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Abstract
The present study is related to the numerical solutions of new mathematical models based on the variable order Emden-
Fowler delay differential equations. The shifted fractional Gegenbauer, C(�,�)

S,j
(t), operational matrices (OMs) of VO differ-

entiation, in conjunction with the spectral collocation method are used to solve aforementioned models numerically. The 
VO operator of differentiation will be used in the Caputo sense. The proposed technique simplifies these models by reducing 
them to systems of algebraic equations that are easy to solve. To determine the effectiveness and accuracy of the sugested 
technique, the absolute errors and maximum absolute errors for four realistic models are studied and illustrated by several 
tables and graphs at different values of the VO and the SFG parameters; � and �. Also numerical comparisons between the 
suggested technique with other numerical methods in the existing literature are held. The numerical results confirm that the 
suggested technique is accurate, computationally efficient and easy to implement.

Keywords Nonlinear singular variable order Emden-Fowler model · Shifted fractional Gegenbauer polynomials · 
Operational matrices · Collocation method

Mathematics subject classification 65C20 · 33C45 · 65M70

Introduction

In recent years, many researchers have been interested in the 
study of initial value problems of some special second-order 
nonlinear singular ordinary differential equations (ODEs). 
One of these most important equations is the Emden-Fowler 
(EF) equation, which has a variety of applications in various 
fields. Robert Emden [1] and Fowler [2] have studied the EF 
equation in detail. The general mathematical model of EF 
is expressed as

with the initial conditions (ICs)

where g(t) and f(y(t)) are functions of t and y(t), respectively, 
r, � , �1 , and �2 are constants. Solving differential equations 
with singularity behavior is a defy. In particular, the cur-
rent EF equation problem, which involves a singularity at 
t = 0 , is crucial in practical applications. Analytically, solv-
ing this equation is difficult, so to solve this problem vari-
ous numerical techniques were used [3, 4]. For g(t) = 1, and 
� = 1, Eq. (1.1) moderates to the Lane-Emden (LE) equation 
in its usual form. This equation has appeared in the work 
of Homer Lane and Robert Emden work. The inner con-
struction of polytrophic stars, the gas cloud model, cluster 
galaxies, and radiative cooling are all represented by these 
models. No one can deny the usefulness and importance of 
these models, which have a wide range of applications in 
mathematical physics, astrophysics, and celestial mechanics 
such as isotropic continuous media, isothermal gas sphere 
models [5], dusty fluid models [6], oscillating magnetic sys-
tems [7], catalytic diffusion reactions [8], stellar structure 

(1.1)y��(t) +
r

t
y�(t) + �g(t)f (y(t)) = 0, r ≥ 1,

(1.2)y(0) = �1, y�(0) = �2.
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models [9], electromagnetic theory [10], gaseous star den-
sity [11], and classical quantum mechanics [12].

The nonlinear singular ODE (1.1) was first developed by 
Jonathan Homer Lane [13], a U.S. astrophysicist who was 
interested in estimating both the temperature and the density 
of mass on the surface and after 37 years was investigated 
in greater depth by Emden [1]. This ODE in astrophysics is 
a dimensionless version of Poisson’s equation for a simple 
stellar model’s gravitational potential [14]. Go back to [15, 
16] to get a sufficient explanation of deriving of the classic 
LE equation for modeling the thermal dynamics of a spheri-
cal cloud, which takes the following form:

with the ICs

In quantum mechanics and astrophysics, the values of m 
physically lie in the interval [0,5]. In different literatures, the 
exact solutions of problem (1.3–1.4) have only been found at 
m = 0, 1, 5 [16], and for other values of m, several methods 
have been successfully used to approximate the solution of 
this problem [17, 18].

One of the most essential significant classes of the dif-
ferential equations is the delay differential (DD) equations. 
Due to their contributions significantly to solve the real-life 
problems. These equations have numerous applications in 
many biological models, as well as scientific phenomena 
such as communication system models, dynamical popula-
tion models, economic systems, engineering systems, and 
transport models, so they have attracted a lot of attention 
from the research community [19, 20], and various numeri-
cal/analytical techniques are introduced to solve them [21, 
22].

Fractional calculus is a new topic that appears as a gen-
eralization of integer calculus, in which the order will be 
non-integer (arbitrary). The dynamic behavior of various 
phenomena in engineering sciences, physics, and other disci-
plines of research can be explored more precisely using non-
integer order differential equations. So, there are a growing 
number of applications of fractional-order calculus in dif-
ferent fields as e.g. Long electrical lines, electrochemical 
processes, dielectric polarization, colored noise, viscoelastic 
materials, chaos, control theory, and in many other areas. 
Recently, the VO differential equation in which the order 
is a function of space and/or time have been demonstrated 
their ability to accurately describe real world phenomena 
[23]. In the VO model, the next state is influenced by all of 
its former states, not only upon its current state as in the case 
of integer-order derivatives. So, the VO derivative is more 
realistic and generalized than the standard and fractional 

(1.3)y��(t) +
2

t
y�(t) + ym(t) = 0, t > 0,

(1.4)y(0) = 1, y�(0) = 0.

ones. VO differential equations have gotten a lot of attention 
lately as a result of their suitability modeling a wide range of 
phenomena across many fields of science and engineering, 
such as anomalous diffusion [24], viscoelastic mechanics 
[25], control systems [26], petroleum engineering [27], and 
many other branches of physics and engineering [28].

With this respect, the importance of the VO-EF-DDEs 
are quite clear, due to their massive applications in math-
ematical physics and engineering problems. For this sig-
nificance, obtaining the numerical solutions of this type of 
equations are required since the exact solutions are usually 
not easy to claim, because of the kernel of the VO opera-
tors have a changing exponent. So, the main objective of 
the present work is to develop an efficient and accurate 
numerical technique for solving the following new classes 
of VO-EF-DDEs:

• A class of variable order Emden-Fowler delay differential 
equations (VO-EF-DDEs) of the following form: 

 with the ICs 

 where � ≥ 1, �(t), g(t), and F(t) are given functions, the 
parameters a, b, c, d, e, f , �1, and �2 are known constants 
also D�(t)

t  denotes the Caputo fractional derivative of vari-
able order, 1 < 𝜈(t) ≤ 2 and y(t) is an unknown function. 
By taking g(t) = 1 the EF model reduces to the Lane-
Emden model. The description of problem (1.5) in the 
VO operator �(t) has many advantages one of them; it 
describes the behavior of the system and its properties 
in a more accurate manner. Also, it’s important to men-
tion that the model (1.5–1.6) covers the classical and the 
constant fractional models when �(t) is constant.

