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Abstract
In this paper, we propose a new method for solving second-order fractional integral equations. By using of spectral

collocation method based on Gauss–Legendre–Lobatto points, a system of algebraic equations is obtained and then, we get

a solution based on Legendre polynomials. If L2 norm is used, this proposed method has a favorable convergence rate,

which is shown by some examples.
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Introduction

Fractional calculus has gained importance and popularity

during the past three decades or so, due to mainly its

demonstrated applications in numerous seemingly diverse

fields of science and engineering. The advantage of frac-

tional calculus becomes apparent in modeling mechanical

and electrical properties of real material, as well as in the

description of many fractional fields (see for details [1, 2]).

In recent years, there have been many studies of fractional

integral and differential equations (for instance, see

[3–13]).

The theory of integral equations is one of the most

useful mathematical tools in both pure and applied math-

ematics. It has enormous applications in many physical

problems. The Volterra integral equations were introduced

in first by Vito Volterra and then studied by Traian Lalescu

in his 1908 thesis. Throughout the last decade, some

researchers have paid attention to the concept of fractional

integral equations as Volterra kind [14–16]. In this paper,

we are concerned with the numerical solution of the fol-

lowing fractional Volterra integral equation:

y xð Þ ¼ a xð ÞIa b xð Þy xð Þf g þ f xð Þ; ð1Þ

where Ia is the fractional integral of order 0\a\1; a; b

and f are continuous real functions on 0; T½ �, y is the

unknown function that must be determined. We directly

observe that the fractional differential equation of a order

[15]

Day xð Þ ¼ H x; y xð Þð Þ; a� x� b;

can be written immediately as the fractional Volterra

integral equation of second kind as

y xð Þ ¼ y að Þ þ Iaþ1H x; y xð Þð Þ:

Based on the above description, we intend to use

numerical methods for solving the form of the Volterra

fractional integral equation as from Eq. (1). Existence and

uniqueness of the solution of Eq. (1), in additional to some

analytical properties and important inequalities, are inves-

tigated in [17]. Some stability results for fractional integral

equation are found in [18]. The authors in [17] applied the

product trapezoidal method based on Picard iteration for

approximating solution at the mesh points. Also, Atangana

and et al. [19] use the Simpson’s rules for solving special

case of Volterra fractional integral equations. Spectral

methods are an emerging area in the field of applied sci-

ence and engineering. These methods provide a computa-

tional approach that has achieved substantial popularity
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over the last three decades. They have been applied suc-

cessfully to numerical simulations of many problems in

fractional calculus [20–25]. To the best of our knowledge,

fractional derivative and integral are global, i.e., they are

defined by an interval over the whole interval 0; T½ �, and

therefore global methods, such as spectral methods, are

better suited for this equation.

We introduce a collocation method based on the Gauss–

Legendre interpolation for solving Eq. (1). Inspired by the

work of [26], we extend the approach to Eq. (1) and pro-

vide a rigorous convergence analysis for the Legendre

spectral collocation method. We show that an approximate

solution is convergent in L2 and L1 norms. The results

obtained in this paper may be considered as a generaliza-

tion of the result in [17].

The structure of this paper is as follows: In Sect. 2, some

necessary definitions and mathematical tools of the frac-

tional calculus which are required for our subsequent

developments are introduced. In Sect. 3, the Legendre

spectral collocation method of the fractional integral

equation of second kind is obtained. After this section, we

discuss about convergence analysis and then, to show

efficiency of Legendre spectral collocation method, some

numerical experiments are presented in Sect. 5. Some

conclusions are given in Sect. 6.

Basic definitions and notations

For the concept of fractional integral, we will adopt Rie-

mann–Liouville definition. Throughout this paper, integral

operator will be Riemann–Liouville fractional integral

operator.

