tolerance 
is reached. Otherwise, we use a marking strategy to mark 
certain elements that meet the criteria ek > 𝜂 ∗ 𝜏 for a posi-
tive parameter 𝜂 < 1 . The marked elements are refined; then, 
the mesh is adapted. Here, the system is solved using our 
formulation for Riesz FPIDE with nonuniform mesh. Again, 
the PPR technique is applied; then, the error is checked, and 
the procedure continues until the tolerance is reached.

Error analysis and stability condition

In this section, we present the error analysis and stability 
condition of the proposed scheme. We begin by listing some 
of the definitions and symbols that are used in this section.

The inner product and norm of the space L2(Ω) are defined 
by

respectively.

(36)�d(d, n) = ∪{E ∶ E ∈ Eh, E ∩ �d(d, n − 1) ≠ �},

(37)
Rh =

∑
d∈Mh

Rh(d)�d,

Rh(d) =∇Pd(d).

(38)(u, v)L2(Ω) =∫
Ω

uv dx,

(39)
and

‖u‖L2 =(u, u)1∕2L2(Ω)
, ∀u, v ∈ L2(Ω),

For any 𝜎 > 0, we define lH�
0
(Ω) and rH�

0
(Ω) to be the 

closure of C∞
0
(Ω) with respect to the norms ‖v‖lH�

0
(Ω) and 

‖v‖rH�
0
(Ω), respectively, where

where

In the usual Sobolev space H�
0
(Ω), we also have the 

definition

where

Error analysis

Lemma 4  (see [41, 50]) For real 0 < 𝛾 < 1, 0 < 𝛿 < 1 if 
v(0) = 0, x ∈ (a, b) then

Lemma 5  (see [50]) Let 0 < 𝛾 < 1, then for any 
w, v ∈ H

�∕2

0
(Ω)

Lemma 6  (see [51]) For 𝛾 > 0, v ∈ C∞
0
(R), then

Lemma 7  (see [52]) Let u ∈ Hr(Ω), 0 < r ≤ m, and 
0 ≤ s ≤ r , then, there exists a constant CA depending only 
on Ω such that

where Ih is a projection operator from Hr(Ω) ∩ Hs(Ω) to Vh.

(40)‖v‖lH�
0
(Ω) =(‖v‖2L2 + �v�2lH�

0
(Ω)

)1∕2,

(41)‖v‖rH�
0
(Ω) =(‖v‖2L2 + �v�2rH�

0
(Ω)

)1∕2,

(42)|v|2lH�
0
(Ω)

=‖‖caD�
x
v‖‖2L2(Ω),

(43)|v|2rH�
0
(Ω)

=‖‖cxD�
b
v‖‖2L2(Ω).

(44)‖v‖H�
0
(Ω) = (‖v‖2

L2(Ω)
+ �v�2

H�
0
(Ω)

)1∕2,

(45)|v|2
H�

0
(Ω)

= (
(c
a
D�

x
v,c
x
D�

b
v)L2(Ω)

cos(��)
).

(1) c
a
D�+�

x
v(x) =(c

a
D�

x
)(c
a
D�

x
)v(x) ∀v ∈ H�+�(a, b),

(2) (c
a
D�

x
w, v)L2 =(w,

c
x
D

�

b
v)L2 ∀w ∈ H� (a, b), v ∈ C∞

0
(a, b).

(c
a
D�

x
w, v)L2 = (c

a
D�∕2

x
w,c

x
D

�∕2

b
v)L2 .

(c
a
D�

x
v,c
x
D

�

b
v) = cos(��)‖‖caD�

x
v‖‖2L2(Ω) ,

(c
a
D�

x
v,c
x
D

�

b
v) = cos(��)

‖‖‖
c
x
D

�

b
v
‖‖‖
2

L2(Ω)

.

��u − Ihu
��Hs(Ω)

≤ CAh
r−s‖u‖Hr(Ω),
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Based on lemma 4, the variational form of Eq. (32) can be 
written in the following form

where

The semidiscrete problem of (27) is to find the approximate 
solution uh(x, t) ∈ Vh such that

Let Jh ∶ H�∕2(Ω) ⟶ Vh be the elliptic projection defined by

Lemma 8  For Jh defined by (49) and any v ∈ Hr(Ω) ∩ H
�∕2

0
, 

the following inequality holds

Proof  Let Ih be a projection operator from Hr(Ω) ∩ H�∕2(Ω) 
to Vh, and from definition of L2(Ω) , we obtain

Let v = Jhu − Ihu in (49), we obtain

(46)

(1 − 0.5(Δt)2K(tn, tn))(u
n, v) + �Δt(c

a
D�∕2

x
un,c

x
D

�∕2

b
v)

+ �Δt(c
x
D

�∕2

b
un,c

a
D�∕2

x
v)

= (G(x, t), v) v ∈ H
�∕2

b
,

(47)

G(x, t) = un−1 +
(Δt)2

2
K(tn, t0)u(x, t0)

+ (Δt)2
n−1∑
j=1

K(tn, tj)u(x, tj) + Δtf (x, t).