• A system of variable order Emden-Fowler delay of dif-
ferential equations (VO-EF-DDEs) of the following form 

 with the following ICs 

 where �1, �2 ≥ 1, a, b, c, d, e, f , �1, �2, �3 and �4 are 
known constants, the functions �(t), g1(t), g2(t),F1(t) and 
F2(t) are assumed to be known functions, and also D�(t)

t  
is the Caputo fractional derivative of order 1 < 𝜈(x) ≤ 2. 

(1.5)D
�(t)
t y(at + b) +

�

t
y�(ct + d) + g(t)y(et + f ) = F(t),

(1.6)y(0) = �1, y
�(0) = �2,

(1.7)

D
�(t)
t y1(at + b) +

�1

t
y�
1
(ct + d) + g1(t)y1(et + f ) = F1(t),

D
�(t)
t y2(at + b) +

�2

t
y�
2
(ct + d) + g2(t)y2(et + f ) = F2(t),

(1.8)
y
1

(0) = �
1

, y�
1

(0) = �
2

,

y
2

(0) = �
3

, y�
2

(0) = �
4

,
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By taking g1(t) = g2(t) = 1 , the EF model reduces to the 
Lane-Emden model.

The suggested technique is based on the spectral collocation 
method with the OMs of variable/integer order differentia-
tion of the SFGPs. To the best of our knowledge, the numeri-
cal treatments of VO-EF-DDEs and the system of VO-EF-
DDEs have not been established by using SFGPs yet.

Spectral collocation methods are known to be one of the 
powerful numerical techniques for solving different kinds of 
differential equations due to their applicability in bounded 
and unbounded domains. The convergence speed is one of 
the major advantages of the spectral method. In general, 
spectral methods are promising candidates for solving frac-
tional differential equations since their global nature fits 
well with the non-local definition of fractional operators 
[29, 30]. Spectral collocation methods have been widely 
used for solving problems with smooth solutions because 
of their efficiency, exponential rate of convergence, low 
computational cost, and high order of accuracy achieved 
using a minimal number of grid points. It is known that the 
accuracy of spectral methods increases with an increase in 
grid points but beyond a certain number of grid points, the 
accuracy rapidly deteriorates. Also, the limitation of spectral 
methods is that their accuracy deteriorates for complicated 
domains. OMs were restructured for solving numerous types 
of fractional differential equations (FDEs). The procedure 
of numerical methods in combining with OMs of some 
orthogonal polynomials for solving FDEs created extremely 
precise solutions for such equations. The essential step in the 
proposed technique is to represent the numerical solution of 
the problem as a finite sum using SFGPs as basis functions, 
then the OMs corresponding to VO/ integer order derivatives 
are derived. By using these OM in Eq. (1.5), and apply-
ing the collocation method which requires that the residual 
of VO-EF-DDEs is vanishing at N points that correspond 
to the Gauss quadrature nodes. When the obtained system 
of algebraic equations is completed with the initial condi-
tions, (N + 1) algebraic equations are produced, which can 
be solved by utilizing any appropriate iterative technique.

The SFGPs have a number of characteristics that make 
them an ideal candidate for our suggested technique, like:

• Due to the unique behavior of fractional differential and/
or integral equations, the direct use of spectral meth-
ods using traditional orthogonal polynomials such as 
Legendre, Chebyshev, and Jacobi has low convergence 
rates. To remedy this difficulty, we employ SFGPs (see 
[31]), in which the variable t in the SCPs is replaced 
by t𝜇, 0 < 𝜇 ≤ 1, t ∈ [0, L]. One of the benefits of frac-
tional-order polynomials is in dealing with problems with 
smooth solutions, where any choice of the fractional fac-
tor � yields a highly accurate approximate solution. The 
fractional-order polynomials can lessen the loss of the 

order of convergence of the non-smoothness problems 
by suitably chosen of the factor μ.

• For � = 1, the SFGPS reduced to the SGPs. Numerous 
studies have shown that the Gegenbauer polynomials 
(GPs) are very effective in solving a wide range of issues 
[32–34].

• The parameter 𝛼 > −0.5 distributes the Gegenbauer poly-
nomials (GPs). Every time this parameter was altered, a 
new polynomial was formed. As a result, they involve 
a limitless number of orthogonal polynomials like the 
Chebyshev polynomials (CPs) of the first kind with the 
parameter � = 0, the CPs of the second kind with the 
parameter � = 1, and the shifted Legendre polynomials 
(LPs) with the parameter � =

1

2
 . The same results are 

assumed for the SFGPs.

The main advantages of the proposed scheme are the low-
cost computing, small CPU time, and the simple implemen-
tation. Also the present method has the ability to convert the 
given problem into a system of algebraic equations, which is 
easy to solve. Many numerical experiments are presented to 
measure the quality of the presented scheme. The obtained 
numerical results are compared with other methods in the 
existing literature.

The following is the contents of this paper: The prelimi-
naries of VO-fractional calculus and SFGPs are presented in 
Sect. 2. The various types of shifted fractional Gegenbauer 
operational matrices (SFGOMs) are deduced in Sect. 3. 
In Sect. 4, the methodology of the proposed technique is 
explained. In Sect. 5, some applications of the proposed 
algorithm to some numerical problems are offered to dem-
onstrate the effectiveness of the proposed algorithm. At last, 
a conclusion is given in Sect. 6.

Preliminaries and definitions

Variable‑order fractional derivative definition [35]

The Caputo fractional derivative of order �(t) for a continu-
ously differentiable function y ∶ [0,∞] → R is defined as

where �(t) is a positive continuous bounded function and 
m − 1 < 𝜈(t) ≤ m.

Because of the ICs for fractional differential equations 
with Caputo derivatives are the same as for integer order dif-
ferential equations; the Caputo type definition is particularly 
useful in a wide range of applications. The results stated in 
definition (2.1) have the following characteristics:

(2.1)D
�(t)
t y(t) =

1

Γ(m − �(t)) ∫
t

0

(t − �)m−�(t)−1y(m)(�)d�,
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• Linearity property: 

• D
�(t)
t a = 0, a is constant.