Definition 1.2 A real function f on 0; T½ � is said to be in

the space Cl; l 2 R; if there exists a real number p [ lð Þ;
such that f xð Þ ¼ xpf1 xð Þ; where f1 2 C 0; T½ �; and it is said

to be in the space Cm
l iff f mð Þ 2 Cl; m 2 N:

Definition 2.2 The Riemann–Liouville fractional integral

operator of order a� 0; of a function f 2 Cl; l� � 1; is

defined as

Iaf xð Þ ¼ 1

C að Þ

Zx

0

x� tð Þa�1
f tð Þdt; a[ 0; x 2 0; T½ �;

ð2Þ

I0f xð Þ ¼ f xð Þ;

where C :ð Þ is the Gamma function where

C að Þ ¼
Z1

0

ta�1e�tdt:

Some properties of the Riemann–Liouville fractional

integral are

ið Þ IaIb ¼ Iaþb; iið Þ IaIb ¼ IbIa;

iiið Þ Ia x� að Þm¼ C mþ 1ð Þ
C aþ mþ 1ð Þ x� að Þaþm;

where a; b� 0 and m[ � 1:

Some properties of the Riemann–Liouville fractional

integral are

ið Þ IaIb ¼ Iaþb; iið Þ IaIb ¼ IbIa;

iiið Þ Ia x� að Þm¼ C mþ 1ð Þ
C aþ mþ 1ð Þ x� að Þaþm;

where a; b� 0 and m[ � 1:

Let xq1;q2 xð Þ ¼ 1 � xð Þq1 1 þ xð Þq2 be a weight function

in the usual sense, for q1; q2 [ � 1: The Jacobi polyno-

mials Jq1;q2
n

� �1
n¼0

are orthogonal with respect to xq1;q2 over

�1; 1½ �: The set of Jacobi polynomials is a complete

L2
xq1 ;q2 �1; 1½ �—orthogonal system, namely [23]

Z1

�1

Jq1;q2

n Jq1;q2

m xq1;q2 xð Þdx ¼ cq1;q2

n dnm; ð3Þ

where dnm is the Kronecker function, and

cq1;q2

n ¼

2q1þq2þ1C q1 þ 1ð ÞC q2 þ 1ð Þ
C q1 þ q2 þ 2ð Þ ; n ¼ 0;

2q1þq2þ1C nþ q1 þ 1ð ÞC nþ q2 þ 1ð Þ
2nþ q1 þ q2 þ 1ð Þn!C nþ q1 þ q2 þ 1ð Þ ; n� 1:

8>><
>>:

In particular, we find

J
q1;q2

0 xð Þ ¼ 1; Jq1;q2

1 xð Þ ¼ 1

2
q1 þ q2 þ 2ð Þxþ 1

2
q1 � q2ð Þ:

Let SN �1; 1½ � be the set of all polynomials of degree

�N N � 0ð Þ: Thus, if we denote by x
q1;q2

j ;xq1;q2

j

n oN

j¼0
, the

nodes and the corresponding Christoffel numbers of the

standard Jacobi–Gauss interpolation on K ¼ �1; 1ð Þ; then

we have

Z1

�1

m xð Þxq1;q2

j xð Þdx ¼
XN
j¼0

m x
q1;q2

j

� �
xq1;q2

j ;

8 m 2 S2N�1 �1; 1½ �:

ð4Þ

For any u 2 C Kð Þ; we denote by p
q1;q2

x;N : C Kð Þ ! SN the

Jacobi–Gauss interpolation operator, such that

p
q1;q2

x;N u x
q1;q2

j

� �
¼ u x

q1;q2

j

� �
; 0� j�N: ð5Þ

It is clear that
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p
q1;q2

x;N u xð Þ ¼
XN
j¼0

u
q1;q2

j J
q1;q2

j xð Þ; ð6Þ

where

u
q1;q2

j ¼ 1

cq1;q2

j

XN
j¼0

u x
q1;q2

j

� �
J
q1;q2

j x
q1;q2

j

� �
xq1;q2

j :

In special case, if q1 ¼ q2 ¼ 0; then the Jacobi poly-

nomial is reduced to the Legendre polynomial. Thus, we

recall that the Legendre polynomials Li xð Þ; i ¼ 0; 1; . . .f g
are defined on K with the following recurrence formula

[23, 24]:

Liþ1 xð Þ ¼ 2iþ 1

iþ 1
xLi xð Þ � i

iþ 1
Li�1 xð Þ; i ¼ 1; 2; . . .;

with L0 xð Þ ¼ 1 and L1 xð Þ ¼ x: By using the Rodrigues

formula Li xð Þ ¼ �1ð Þi
2ii! D

i 1 � x2ð Þi
� �

, i.e., D is the differ-

ential operator, the Legendre polynomial has the expansion

as following

Li xð Þ ¼ 1

2i

Xi
2½ �

k¼0

�1ð Þk 2i� 2kð Þ!
2kk! i� kð Þ! i� 2kð Þ! x

i�2k: ð7Þ

The set Li xð Þ; i ¼ 0; 1; . . .f g is a complete orthogonal

system in L2 Kð Þ; and we have

Lj;Lk
� �

¼
Z1

�1

Lj xð ÞLk xð Þdx ¼ hjdjk; ð8Þ

where djk is the Kronecker delta symbol and hj ¼ 2
2jþ1

.

Thus, for any g 2 L2 Kð Þ; we have

g xð Þ ¼
X1
i¼0

aiLi xð Þ; ai ¼
1

hi

Z1

�1

g xð ÞLi xð Þdx: ð9Þ

For simplicity, we let xj ¼ x
0;0
j ;xj ¼ x0;0

j and

px;N ¼ p
0;0
Nx;. Thus, according to Eq. (4), we have

Z1

�1

m xð Þdx ¼
XN
j¼0

m xj
� �

xj; 8 m 2 S2N�1 �1; 1½ �; ð10Þ

where xj 0� j�Nð Þ, the zeros of 1 � x2ð ÞL0N xð Þ; and xj ¼
2

N Nþ1ð Þ LN xjð Þð Þ2 ; 0� j�Nð Þ are nodes and Christoffel

numbers of Gauss–Legendre–Lobatto interpolation on the

classical interval �1; 1½ �; respectively. The norm and dis-

crete inner product in L2 Kð Þ are defined as

u; mð ÞN¼
XN
j¼0

u xj
� �

m xj
� �

xj; uN ¼ u; uð Þ
1
2: ð11Þ

In the next section, we use some special techniques for

converting Eq. (1) to a problem that can be solved by the

standard Legendre spectral collocation scheme. These

topics will be presented in the next section.

The spectral collocation method

In this section, we shall propose a Legendre spectral col-

location method for solving Eq. (1). The Legendre spectral

collocation method takes advantage of both the Legendre

polynomials and the Gauss–Legendre–Lobatto interpola-

tion nodes (for more details, see [27]). The main idea is to

use the method of discretizing the fractional integral

equation to obtain a system of algebraic equations with

unknown coefficients. As a result, the solution of the

obtained system can be easily solved.

Again, let us to consider Eq. (1) by applying Definition

2.2 as

y xð Þ ¼ a xð Þ
C að Þ

Zx

0

b sð Þ x� sð Þa�1
y sð Þdsþ f xð Þ;

x 2 I ¼ 0; T½ �:

Next, in enjambment, we let K ¼ �1; 1½ �: For ease of

analysis, we transfer the problem (1) to an equivalent

problem defined in K: More specifically, we apply the

change of variable t ¼ 2x
T
� 1 or x ¼ T

2
t þ 1ð Þ; such that

t 2 K: Then, we have

y
T

2
t þ 1ð Þ

� 	
¼

a T
2
t þ 1ð Þ

� �
C að Þ

ZT2 tþ1ð Þ

0

b sð Þ T

2
t þ 1ð Þ � s

� 	a�1

y sð Þdsþ f
T

2
t þ 1ð Þ

� 	
; t 2 K:

ð12Þ

Moreover, to transfer the integral interval 0; T
2
t þ 1ð Þ

� �
to

�1; tð Þ; we make the transformation s ¼ T
2
lþ 1ð Þ: Then,

Eq. (12) can be written as

y
T

2
t þ 1ð Þ

� 	
¼ T

2

� 	aa T
2
t þ 1ð Þ

� �
C að Þ

Z t

�1

b
T

2
lþ 1ð Þ

� 	
t � lð Þa�1

y
T

2
lþ 1ð Þ

� 	
dlþ f

T

2
t þ 1ð Þ

� 	
; t 2 K:

ð13Þ
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Further, if we let

Y tð Þ ¼ y
T

2
t þ 1ð Þ

� 	
; A tð Þ ¼ a

T

2
t þ 1ð Þ

� 	
;