(48)

(1 − 0.5(Δt)2K(tn, tn))(u
n
h
, v) + �Δt(c

a
D�∕2

x
un
h
,c
x
D

�∕2

b
v)

+ �Δt(c
x
D

�∕2

b
un
h
,c
a
D�∕2

x
v)

= (G(x, t), v), v ∈ Vh.

(49)

�(c
a
D�∕2

x
Jhu,

c
x
D

�∕2

b
v)L2 + �(c

x
D

�∕2

b
Jhu,

c
a
D�∕2

x
v)L2

= �(c
a
D�∕2

x
u,c

x
D

�∕2

b
v)L2 + �(c

x
D

�∕2

b
u,c

a
D�∕2

x
v)L2 , v ∈ Vh.

���
c
a
D�∕2

x
(Jhu − u)

���L2 ≤ hr−�∕2‖v‖Hr(Ω).

(50)

(c
a
D�∕2

x
(Jhu − u),c

x
D

�∕2

b
(Jhu − u))L2

+ (c
x
D

�∕2

b
(Jhu − u),c

a
D�∕2

x
(Jhu − u))L2

= (c
a
D�∕2

x
(Jhu − u),c

x
D

�∕2

b
(Jhu − Ihu))L2

+ (c
x
D

�∕2

b
(Jhu − u),c

a
D�∕2

x
(Jhu − Ihu))L2

+ (c
a
D�∕2

x
(Jhu − u),c

x
D

�∕2

b
(Ihu − u))L2

+ (c
x
D

�∕2

b
(Jhu − u),c

a
D�∕2

x
(Ihu − u))L2 .

Note that

where the expression A ≲ B (A ≳ B) means that there exists 
a positive real number c such that A ≤ cB (A ≥ cB).

Combining Eqs. (51) and (52), we obtain

From lemma 7,

Similarly,

Combining Eqs. (53), (54) and (55), we obtain

	�  ◻

Theorem 1  Let un and un
h
 be the solution of (46) and (48 ), 

respectively, the following estimate holds

Proof 

From lemma 8, 

(51)

(c
a
D�∕2

x
(Jhu − u),c

x
D

�∕2

b
(Jhu − u))L2

+ (c
x
D

�∕2

b
(Jhu − u),c

a
D�∕2

x
(Jhu − u))L2

≤ ‖‖‖
c
a
D�∕2

x
(Jhu − u)

‖‖‖L2
‖‖‖
c
x
D

�∕2

b
(Ihu − u)

‖‖‖L2
+
‖‖‖
c
x
D

�∕2

b
(Jhu − u)

‖‖‖L2
‖‖‖
c
a
D�∕2

x
(Ihu − u)

‖‖‖L2
≤ (

‖‖‖
c
a
D�∕2

x
(Jhu − u)

‖‖‖L2
+
‖‖‖
c
x
D

�∕2

b
(Jhu − u)

‖‖‖L2) ∗ (
‖‖‖
c
a
D�∕2

x
(Ihu − u)

‖‖‖L2
+
‖‖‖
c
x
D

�∕2

b
(Ihu − u)

‖‖‖L2).

(52)

(c
a
D𝛾∕2

x
(Jhu − u),c

x
D

𝛾∕2

b
(Jhu − u))L2

+ (c
x
D

𝛾∕2

b
(Jhu − u),c

a
D𝛾∕2

x
(Jhu − u))L2

≳ (
‖‖‖
c
a
D𝛾∕2

x
(Jhu − u)

‖‖‖L2 +
‖‖‖
c
x
D

𝛾∕2

b
(Jhu − u)

‖‖‖L2)
2,

(53)

‖‖‖
c
a
D𝛾∕2

x
(Jhu − u)

‖‖‖L2 +
‖‖‖
c
x
D

𝛾∕2

b
(Jhu − u)

‖‖‖L2
≲
‖‖‖
c
a
D𝛾∕2

x
(Ihu − u)

‖‖‖L2 +
‖‖‖
c
x
D

𝛾∕2

b
(Ihu − u)

‖‖‖L2 .

(54)

���
c
a
D𝛾∕2

x
(Ihu − u)

���L2 ≲
��Ihu − u��H𝛾∕2(Ω)

≲ hr−𝛾∕2‖u‖Hr(Ω).