• 

D
𝜈(t)

t
t
k =

⎧

⎪

⎨

⎪

⎩

Γ(k+1)

Γ(k+1−𝜈(t))
t
k−𝜈(t), for k ∈ N0 and k ≥ m,

0, for k ∈ N0 and k < m, whereN0 = N ∪ {0}.

Shifted fractional Gegenbauer polynomials 
and some of their properties

Gegenbauer polynomials

The Gegenbauer polynomials C(�)

j
(x), of degree j ∈ Z+, and 

associated with the parameter 𝛼 >
−1

2
 are a sequence of real 

polynomials in the finite domain [−1, 1]. They are a family 
of orthogonal polynomials which has many applications 
[32].

• A suitable standardization of the Gegenbauer polynomi-
als C(�)

j
(x) of degree j and associated with the parameter 

𝛼 >
−1

2
 dates back to Doha [34], where the Gegenbauer 

polynomials can be represented by 

 or equivalently 

 where P
(�−

1

2
,�−

1

2
)

j
(x) is the Jacobi polynomial of degree 

j.
• As a result of this standardized C(0)

j
(x) becomes identical 

with the Chebyshev polynomials (CPs) of the first kind 
Tj(x). C

(
1

2
)

j
(x) is the Legendre polynomials (LPs) Lj(x). 

C
(1)

j
(x) is equal to 1

(j+1)
Uj(x), where Uj(x) is the CPs of the 

second type [34].
• The analytical form of the GPs is given by, 

• The Gegenbauer polynomials can be generated using the 
following useful recurrence equation 

• The Gegenbauer polynomials satisfy the following 
orthogonality relation 

D
�(t)
t (af (t) + bg(t)) = aD

�(t)
t f (t) + bD

�(t)
t g(t), a, b ∈ ℜ.

C
(�)

j
(x) =

j!Γ
(

� +
1

2

)

Γ

(

j + � +
1

2

)P

(

�−
1

2
,�−

1

2

)

j
(x), j = 0, 1, 2,… ,

C
(�)

j
(1) = 1, j = 0, 1, 2,⋯ ,

(2.2)C
(�)

j
(x) =

j
∑

k=0

(−1)j−k
j!Γ(� +

1

2

)Γ(j + k + 2�)

Γ(k + � +
1

2

)Γ(j + 2�)(j − k)!k!

(

x + 1

2

)k

.

(2.3)
(j + 2�)C

(�)

j+1
(x) = 2(j + �)xC

(�)

j
(x) − jC

(�)

j−1
(x), j ≥ 1.

 where �(�)(t) is the weight function, and it is an even 
function given by the relation 

 and 

 is the normalization factor, and �i,j is the Kronecker delta 
function.

• We denote the zeros of the Gegenbauer polynomials 
(Gegenbauer-Gauss nodes) C(�)

N+1
(x) by x(�)

N,j
, j = 0,⋯ ,N.

Shifted Gegenbauer polynomials

• For using Gegenbauer polynomials in the interval [0, L],  
the shifted Gegenbauer polynomials (SGPs) are formed 
by replacing the variable x with z = 2x

L
− 1, 0 ≤ z ≤ L. 

So, we can write SGPs as 

• The explicit analytical form of the SGPs is given as 

• These polynomials recover the shifted CPs of the first 
kind TS,j(z) ≡ C

(0)

S,j
(z), the shifted LPs LS,j(z) ≡ C

(
1

2
)

S,j
(z), 

and the shifted CPs of the second kind C(1)

S,j
(z) ≡ 1

j+1
US,j(z).

• The orthogonal relation of SGPs is getting from 

 where �(�)

S
(z) is the weight function, it is an even func-

tion given by the relation 

 and 

• We denote the zeros of the shifted Gegenbauer polyno-
mial (shifted Gegenbauer-Gauss polynomial) C(�)

S,N+1
(z) 

by z(�)
S,N,j

, j = 0,… ,N.

⟨

C
(�)

i
(x),C

(�)

j
(x)

⟩

= ∫
1

−1

C
(�)

i
(x)C

(�)

j
(x)�(�)(x)dx = �

(�)

j
�i,j,

�
(�)(x) =

(

1 − x2
)�−

1

2 ,

�
(�)

j
= ‖C

(�)

j
(x)‖2 =

22�−1j!Γ2
�

� +
1

2

�

(j + �)Γ(j + 2�)
,

C
(�)

S,j
(z) = C

(�)

j

(

2x

L
− 1

)

.

(2.4)C
(�)

S,j
(z) =

j
∑

k=0

(−1)j−k
j!Γ

(

� +
1

2

)

Γ(j + k + 2�)

Γ

(

k + � +
1

2

)

Γ(j + 2�)(j − k)!k!Lk
zk,

(2.5)

⟨

C
(�)

S,i
(z),C

(�)

S,j
(z)

⟩

= ∫
L

0

C
(�)

S,i
(z)C

(�)

S,j
(z)�

(�)

S
(z)dz = �

(�)

S,j
�i,j,

(2.6)�
(�)

S
(z) =

(

zL − z2
)�−

1

2 ,

(2.7)�
(�)

S,j
=

(

L

2

)2�

�
(�)

j
.
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• The q-th derivative of C(�)

S,i
(z), is obtained by 

Shifted fractional Gegenbauer polynomials

• The SFGPs can be defined for t ∈ [0, L] by introducing 
the change of variable z = t� and 𝜇 > 0 on SGPs. Let the 
SFGPs be denoted by C(�,�)

S,i
(t).

• The explicit analytic form of SFGPs is given as 

• Also, the orthogonal relation of SFGPs 

 where 

 and �(�)
S,j

 are defined by Eq. (2.7).
• The SFGPs comprise unlimited number of orthogonal 

polynomials, among them the shifted fractional-order 
CPs of the first kind T (�)

S,j
(t) ≡ C

(0,�)

S,j
(t), the shifted frac-

t i o n a l - o r d e r  C P s  o f  t h e  s e c o n d  k i n d 
U

(�)

S,j
(t) ≡ (j + 1)C

(1,�)

S,j
(t), and the shifted fractional-order 

LPs L(�)
S,j
(t) ≡ C

(
1

2
,�)

S,j
(t).