B tð Þ ¼ b
T

2
t þ 1ð Þ

� 	
; F tð Þ ¼ f

T

2
t þ 1ð Þ

� 	
;

ð14Þ

then, Eq. (13) can be reduced to

Y tð Þ ¼ T

2

� 	a
A tð Þ
C að Þ

Z t

�1

B lð Þ t � lð Þa�1

Y lð Þdlþ F tð Þ; t 2 K ¼ �1; 1½ �:

ð15Þ

At last, under the following linear transformation

l ¼ l t; hð Þ ¼ t þ 1

2
hþ t � 1

2
; h 2 K; ð16Þ

Eq. (15) becomes

Y tð Þ ¼ T

2

� 	a
t þ 1

2

� 	a
A tð Þ
C að Þ

Z1

�1

B l t; hð Þð Þ 1 � hð Þa�1
Y l t; hð Þð Þdh

þ F tð Þ:
ð17Þ

The Legendre spectral collocation method for Eq. (17) is

to seek U 2 SN Kð Þ N� 1ð Þ; such that

U tð Þ ¼ Ta

4aC að Þ

pt;N t þ 1ð ÞaA tð Þ
Z1

�1

1 � hð Þa�1
p
a�1;0
h;N B l t; hð Þð ÞU l t; hð Þð Þð Þdh

8<
:

9=
;

þ pt;N F tð Þð Þ:
ð18Þ

Now, we want to describe a numerical implementation

for Eq. (18). To this end, we use the following relations

U tð Þ ffi
XN
i¼0

uiLi tð Þ;

pt;N p
a�1;0
h;N t þ 1ð ÞaA tð ÞB l t; hð Þð ÞU l t; hð Þð Þð Þ

� �

¼
XN
i¼0

XN
j¼0

dijLi tð ÞJa�1;0
j hð Þ: ð19Þ

Then, by using (19) and then Eq. (3), a direct compu-

tation leads to the following equation

Ta

4aC að Þ

Z1

�1

1 � hð Þa�1
px;N p

a�1;0
h;N t þ 1ð ÞaA tð ÞB l t; hð Þð ÞU l t; hð Þð Þð Þ

� �
dh

¼ Ta

4aC að Þ
XN
i¼0

XN
j¼0

dijLi tð Þ
Z1

�1

1 � hð Þa�1
J
a�1;0
j hð Þdh

¼ Ta

2aC aþ 1ð Þ
XN
i¼0

di0Li tð Þ:

ð20Þ

Applying relations (3) to (6), di0 can be readily obtained

as

di0 ¼ a 2iþ 1ð Þ
2aþ1

XN
l1

XN
l2

xl1 þ 1ð ÞaA xl1ð ÞB l xl1 ; h
a�1;0
l2

� �� �

U l xl1 ; h
a�1;0
l2

� �� �
Li xl1ð Þxl1x

a�1;0
l2

:

Hence, by inserting Eqs. (19) and (20) in Eq. (18), we

conclude

XN
i¼0

uiLi tð Þ ¼
Ta

2aC aþ 1ð Þ
XN
i¼0

di0Li tð Þ: ð21Þ

Finally, by comparing the expansion coefficients of

Eq. (21), we can get

ui ¼
Ta

2aC aþ 1ð Þ di0; 0� i�N: ð22Þ

By replacing the above relation, we obtain the expres-

sion of U tð Þ accordingly.

Convergence analysis

In this section, we want to carry out the error analysis for

the numerical method (18) under L2 Kð Þ and L1 Kð Þ: Here,

we present some preparations as follow [20, 23]:

Let L2
xq1 ;q2 Kð Þ : the Jacobi-weighted L2 Hilbert space

with the scalar product

u; vð Þ ¼
Z1

�1

u tð Þv tð Þx tð Þdt; 8 u; v 2 L2
xq1 ;q2 Kð Þ:

Therefore, the corresponding norm is

uk kL2

xq1 ;q2
¼ u; uð Þ

1
2:

Let

Hm
xq1 ;q2 Kð Þ ¼ u 2 L2

xq1 ;q2 Kð Þ : diu

dxi
2 L2

xq1 ;q2 Kð Þ; i ¼ 0; 1; . . .m


 �
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: the Jacobi-weighted Sobolev spaces with the norm and

semi-norm, respectively,

uk k2
Hm

xq1 ;q2
¼

Xm
k¼0

okt u
�� ��2

L2

xq1 ;q2

;

and

uj jHm

xq1 ;q2
¼ okt u

�� ��
xq1þk;q2þk ;