(55)

���
c
x
D

𝛾∕2

b
(Ihu − u)

���L2 ≲
��Ihu − u��H𝛾∕2(Ω)

≲ hr−𝛾∕2‖u‖Hr(Ω).

(56)
���
c
a
D𝛾∕2

x
(Jhu − u)

���L2 ≲ hr−𝛾∕2‖u‖Hr(Ω).

‖‖un − un
h
‖‖ = O((Δt)2) + O(hr−�∕2).

(57)un
h
− un = � + �,

� = un
h
− Jhu

n, � = Jhu
n − un.
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Subtracting (48)–(46) and taking v = � = un
h
− Jhu

n, we get

where CB = (1 − 0.5(Δt)2K(tn, tn)). By lemma 6, we get

where CD = 2 cos(
��

2
)�Δt. Arranging the terms of Eq. (60), 

we get

For any small 𝜀 > 0, we have

where C� is a constant with respect to �.

Combining Eqs. (58) and (62), we get

	�  ◻

Stability

Theorem 2  The FEM defined in (46) is unconditionally 
stable.

Proof  Let v = un , f (x, t) = 0, from Eq. (46), we have

(58)‖𝜙‖2 ≲ h2r−𝛾‖un‖2
Hr(Ω).

(59)

CB(u
n
h
− un, un

h
− Jhu

n)

+ �Δt(c
a
D�∕2

x
(un

h
− Jhu

n),c
x
D

�∕2

b
(un

h
− Jhu

n))

+ �Δt(c
x
D

�∕2

b
(un

h
− Jhu

n ),c
a
D�∕2

x
(un

h
− Jhu

n))

= zero + O((Δt)2),

(60)

CB(u
n
h
− Jhu

n, un
h
− Jhu

n)

+ CB(Jhu
n − un, un

h
− Jhu

n) + CD
||unh − Jhu

n||2H�∕2

= zero + O((Δt)2),

(61)
CB(u

n
h
− Jhu

n, un
h
− Jhu

n) + CD
||unh − Jhu

n||2H�∕2

= CB(u
n − Jhu

n, un
h
− Jhu

n) + O((Δt)2).

(62)
‖‖unh − Jhu

n‖‖2H𝛾∕2 ≲ C𝜀
‖‖un − Jhu

n‖‖2
+ 𝜀‖‖unh − Jhu

n‖‖2 + O((Δt)2),

(63)
��unh − Jhu

n��H𝛾∕2 ≲ C𝜀‖𝜙‖H𝛾∕2+

O((Δt)2) ≲ hr−𝛾∕2‖un‖Hr + O((Δt)2).

(64)��un − un
h
��H�∕2 = ‖� + �‖H�∕2 = O(hr−�∕2) + O((Δt)2).

Using Cauchy–Schwarz inequality, we obtain

From Eq. (65) and Cauchy–Schwarz inequality, we obtain

Equation (66) can be simplified to

We prove the stability of Eq. (48) by induction, at n = 1 , 
we have

which leads to

For the induction step, we have

Using this result, we obtain

(65)

(1 − 0.5(Δt)2K(tn, tn))(u
n
, un)

+ �Δt(c
a
D�∕2

x
un,c

x
D

�∕2

b
un) + �Δt(c

x
D

�∕2

b
un,c

a
D�∕2

x
un)

= (un−1, un) +
(Δt)2

2
K(tn, t0)(u

0
, un)

+ (Δt)2
n−1∑
j=1

K(tn, tj)(u
j
, un).

(un−k, un) ≤ 1

2
[
���u

n−k���
2

+ ‖un‖2].

(66)

(1 − 0.5(Δt)2K(tn, tn))‖un‖2L2
+ 2�(Δt)(cos ��)��caD�

x
un��2L2

≤ 1

2
[
���u

n−1���
2

+ ‖un‖2] + (Δt)2

4
K(tn, t0)[

���u
0���

2

+ ‖un‖2] + (Δt)2

2

n−1�
j=1

K(tn, tj)[
���u

j���
2

+ ‖un‖2].

(67)

[
1

2
−

1

2
(Δt)2K(tn, tn) −

(Δt)2

4
K(tn, t0)

−
(Δt)2

2

n−1�
j=1

K(tn, tj)]‖un‖2

≤ 1

2

���u
n−1���

2

+
(Δt)2

4
K(tn, t0)

���u
0���

2

+
(Δt)2

2

n−1�
j=1

K(tn, tj)
���u

j���
2

.

(68)
[
1

2
−

1

2
(Δt)2K(t1, t1) −

(Δt)2

4
K(t1, t0)]

‖‖‖u
1‖‖‖

2

L2

≤ [
1

2
+

(Δt)2

4
K(t1, t0)]

‖‖‖u
0‖‖‖

2

,

‖‖‖u
1‖‖‖ ≲

‖‖‖u
0‖‖‖.