• We denote the zeros of the SFGPs (shifted fractional 
Gegenbauer-Gauss  polynomial )  C

(�,�)

S,N+1
(t) by 

t
(�)

S,N,j
, j = 0,… ,N.

z
(�)

S,N,j
=

L

2

(

x
(�)

N,j
+ 1

)

, j = 0,… ,N.

(2.8)DqC
(�)

S,i
(z) =

i−q
∑

k=0

(−1)i−q−k
i!Γ

(

� +
1

2

)

Γ(k + i + 2� + q)

Γ

(

k + � + q +
1

2

)

Γ(i + 2�)(i − q − k)!k!Lq+k
zk,

DC
(�)

S,i
(0) = (−1)i−1

i!Γ
(

� +
1

2

)

Γ(i + 2� + 1)

Γ

(

� +
3

2

)

Γ(i + 2�)(i − 1)!Lk+1
,

D2C
(�)

S,i
(0) = (−1)i−2

i!Γ
(

� +
1

2

)

Γ(i + 2� + 2)

Γ

(

� +
5

2

)

Γ(i + 2�)(i − 2)!Lk+2
.

(2.9)

C
(�,�)

S,j
(t) =

j
∑

k=0

(−1)j−k
j!Γ

(

� +
1

2

)

Γ(j + k + 2�)

Γ

(

k + � +
1

2

)

Γ(j + 2�)(j − k)!k!Lk

t�k,

=

j
∑

k=0

Ωj,kt
�k
.

(2.10)∫
L

0

C
(�,�)

S,i
(t)C

(�,�)

S,j
(t)�

(�,�)

S
(t)dt = �

(�)

S,j
�i,j,

(2.11)�
(�,�)

S
(t) = �t

�

(

�+
1

2

)

−1
(1 − t�)

�−
1

2 ,

 The fractional Gegenbauer-Gauss quadrature rule. Due 

to the property of the standard Gegenbauer-Gauss quad-
rature, it follows that for any f (( t+1

2
)
1

� ) ∈ P2N+1(0, L)

 where �(�,�)

S,N,j
 are the Christoffel numbers of the SFGPs 

that are given by 

• The square integrable function y(t) ∈ [0, L] can be 
approximated by SFGPs as 

 where the coefficients ỹS,j are computed by 

 If we approximate y(t) by the first (N+1)-terms as 
follows 

 The approximation of the function y(t) can be written in 
the vector form as 

 where YT = [Y0,Y1, ..., YN] is the shifted fractional 
Gegenbauer (SFG) coefficient vector, and 

t
(�)

S,N,j
=

(

tN,j + 1

2

)

1

�

.

∫
L

0

w
(�,�)

S
(t)f (t)dt =

�

L

2

�
2�

∫
1

−1

w(�)(t)f

�

�

t + 1

2

�

1

�

�

dt,

=

�

L

2

�
2�

N
�

j=0

�
(�)

N,j
f

⎛

⎜

⎜

⎝

�

tN,j + 1

2

�

1

�
⎞

⎟

⎟

⎠

,

=

N
�

j=0

�
(�,�)

S,N,j
f
�

t
(�)

S,N,j

�

,

�
(�,�)

S,N,j
=

(

L

2

)
2�

�
(�)

N,j
, j = 0,… ,N.

y(t) =

∞
∑

j=0

ỹS,jC
(𝛼,𝜇)

S,j
(t),

(2.12)

ỹS,j = (𝜆
(𝛼,𝜇)

S,j
)−1 ∫

L

0

y(t)𝜔
(𝛼,𝜇)

S
(t)C

(𝛼,𝜇)

S,j
(t)dt, j = 0, 1,⋯ .

(2.13)y(t) =

N
∑

j=0

ỹS,jC
(𝛼,𝜇)

S,j
(t).

(2.14)y(t) = YTΦ
�
(t),
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 is the SFG vector and A is a lower triangular matrix of 
order (N + 1) × (N + 1)

 where 

 and 

Error estimation and convergence

Let �(�,�)

S,N
= Span{C

(�,�)

S,0
(t),C

(�,�)

S,1
(t),⋯ ,C

(�,�)

S,N
(t)} and y(t) be 

an arbitrary element in L2
�
(�,�)

S

[0, L]. Since �(�,�)

S,N
 is a finite 

dimensional vector space, y(t) has the unique best approxi-
mation out of �(�,�)

S,N
 like yN(t) ∈ �

(�,�)

S,N
, such that

where ‖y(t)‖ =
√

< y(t), y(t) >.

T h e o r e m   2 . 1  S u p p o s e  t h a t  t h e  f u n c -
t i o n  Dk�y(t) ∈ C[0, 1]  ,  f o r  k = 0, 1,… ,N − 1, 
Re(𝜇) > 0, 𝛼 >

−1

2
,    Re(𝛼 + 2N +

5

2
)𝜇 > 0. If yN(t) is the 

best approximation to y(t) from �(�,�)

S,N
, then the error bound 

is presented as

where ‖D(N+1)�y(t)‖ ≤ H
�
, t ∈ [0, 1].

Proof Consider the generalized Taylor formula [36]

(2.15)
Φ

�
(t) =

[

C
(�,�)

S,0
(t),C

(�,�)

S,1
(t),… ,C

(�,�)

S,N
(t)
]T

= ATN,�(t),

(2.16)A =

⎛

⎜

⎜

⎜

⎜

⎝

ã
(𝛼)

S,0,0
0 ⋯ 0

ã
(𝛼)

S,1,0
ã
(𝛼)

S,1,1
⋯ 0

⋮ ⋮ ⋱ ⋮

ã
(𝛼)

S,N,0
ã
(𝛼)

S,N,1
⋯ ã

(𝛼)

S,N,N

⎞

⎟

⎟

⎟

⎟

⎠

,

ã
(𝛼)

S,j,k
= (−1)j−k

j!Γ
(

𝛼 +
1

2

)

Γ(j + k + 2𝛼)

Γ

(

k + 𝛼 +
1

2

)

Γ(j + 2𝛼)(j − k)!k!Lk
,

TN,�(t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

t�

t2�

⋮

tN�

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

∀g(t) ∈ �
(�,�)

S,N
, ‖y(t) − yN(t)‖2 ≤ ‖y(t) − g(t)‖2,

(2.17)

‖y(t) − yN(t)‖2 ≤ H
�

Γ((N + 1)� + 1)