Hm
xq1 ;q2 by its inner product is a Hilbert space. For the

purpose of convenience, we write L2 Kð Þ ¼ H0
x0;0 ; :k k2¼

:k kL2 Kð Þ and :k k1¼ :k kL1 Kð Þ:

Lemma 4.1 [23] Assume that u 2 Hm
xq1 ;q2 with q1; q2 [ �

1; and m� 1: Then, for any integer number k such that

0� k�m�N þ 1; the constant C[ 0 exists such that the

following relation holds:

okt u� p
q1;q2

t;N uð Þ
� ����

���
xq1þk;q2þk

�CNk�m omt u
�� ��

xq1þk;q2þk :

ð23Þ

In particular, for any u 2 Hm Kð Þ with 1�m�N þ 1;

the above relation is reduced to the following result

u� pt;N uð Þ
�� ��

H1 Kð Þ �CN
3
2
�m omt u

�� ��
2
: ð24Þ

Theorem 4.2 For sufficiently large N, the Legendre

spectral collocation approximation converges to the exact

solution in L2-norm, i.e.,

eNk k2¼ Y � Uk k2! 0:

Proof Assume that U xð Þ is obtained by using the

Legendre spectral collocation method Eq. (1). Then,

according to definition of pt;N in last section, we will have

eNk k2 � Y � pt;N Yð Þ
�� ��

2
þ pt;N Yð Þ � U
�� ��

2
: ð25Þ

By using Lemma 4.1, we can get for any integer

1�m�N þ 1;

Y � pt;N Yð Þ
�� ��

2
�CN�m omt Y

�� ��
xm;m : ð26Þ

The rest of our proof is to show pt;N Yð Þ � U
�� ��

2
! 0 as

N ! 1: To this end, along with definition Y in Eq. (17),

for N� 1, we have

pt;NY tð Þ ¼ Ta

2aC að Þ pt;N A tð Þ
Z t

�1

t � lð ÞaF B lð Þ; Y lð Þð Þdl

0
@

1
A

þ pt;N Fð Þ;
ð27Þ

where,

G B lð Þ; Y lð Þð Þ ¼ B l t; hð Þð ÞY l t; hð Þð Þ:

Similarly, we can write

U tð Þ ¼ Ta

2aC að Þ pt;N A tð Þ
Z t

�1

t � lð Þa�1
p
a�1;0
l;N G B lð Þ;U lð Þð Þð Þdl

8<
:

9=
;

þ pt;N Fð Þ;

ð28Þ

where

p
a�1;0
l;N v lð Þ ¼ p

a�1;0
h;N v l t; hð Þð Þjh¼ 2l

tþ1
�t�1

tþ1
: ð29Þ

Before we proceed to the rest of proof, we present some

relations that will be used later. By virtue of (29) and then

using the standard Jacobi–Gauss quadrature formula (4),

we obtain

Z t

�1

t � lð Þa�1
p
a�1;0
l;N v lð Þdl¼ 1 þ t

2

� 	a Z1

�1

1 � hð Þa�1
p
a�1;0
h;N

l t; hð Þð Þdh

¼ 1 þ t

2

� 	aXN
j¼0

v l t; ha�1;0
j

� �� �
xa�1;0

j

¼ 1 þ t

2

� 	aXN
j¼0

v la�1;0
j

� �
xa�1;0

j :

ð30Þ

Again, in the same scheme, we have

Z t

�1

t � lð Þa�1
p
a�1;0
l;N v lð Þ

� �2

dl

¼ 1 þ t

2

� 	aXN
j¼0

v2 la�1;0
j

� �
xa�1;0

j : ð31Þ

At last, by applying Lemma 4.1 and Eq. (29) together,

for any integer m 1�m�N þ 1ð Þ; we conclude that

Z t

�1

t � lð Þa�1
v lð Þ � p

a�1;0
l;N v lð Þ

� �2

dl

¼ 1 þ t

2

� 	a Z1

�1

1 � hð Þa�1
v l t; hð Þð Þ � p

a�1;0
h;N v l t; hð Þð Þ

� �2

dh

�CN�m 1 þ t

2

� 	a Z1

�1

omh v l t; hð Þð Þ
� �2

1 � hð Þaþm�1
1 þ hð Þmdh

¼ CN�m

Zx

�1

oml v lð Þ
� �2

x� lð Þaþm�1
1 þ lð Þmdl:

ð32Þ

Now, let us explain the rest of proof. By subtracting

Eq. (28) from (27), we derive that
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pt;NY tð Þ � U tð Þ ¼ Ta

2aC að Þ � pt;N A tð Þ
Z t

�1

t � lð Þa�1

0
@

G B lð Þ; Y lð Þð Þ � p
a�1;0
l;N G B lð Þ;U lð Þð Þð Þ

� �
dl

�
:

The above formula can be rewritten as

pt;NY tð Þ � U tð Þ ¼ Ta

2aC að Þ � pt;N

A tð Þ
Z t

�1

t � lð Þa�1
G B lð Þ;Y lð Þð Þ � p

a�1;0
l;N G B lð Þ;Y lð Þð Þð Þ

� �
dl

0
@

1
A

þ Ta

2aC að Þ � pt;N

A tð Þ
Z t

�1

t � lð Þa�1
p
a�1;0
l;N G B lð Þ;Y lð Þð ÞÞ � G B lð Þ;U lð Þð Þð Þ

� �
dl

0
@

1
A:

ð33Þ

We let

E1 tð Þ ¼ Ta

2aC að Þ � pt;N

A tð Þ
Z t

�1

t � lð Þa�1
G B lð Þ;Y lð Þð Þ � p

a�1;0
l;N G B lð Þ;Y lð Þð Þð Þ

� �
dl

0
@

1
A;

E2 tð Þ ¼ Ta

2aC að Þ � pt;N A tð Þ
Z t

�1

t � lð Þa�1
p
a�1;0
l;N G B lð Þ; Y lð Þð Þð Þ

�0
@

�G B lð Þ;U lð Þð ÞÞdl
!
:

Next, by using the standard Legendre–Gauss quadrature

formula, we obtain

E1k k2 ¼ Ta

2aC að Þ
XN
j¼0

xjA xj
� � Zxj

�1

xj � l
� �a�1

0
@

8<
:

G B lð Þ; Y lð Þð Þ � p
a�1;0
l;N


xj
G B lð Þ; Y lð Þð Þð Þ

� 	
dl

	2
)1

2

:

By using the Cauchy–Schwartz inequality and Eq. (32),

we get

Fig. 2 The error function of Example 5.1 versus the number of

interpolation points

Fig. 1 Comparison between exact solution and approximate solution

of Example 5.1 for N ¼ 10

Fig. 3 Comparison between exact solution and approximate solution

of Example 5.2 for N ¼ 6
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E1k k2 � max
t2K

A tð Þ Ta

2aC að Þ
XN
j¼0

xj

Zxj

�1

xj � l
� �a�1

dl
Zxj

�1

xj � l
� �a�1

8<
:

G B lð Þ; Y lð Þð Þ � p
a�1;0
l;N


xj
G B lð Þ; Y lð Þð Þð Þ

� 	2

dl

)1
2

¼ max
t2K

A tð Þ Ta

2aC aþ 1ð Þ

�
XN
j¼0

xj xj þ 1
� �a Zxj

�1

xj � l
� �a�1

8<
:

� G B lð Þ;Y lð Þð Þ � p
a�1;0
l;N


xj
G B lð Þ;Y lð Þð Þð Þ

� 	2

dl

)1
2

�C max
t2K

A tð Þ Ta

2aC aþ 1ð ÞN
�m �

XN
j¼0

xj xj þ 1
� �a

(

�
Zxj

�1

omlG B lð Þ;Y lð Þð Þ
� �2

xj � l
� �aþm�1

1 þ lð Þmdl

9=
;

1
2

¼ C1N
�momlG B :ð Þ; Y :ð Þð Þxaþm�1;m :