‖‖‖u
n−1‖‖‖ ≲

‖‖‖u
n−2‖‖‖ ≲ ⋯ ≲

‖‖‖u
0‖‖‖.
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which leads to

	�  ◻

(69)

[
1

2
−

1

2
(Δt)2K(tn, tn) −

(Δt)2

4
K(tn, t0)

−
(Δt)2

2

n−1�
j=1

K(tn, tj)]‖un‖2

≤ [
1

2
+

(Δt)2

4
K(tn, t0) +

(Δt)2

2

n−1�
j=1

K(tn, tj)]
���u

0���
2

,

‖un‖ ≲
���u

0���.

Numerical examples

The following examples are introduced to illustrate the 
accuracy of the procedure proposed. For this purpose, two 
figures are shown for each example. The first figure shows 
the L2norm of error with respect to the number of degrees of 
freedom (DOFs), and the second figure shows the L∞norm 
of error. In the following examples, � will denotes the frac-
tional order of Riesz, T denotes the final time, � denotes the 
tolerance, and Δt denotes the time step. The three examples 
are presented at different values for �, Δt and T to present 
different cases for the problems.

Example 1  Consider the following problem

Fig. 1   L2norm of error over the domain of example (1)

Fig. 2   L∞norm of error over the domain of example (1)

Fig. 3   L2norm of error over the domain of example (2)

Fig. 4   L∞norm of error over the domain of example (2)
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with the boundary and initial conditions given as follows

while the exact solution is provided by

In this example, we take � = 0.9, T = 1, � = 10−4,Δt = 0.01. 
Fig. 1 shows the L2norm of error calculated for the gradient 
in two cases, the adaptive case and the uniform refinement 
case, whereas Fig. 2 shows the L∞norm of the error over all 
the elements in the whole domain, which is also calculated 
for the two cases.

(70)
�u

�t
=

�1+�u(x, t)

�|x|1+� +

t

∫
0

(t2 + s2)u(x, s)ds + f (x, t),

x ∈ (0, 1), t ∈ (0, T),

(71)
u(x, 0) =0, 0 < x < 1,

u(0, t) =0, u(1, t) = 0, 0 < t < T ,

(72)u(x, t) = 25 ∗ e−tx6(1 − x)6.

Example 2  Consider Eq. (70) with boundary and initial con-
ditions as in (71), while the exact solution is provided by

Here, we take � = 0.9, T = 0.5, � = 10−3,Δt = 0.01.

The L2 norm of error and the L∞norm of the error are 
calculated for the gradient and shown in Figs. 3 and 4, 
respectively.

Example 3  Consider Eq. (70), while the exact solution is 
provided by

with boundary and initial conditions as in (71). In this 
example, we take � = 0.5, T = 1, � = 10−2,Δt = 0.001.The 
proposed procedure is applied and the L2norm and the L∞
norm of the error of the gradient and shown in Figs. 5 and 6, 
respectively.

Figs. 1, 2, 3, 4, 5 and 6 in the three examples show that 
the error of the adaptive refinement is better than that of 
the uniform refinement at the same number of nodes. This 
reflects the strength of the proposed procedure as it indicates 
that the adaptive scheme was successful in refining the mesh 
at the elements which have the higher error.

Conclusion

The aim of this work is to increase the accuracy of FEM 
approximations to space fractional partial integro-differential 
equation defined in Riesz sense via using an adaptive refine-
ment scheme. Thus, we deduced the fractional derivatives of 
FEM bases at nonuniform mesh. These derivatives were suc-
cessfully employed to recover the gradient of the considered 
problem and use this recovered gradient as an a posteriori 
error estimator that controls the adaptive refinement process. 
Some numerical simulations were performed, and the results 
clearly show that the proposed adaptive scheme yields better 
accuracy than the uniform refinement at the same number of 
nodes. Also, the theoretical analysis for the error estimate 
and the stability of the scheme was presented. These find-
ings can help researchers to obtain high-accuracy results 
for problems that involve Riesz fractional order derivative 
where the solution exhibits fast changes while maintaining 
low computational cost. The non-classical differentiation of 
the basic functions for FEM solutions to problems should 
be designed to suit nonuniform meshes to allow for adaptive 
refinement techniques.
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u(x, t) = x(2a)(1 − x(2a))
1

1 + t
.

u(x, t) = (1 − x2) sin−1(x)e−t,
Fig. 5   L2norm of error over the domain of example (3)

Fig. 6   L∞norm of error over the domain of example (3)
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