�

�

�

�

Γ

�

� +
1

2

�

Γ

�

� + 2N +
5

2

�

Γ(2� + 2N + 3)
,

with � ∈ [0, t],∀t ∈ [0, 1]. Let

Then,

Since yN(t) is the best square approximation function of y(t),  
then

By taking the square roots, the proof is completed.   ◻

SFGOMs of VO fractional differentiation

Theorem 3.1 The first order derivative of the SFG vector 
Φ

�
(at + b) is approximated as

 where the OM Ψ is a square matrix of order 
(N + 1) × (N + 1) that takes the following form,

 where A is defined in (2.16), ΥN  and ΘN  are 
(N + 1) × (N + 1) matrices, and their elements �ij, and 
�ij, 0 ≤ i, j ≤ N are given, respectively, as follows

y(t) =

N
∑

i=0

ti�

Γ(i� + 1)
Di�y(0) +

D(N+1)�y(�)

Γ((N + 1)� + 1)
t(N+1)�,

PN(t) =

N
∑

i=0

ti�

Γ(i� + 1)
Di�y(0).

|y(t) − PN(t)| = |

D(N+1)�y(�)

Γ((N + 1)� + 1)
t(N+1)�|.

‖

‖

‖

‖

y(t) − yN (t)
‖

‖

‖

‖

2

2

≤ ‖

‖

‖

‖

y(t) − PN (t)
‖

‖

‖

‖

2

2

,

= �
1

0

�
(�,�)

S
(t)(y(t) − pN (t))

2dt,

= �
1

0

�
(�,�)

S
(t)

(

D(N+1)�y(�)

Γ((N + 1)� + 1)
t(N+1)�

)

2

dt,

=

(

D(N+1)�y(�)
)

2

Γ2((N + 1)� + 1) �
1

0

�t
�

(

�+
1

2

)

−1
(1 − t�)

�−
1

2 t2(N+1)�dt,

≤ H2

�

Γ2((N + 1)� + 1)

Γ

(

� +
1

2

)

Γ(� + 2N +
5

2

)

Γ(2� + 2N + 3)
.

(3.1)
d

dt
Φ

�
(at + b) ≃ ΨΦ1(t),

Ψ ≃ AΥNΘNA
−1,

�ij =

�

�i

j

�

ajb�i−j, i, j = 0, 1,… ,N,

�ij =

⎧

⎪

⎨

⎪

⎩

j + 1, for i = j + 1, j = 0, 1,… ,N,

0, o.w. .
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Proof From Eq. (2.15), we can write

Since

By using Newton’s generalized binomial theorem, we can 
write

this series converges for i� ∈ Z+ or | at
b
| < 1.   ◻

By approximating the series (3.4) by using the first (N+1) 
terms, the relation (3.3) can be written as

(3.2)

d

dt
Φ

�
(at + b) =

d

dt

[

C
(�,�)

S,0
(at + b),C

(�,�)

S,1
(at + b),… ,C

(�,�)

S,N
(at + b)

]T

=
d

dt
(AT

N,�(at + b)),

= A
d

dt
T
N,�(at + b).

(3.3)
d

dt
TN,�(at + b) =

d

dt

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

(at + b)�

(at + b)2�

⋮

(at + b)N�

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(3.4)

(at + b)i�=

∞
∑

k=0

(

�i

k

)

akb�i−ktk,

=

∞
∑

k=0

(i�)(i� − 1)⋯ (i� − k + 1)

k!
akb�i−ktk, i = 0, 1,… ,N,

(3.5)d

dt
TN,�(at + b) =

d

dt

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

(at + b)�

(at + b)2�

⋮

(at + b)N�

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= ΥN,�

d

dt

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

t

t2

⋮

tN

⎞

⎟

⎟

⎟

⎟

⎟

⎠

≃ ΥN,�

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0

1

2t

⋮

NtN−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

≃ ΥN,�ΘNTN,1(t),

By substituting Eq. (3.5) into Eq. (3.2), the following rela-
tion is obtained

Since A is invertible, then

where Ψ is a square matrix, and this finishes the proof.

Theorem 3.2 The VO Caputo fractional derivative of the 
SFG vector Φ

�
(at + b) can be approximated as

 where the OM Ξ is a square matrix of order 
(N + 1) × (N + 1) takes the following form,

 where A is defined in (2.16), ΥN  and ΛN  are 
(N + 1) × (N + 1) matrices, and their elements �ij, and 
�ij, 0 ≤ i, j ≤ N , respectively, are given as follows

d

dt
Φ

�
(at + b) ≃ AΥN,�ΘNTN,1(t).

(3.6)
d

dt
Φ

�
(at + b) ≃ AΥN,�ΘNA

−1Φ1(t) ≃ ΨΦ1(t),

(3.7)D
𝜈(t)
t Φ

𝜇
(at + b) ≃ ΞΦ1(t), 𝜈(t) > 0,

Ξ ≃ AΥNΛNA
−1,

where ΥN,�,ΘN are (N + 1) × (N + 1) matrices, and their ele-
ments have the following forms, respectively,

�ij =

�

�i

j

�

ajb�i−j, i, j = 0, 1,… ,N,

�ij =

⎧

⎪

⎨

⎪

⎩

j + 1, for i = j + 1, j = 0, 1,… ,N,

0, o.w. .

Proof From Eq. (2.15), we can write

�ij =

�

�i

j

�

ajb�i−j, i, j = 0, 1,… ,N,

�ij =

⎧

⎪

⎨

⎪

⎩

Γ(i+1)

Γ(i+1−�(t))
t−�(t), for i = j, j = n, n + 1,… ,N,

0, o.w. .
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Since

By using Newton′ s generalized binomial theorem, we can 
write

this series converges for i� ∈ Z+ or | at
b
| < 1.

By approximating the series (3.10) by using the first 
(N+1) terms, the relation (3.9) can be written as

By using the definition (2.1) of the VO fractional derivative 
in the Caputo sense, then Eq. (3.11) can be obtained as the 
below form:

where ΥN,�,ΘN are (N + 1) × (N + 1) matrices, and their ele-
ments have the following forms, respectively,

(3.8)D
�(t)
t Φ

�
(at + b) = D

�(t)
t

[

C
(�,�)

S,0
(at + b),C

(�,�)

S,1
(at + b),… ,C

(�,�)

S,N
(at + b)

]T

= D
�(t)
t (ATN,�(at + b)),

= AD
�(t)
t TN,�(at + b).