ð34Þ

Similarly, by applying Eqs. (4) and (31) and the

Cauchy–Schwartz inequality, we can get

E2k k2¼
Ta

2aC að Þ
XN
j¼0

xj A xj
� � Zxj

�1

xj � l
� �a�1

2
4

8<
:

p
a�1;0
l;N G B lð Þ; Y lð Þð Þð Þ � G B lð Þ;U lð Þð Þ

� �
dl

i2
�1

2

� max
t2K

A tð Þ Ta

2aC að Þ
XN
j¼0

xj

Zxj

�1

xj � l
� �a�1

dl

8<
:

�
Zxj

�1

xj � l
� �a�1

p
a�1;0
l;N


xj
G B lð Þ; Y lð Þð Þð Þ � G B lð Þ;U lð Þð Þ

� 	2

dl

9=
;

1
2

¼ max
t2K

A tð Þ Ta

2aC að Þ
XN
j¼0

xj

xj þ 1
� �a

a

XN
i¼0

xa�1;0
i

(

G B la�1;0
i

� �
; Y la�1;0

i

� �� �
� G B la�1;0

i

� �
;U la�1;0

i

� �� �� �2
�1

2

:

ð35Þ

On the other hand, Jenson’s inequality for any convex

function g on interval a; bð Þ is

g kt1 þ 1 � kð Þt2ð Þ� kg t1ð Þ þ 1 � kð Þg t2ð Þ;
8 t1; t2 2 a; bð Þ; 8 k 2 0; 1½ �:

Thus, since

d2

dt2
xj þ 1
� �t¼ xj þ 1

� �t
ln2 xj þ 1

� �
[ 0; xj is constant;

then, for any given xj 2 �1; 1ð Þ, g tð Þ ¼ xj þ 1
� �t

is convex

function and according to Jenson’s inequality on interval

0; 1½ �, we will have

g tð Þ ¼ g 1 � tð Þ � 0 þ t � 1ð Þ� 1 � tð Þg 0ð Þ þ tg 1ð Þ:
ð36Þ

Therefore, by applying the previous inequality, we yield

the following inequality

XN
j¼0

xj xj þ 1
� �a � XN

j¼0

xj 1 � að Þ þ a xj þ 1
� �� �

¼ 1 � að Þ
XN
j¼0

xj þ a
XN
j¼0

xj xj þ 1
� �

¼ 1 � að Þ
Z

K

dt þ a
Z

K

xþ 1ð Þdt

¼ 2; 8 a 2 0; 1½ �:
ð37Þ

Next, by using relation (37), Eq. (35) will be reduced to

E2k k2 � max
t2K

A tð Þ Ta

2a�1C aþ 1ð Þ

� max
0� j�N

Zxj

�1

xj � l
� �a�1

8<
:

� p
a�1;0
l;N


xj
G B lð Þ;Y lð Þð Þð Þ � G B lð Þ;U lð Þð Þ

� 	2

dl

)1
2

� max
t2K

A tð Þmax
t2K

B tð Þ Ta

2a�1C aþ 1ð Þ

� max
0� j�N

Zxj

�1

xj � l
� �a�1

p
a�1;0
l;N


xj
Y lð Þð Þ � U lð Þ

� 	2

dl

8<
:

9=
;

1
2

� max
t2K

A tð Þmax
t2K

B tð Þ Ta

2a�1C aþ 1ð Þ

� max
0� j�N

Zxj

�1

xj � l
� �a�1

p
a�1;0
l;N


xj
Y lð Þð Þ � Y lð Þ

� 	2

dl

0
@

1
A

1
2

8><
>:

þ
Zxj

�1

xj � l
� �a�1

Y lð Þ � U lð Þð Þ2
dl

0
@

1
A

1
2)

:

ð38Þ

At last, along with Lemma 4.1 and relations (32), (37),

the previous result yields

E2k k2 �C2 CN�m max
0� j�N

Zxj

�1

oml Y lð Þ
� �2

xj � l
� �aþm�1

1 þ lð Þmdl

0
@

1
A

1
2

8><
>:

þ 2

a

Z1

�1

Y lð Þ � U lð Þð Þ2
dl

0
@

1
A

1
2

9>=
>;�C2CN

�moml Yxaþm�1;m þ 2C2

a
eN :

ð39Þ

Finally, relations (33), (34), (39) prove that the approx-

imation is convergent in L2-norm. Hence, the theorem is

proved.