(3.9)D
�(t)
t TN,�(at + b) = D

�(t)
t

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

(at + b)�

(at + b)2�

⋮

(at + b)N�

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(3.10)

(at + b)i�=

∞
∑

k=0

(

�i

k

)

akb�i−ktk,

=

∞
∑

k=0

(i�)(i� − 1)⋯ (i� − k + 1)

k!
akb�i−ktk, i = 0, 1,… ,N,

(3.11)

D
�(t)
t TN,�(at + b) = D

�(t)
t

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

(at + b)�

(at + b)2�

⋮

(at + b)N�

⎞

⎟

⎟

⎟

⎟

⎟

⎠

≃ ΥN,�D
�(t)
t

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

t

t2

⋮

tN

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(3.12)

D
�(t)
t TN,�(at + b) ≃ ΥN,�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

⋮
Γ(n+1)

Γ(n+1−�(t))
tn−�(t)

Γ(n+2)

Γ(n+2−�(t))
tn+1−�(t)

⋮
Γ(N+1)

Γ(N+1−�(t))
tN−�(t)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

≃ ΥN,�ΛNTN,1(t),

�ij =

�

�i

j

�

ajb�i−j, i, j = 0, 1,… ,N,

�ij =

⎧

⎪

⎨

⎪

⎩

Γ(i+1)

Γ(i+1−�(t))
t−�(t), for i = j, j = n, n + 1,… ,N,

0, o.w. .

By substituting from Eq. (3.12) into Eq. (3.8), the following 
relation is obtained

Since A is invertible, then

where Ξ is a square matrix, and this finishes the proof.  
 ◻

The methodology

In this section, we will discuss how to use the SFG-OMs to 
solve the problem Eqs. (1.5–1.6) numerically. As a result, 
the problem will be converted into an algebraic system of 
equations that can be solved easily by any iteration method. 
By using the properties of the SFGPs which are mentioned 
in the definition (2.2), the solution can be approximated as

by the same way, the terms y(ct + d), y(et + f ) are 
approximated.

Moreover, the Caputo fractional derivative of order �(t) 
of yN(at + b) is estimated as

By using Theorem (3.2)

and by using Theorem (3.1)

Substitute from Eqs. (4.1)–(4.3) into Eqs. (1.5–1.6), we get

and the ICs will be

D
�(t)
t Φ

�
(at + b) ≃ AΥN,�ΛNTN,1(t).

(3.13)D
�(t)
t Φ

�
(at + b) ≃ AΥN,�ΛNA

−1Φ(t) ≃ ΞΦ1(t),

(4.1)yN(at + b) =

N
∑

j=0

ỹS,jC
(𝛼,𝜇)

S,j
(at + b) = YTΦ

𝜇
(at + b),

D
(𝜈(t))
t yN(at + b) = D

(𝜈(t))
t

( N
∑

j=0

ỹS,jC
(𝛼,𝜇)

S,j
(at + b)

)

= YTD
(𝜈(t))
t

(

Φ
𝜇
(at + b)

)

.

(4.2)D
(�(t))
t yN(at + b) ≃ YTΞΦ1(t),

(4.3)D
(1)
t yN(ct + d) ≃ YTΨΦ1(t).

(4.4)YTΞΦ1(t) +
�

t
YTΨΦ1(t) + g(t)YTΦ

�
(t) = F(t),
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Suppose the nodes tk which are the roots of the SFGPs. By 
substituting these nodes in Eqs. (4.4)–(4.5); therefore the 
collocation scheme can be written as

with the ICs

This yields a set of (N+1) algebraic equations with the 
required SFG coefficients ỹS,j, j = 0, 1,… ,N, which may 
be solved using an appropriate iterative procedure. As a 
result, the approximate solution yN(t) of the system (1.7–1.8) 
can be obtained.

Numerical applications

In this section, we’ll introduce four applications to evalu-
ate the applicability of our approach. By using a Dell lap-
top with an Intel(R) Core(TM) i3 CPU M 370@ 2.40 GHz 
and 3.00GB RAM configuration, the software was written 
in Mathematica version 12. The results obtained by our 
approach are compared to those obtained in literature using 
other numerical methods. The results constructed in this 
paper are measured by means of:

• The absolute errors (AEs) given by 

(4.5)YTΦ
�
(0) = �1, YTΨΦ

�
(0) = �2.

(4.6)YTΞΦ1(tk) +
�

tk
YTΨΦ1(tk) + g(tk)Y

TΦ
�
(tk) = F(tk),

(4.7)YTΦ
�
(0) = �1, YTΨΦ

�
(0) = �2.

E(ti) = |y(ti) − yN(ti)|, 1 ≤ i ≤ N,

 where y(ti) and yN(ti) are the exact solution (ES) and the 
approximate solution (AS), respectively.

• The maximum absolute errors (MAEs) 

• The order of convergence (OC) 

 where error(N) denotes the error corresponding to poly-
nomial degree N.

Applications of EF‑DDEs‑VO

Application (1)
Consider the following VO-EF-DDEs [37],

with the ICs

where the ES at �(t) = 2 is y(t) = et.

In Figure 1a, the AE function with N = 14,� = 1, � = 0.5 
displays highly accuracy, and the numerical outcomes at dif-
ferent values of VOs are shown in Fig. 1b.

Application (2)
Consider the following VO-EF-DDEs- [37],

L∞ = max
1≤i≤N{E(ti) ∶ ∀ti ∈ [0, L]}.

OC =
log (

error(N1)

error(N2)
)

log (
N2

N1
)

,

D
�(t)
t y(2t − 1) +

2

t

d

dt
y(3t) + ty(t + 1) = 4e2t−1 +

6

t
e3t + tet+1,

y(0) = 1,
d

dt
y(0) = 1,

Fig. 1  The numerical results of SFGOM technique on application (1) at N = 14, � = 1 and � = 0.5. a The AEs graph of y(t). b The graphs of 
the ASs at different values of �(t).
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with the ICs

where

and the ES is y(t) = t3 + 1.

The numerical results of application (2) are given in 
Tables  1 and 2 and are plotted in Fig. 2a–b. Table 1 intro-
duces the computational time at � = 1, the MAEs at different 
values of N,�, and the order of convergence at � = 1. Addi-
tionally, Table 2 presents the AEs at N = 3, � = 1, and 
different values of �. In Fig. 2a the AEs graph is displayed, 

D
𝜈(t)
t y(3t − 1) +

2

t

d

dt
y(2t) + ty(t + 1) = F(t), 1 < 𝜈(t) ≤ 2,

y(0) = 1,
d

dt
y(0) = 0,

F(t) =
27Γ(4)t3−�(t)

Γ(4 − �(t))
−

27Γ(3)t2−�(t)

Γ(3 − �(t))
+ 48t + t(1 + (t + 1)3),

while Fig. 2b depicts the agreement between the ES and the 
AS graphs of y(t) for N = 3,� = 1, � = 0.5 at �(t) = 1 +

t

2
.

Application (3)
Consider the following VO-EF-DDEs [38],

with the ICs

where

and the ES is y(t) = t4 + 1.

1

2

D
𝜈(t)
t y

(

t

2

)

+
3

t

d

dt
y
(

t

2

)

+ y2(t) = F(t), 1 < 𝜈(t) ≤ 2,

y(0) = 1,
d

dt
y(0) = 0,

F(t) =
Γ(5)t4−�(t)

32Γ(5 − �(t))
+

3t2

4
+ (1 + t4)2,

Fig. 2  The numerical results of SFGOM technique on application (2) at N = 3, � = 1, � = 0.5 and �(t) = 1 +
t

2
. a The AEs graph of y(t). b 

The graph of ES and AS in [0,1]

Table 1  The MAEs 
of application (2) at 
� = 0.5, �(t) = 1 +

t

2
 and 

different values of N,� and 
CPU time (second) at � = 1

N � = 1 CPU time � = 1 OC ( � = 1) N � =
1

2

N � =
1

3

2 8.68717 × 10

−1 0.0312002 5 8.31867 × 10

−1 8 5.82913 × 10

−2

3 8.88178 × 10

−16 0.0624004 85.1285 6 3.84462 × 10

−14 9 3.22044 × 10

−12

Table 2  The AEs of application 
(2) at N = 3, �(t) = 1 +

t

2
 and 

different values of �

t � = −0.3 � = 0 � = 0.5 � = 1

0.1 2.22045 × 10

−16 0 8.88178 × 10

−16
4.44089 × 10

−16

0.3 2.22045 × 10

−16 0 4.44089 × 10

−16
4.44089 × 10

−16

0.5 2.22045 × 10

−16
2.22045 × 10

−16
4.44089 × 10

−16
2.22045 × 10

−16

0.7 4.44089 × 10

−16
4.44089 × 10

−16
2.22045 × 10

−16
4.44089 × 10

−16

0.9 6.66134 × 10

−16
8.88178 × 10

−16
2.22045 × 10

−16 0
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The numerical results of application (3) are given in 
Tables 3, 4, and 5 and are plotted in Fig. 3a–b. Table 3 

introduces the computational time at � = 1, the MAEs 
at � = 0.5, and different values of N,�, and the order of 
convergence at � = 1. Additionally, Table 4 presents the 
AEs at N = 4, � = 1, and different values of �. Table 5 
displays the efficiency and effectiveness of our method 
by comparing it to the method in Ref. [38] at �(t) = 2 . In 
Fig. 3a we describe the AEs graph, while Fig. 3b plots the 
ES and the AS graphs of y(t) for N = 4,� = 1, � = 0.5 at 
�(t) = 1 +

sin (t)

2
.

Application (4)
Consider the following system of EF-DDEs-VO [39],

with the initial conditions,

where

D
𝜈(t)
t y1(2t − 1) +

3

t

d

dt
y1(3t) + y2(t)y1(t + 1) = F1(t),

D
𝜈(t)
t y2(2t − 1) +

2

t

d

dt
y2(3t) + y1(t)y2(t + 1) = F2(t), 1 < 𝜈(t) ≤ 2,

y1(1) = 2,
d

dt
y1(0) = 0, y2(1) = 0,

d

dt
y2(0) = 0,

F1(t) =
8Γ(4)t3−�(t)

Γ(4 − �(t))
−

12Γ(3)t2−�(t)

Γ(3 − �(t))
+ 243t + (1 − t3)(1 + (t + 1)3),

F2(t) =
12Γ(3)t2−�(t)

Γ(3 − �(t))
−

8Γ(4)t3−�(t)

Γ(4 − �(t))
− 162t + (1 + t3)(1 − (t + 1)3),

Fig. 3  The numerical results of SFGOM technique on application (3) at N = 4, � = 1, � = 0.5, and �(t) = 1 +
sin (t)

2
. a The AEs graph of 

y(t). b The graph of ES and AS in [0,1]

Table 3  The MAEs 
of application (3) at 
� = 0.5, �(t) = 1 +

sin (t)

2
 and 

different values of N,� and the 
CPU time (second) at � = 1

N � = 1 CPU Time � = 1 OC ( � = 1) N � =
1

2

N � =
1

3

2 2.74192 × 10

−1 0.0312002 4 1.13406 × 10

−1 8 3.48657 × 10

−3

3 9.92054 × 10

−3 0.0424004 8.18621 6 3.96059 × 10

−3 10 1.55323 × 10

−4

4 2.22045 × 10

−16 0.0624004 109.254 8 6.61693 × 10

−14 12 2.35434 × 10

−10

Table 4  The AEs of application (3) at N = 4, �(t) = 1 +
sin (t)

2
 and dif-

ferent values of �

t � = −0.3 � = 0 � = 0.5 � = 1

0.1 0 0 2.22045 × 10

−16 0
0.3 0 0 0 2.22045 × 10

−16

0.5 0 0 0 0
0.7 0 2.22045 × 10

−16 0 8.88178 × 10

−16

0.9 0 4.44089 × 10

−16
6.66134 × 10

−16
2.66454 × 10

−15

Table 5  Comparison of the AEs for � = 1, �(t) = 2 of application 
(3)

t N = 4 N=6

Our method Ref. [38] Our method Ref. [38]

0.1 0 5.1070 × 10

−14 0 2.2204 × 10

−15

0.3 0 1.6875 × 10

−13
2.22045 × 10

−16
3.9968 × 10

−15

0.5 2.22045 × 10

−16
2.6268 × 10

−13
2.22045 × 10

−16
7.3275 × 10

−15

0.7 4.44089 × 10

−16
1.2870 × 10

−12
6.66134 × 10

−16
1.3411 × 10

−13

0.9 4.44089 × 10

−16
5.3457 × 10

−12
1.33227 × 10

−15
1.2814 × 10

−12



410 Mathematical Sciences (2023) 17:399–413

1 3

 and the ESs are y1(t) = 1 + t3, y2(t) = 1 − t3.