Numerical example

To show efficiency of our numerical method, the following

examples which have exact solutions are considered.
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Example 5.1 Consider the following fractional integral

equation [17]

y tð Þ ¼ 0:01

C 0:5ð Þ t
5
2

Z t

0

t � sð Þ�
1
2y sð Þds

þ
ffiffiffi
p

p
1 þ tð Þ�

3
2�0:02

t3

1 þ t
;

t 2 0; 1½ �:

The corresponding exact solution is given by y tð Þ ¼

ffiffiffi
p

p
1 þ tð Þ�

3
2: Fig. 1 presents the approximate and exact

solutions which are found in very good agreement. In

Fig. 2, the numerical errors are plotted in L2-norm for

2�N � 24:

Example 5.2 Our second example is the following frac-

tional integral equation [17]

y tð Þ ¼ 1

27C 2
3

� �
Z t

0

s t � sð Þ�
1
3y sð Þdsþ C

2

3

� 	
t � 1

40
t

8
3;

t 2 0; 1½ �:

The exact solution is y xð Þ ¼ C 2
3

� �
t: We get the numer-

ical solution of the above fractional integral equation as

y1 tð Þ ¼ C
2

3

� 	
t;

y2 tð Þ ¼ 1:21 � 10�2 þ C
2

3

� 	
t;

Fig. 4 The error function of Example 5.1 versus the number of

interpolation points

Table 1 Comparison of approximate solutions and exact solutions for various numbers N

t Proposed method at N ¼ 8 Proposed method at N ¼ 10 The method in [17] for 10 iterations and 24 nodes Exact solution

0 .0000000000 .0000000000 .0000000000 .0000000000

0.1 .2764215215 .2764215613 .2764220436 .2764215616

0.2 .3562117262 .3562117272 .3562107843 .3562117278

0.3 .4079815809 .4079815886 .4079882463 .4079815886

0.4 .4463937357 .4463937452 .4463885785 .4463937458

0.5 .4768434165 .4768434157 .4768335412 .4768434159

0.6 .5019754248 .5019754315 .5019745514 .5019754315

0.7 .5232972359 .5232972687 .5232971801 .5232972687

0.8 .5417539715 .5417539771 .5417553840 .5417539772

0.9 .5579785802 .5579785884 .5579785412 .5579785885

1 .5724164231 .5724164243 .5724161242 .5724164241

Fig. 5 Comparison between exact solution and approximate solution

of Example 5.3 for N ¼ 16
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y4 tð Þ ¼ 2:15 � 10�9 þ C
2

3

� 	
t þ 3:12 � 10�10t2 þ 2:39

� 10�7t3 þ 4:81 � 10�9t4:

The numerical results of proposed method can be seen

from Figs. 3 and 4. These results indicate that the spectral

accuracy is obtained for this problem, although the given

function f is not very smooth.

These results indicate that the spectral accuracy is obtained

by using Legendre collocation method for this problem.

Example 5.3 Consider the following fractional integral

equation [17]

y tð Þ ¼ � 1

C 0:5ð Þ

Z t

0

t � sð Þ�
1
2y sð Þdsþ 2

ffiffiffi
t

p

r
; t 2 0; 1½ �:

The exact solution is y tð Þ ¼ 1 � eterfc
ffiffi
t

p� �
; such that

erfc is the complementary error function defined by

erfc tð Þ ¼ 1 � erf tð Þ ¼ 2ffiffiffi
p

p
Z1

t

e�s2

ds:

We list the numerical results in Table 1 to be able to test

the predicted convergence rate. The comparison of the

results for N ¼ 8 and N ¼ 10 with the iterative numerical

method [17] is investigated in Table 1. In Fig. 5, we can

observe that our numerical solutions coincide closely with

the exact ones. At a glance, we can find out the results of

Legendre spectral collocation method are satisfactory in

the few steps.

Conclusion

In this paper, we present a spectral Legendre collocation

approximation of a class of fractional integral equations of the

second kind. The most important contribution of this paper is

that the errors of approximations decay exponentially in L2-

norm. We prove that our proposed method is effective and has

high convergence rate and is better than some new methods

introduced in this paper. The numerical experiments show that

the proposed method is efficient and powerful numerical

scheme for solving many fractional problems.
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