The numerical results of application (4) are listed in 
Tables 6, 7, and 8 and graphically illustrated in Fig. 4a–d. 
We tabulate the computational time at � = 1, and the MAEs 
in Table 6 using the SFGOMs method with different choices 
of � at different values of N. In addition, Table 7 lists the 

AEs for various values of �. The author of Ref. [39] esti-
mated the AS of y1(t) and y2(t) , and at Table 8, we calculated 
the AEs from these results and compared them with the AEs 
of our technique to demonstrate the effective and precise of 
our method. To illustrate the convergence of the proposed 
technique, we plot the AEs between the ES and the AS of 

Fig. 4  The numerical behavior of the proposed method on application 
(4). a shows the AEs of y1(t) at N = 3 and � = 0.5, �(t) = 1 +

t

2
. b 

shows the graph of the ES and AS y1(t) on [0,1]. c shows the AEs of 

y2(t) at N = 3 and � = 0.5, �(t) = 1 +
t

2
. (d) shows the graph of the 

ES and AS y2(t) on [0,1]

Table 6  MAEs of application 
(4) for � = 0.5, �(t) = 1 +

t

2
 

and different values of N,� and 
CPU time (seconds) at � = 1

N � =
1

2

N � =
1

3

y
1

(t) y
2

(t) y
1

(t) y
2

(t)

4 7.60719 × 10

−1
9.06883 × 10

−1 7 1.64448 × 10

−1
2.37767 × 10

−1

5 9.07018 × 10

−2
1.32008 × 10

−1 8 3.35157 × 10

−2
4.10954 × 10

−2

6 4.04156 × 10

−15
4.52355 × 10

−15 9 2.10661 × 10

−12
1.97204 × 10

−12

N � = 1 CPU time ( � = 1)
y
1

(t) y
2

(t)

3 2.22045 × 10

−16
6.66134 × 10

−16 0.0624004



411Mathematical Sciences (2023) 17:399–413 

1 3

y1(t) and y2(t) with N = 3,� = 1 and � = 0.5 in Fig. 4a and 
c, respectively. The agreement between the ES and AS of 
y1(t) and y2(t) is depicted in Fig. 4b and d.

Conclusion

In this article, an effective and accurate numerical technique 
was used to find the approximate solutions of the VO-EF-
DDEs and the system of VO-EF-DDEs. The numerical 
technique depended on the OMs of variable and integer-
order derivatives of SFGPs in conjunction with the spectral 
collocation method. The used technique has the ability to 
transform the aforementioned problems into systems of alge-
braic equations which are easy to solve. Numerical studies 
for four applications are provided to demonstrate the accu-
racy, efficiency, and applicability of the used technique. The 
obtained numerical results indicated that satisfactory results 
are obtained by using a few terms of the SFGPs, also the 

efficiency of the estimated technique is increased by using 
more terms of SFGPs. The SFGPs are simple to compute, 
as well as they have a fast convergence rate. Another benefit 
of SFGPs is that for every choice of the SFG parameters � a 
good numerical solution is obtained. Also the computational 
results of Sect. 5 showed that the value of the parameter � 
affected on the numerical solutions as follows; when � = 1 , 
good solutions are obtained by using few terms of SFGPs 
while for non-integer values of � more terms of SFGPs are 
needed to obtain good results. So, we can conclude that the 
SGPs which are considered as a special case of SFGPs are 
more flexible and effective than SFGPs in the solved appli-
cations. Also, the obtained solutions do not require much 
CPU time. Finally, the material studied in this paper is novel, 
and the proposed technique can be extended to solve other 
fractional delay-differential equations.
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Table 7  The AEs of application (4) at N = 3 and different values of �

�(t) = 1 +
t

2

t � = −0.3 � = 0

y
1

(t) y
2

(t) y
1

(t) y
2

(t)

0.1 4.44089 × 10

−16
9.99201 × 10

−16
2.22045 × 10

−16
4.44089 × 10

−16

0.3 6.66134 × 10

−16
7.77156 × 10

−16
2.22045 × 10

−16
1.11022 × 10

−16

0.5 8.88178 × 10

−16
4.44089 × 10

−16 0 6.66134 × 10

−16

0.7 8.88178 × 10

−16
4.44089 × 10

−16 0 7.77156 × 10

−16

0.9 1.11022 × 10

−15
4.44089 × 10

−16
4.44089 × 10

−16
8.88178 × 10

−16

t � = 0.5 � = 1

y
1

(t) y
2

(t) y
1

(t) y
2

(t)

0.1 0 4.44089 × 10

−16
6.66134 × 10

−16
5.55112 × 10

−16

0.3 2.22045 × 10

−16 0 6.66134 × 10

−16
5.55112 × 10

−16

0.5 0 3.33067 × 10

−16
4.44089 × 10

−16
3.33067 × 10

−16

0.7 2.22045 × 10

−16
5.55112 × 10

−16 0 1.11022 × 10

−16

0.9 2.22045 × 10

−16
6.66134 × 10

−16
2.22045 × 10

−16
5.55112 × 10

−17

Table 8  Comparison of the AEs for N = 3, � = 1, �(t) = 2 of application (4)

t � = −0.3 Ref. [39]

y
1

(t) y
2

(t) y
1

(t) y
2

(t)

0.1 1.77636 × 10

−15
2.22045 × 10

−16
2.22045 × 10

−16 0
0.3 1.11022 × 10

−15 0 2.22045 × 10

−16 0
0.5 6.66134 × 10

−16
2.22045 × 10

−16
2.22045 × 10

−16
1.11022 × 10

−16

0.7 2.22045 × 10

−16
5.55112 × 10

−16
2.22045 × 10

−16
3.33067 × 10

−16

0.9 2.22045 × 10

−16
7.77156 × 10

−16
2.22045 × 10

−16
4.44089 × 10

−16
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