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Abstract
The stress–strength parameter R = P(Y < X) , as a reliability parameter, is considered in different statistical distributions. 
In the present paper, the stress–strength reliability is estimated based on progressively type II censored samples, in which 
X and Y  are two independent random variables with inverse Gaussian distributions. The maximum likelihood estimate of 
R via expectation–maximization algorithm and the Bayes estimate of R are obtained. Furthermore, we obtain the bootstrap 
confidence intervals, HPD credible interval and confidence intervals based on generalized pivotal quantity for R . Addition-
ally, the performance of point estimators and confidence intervals are evaluated by a simulation study. Finally, the proposed 
methods are conducted on a set of real data for illustrative purposes.

Keywords Inverse Gaussian distribution · EM algorithm · Generalized pivotal quantity · Gibbs sampling · Progressively 
type II censoring

Introduction

The estimation of stress–strength parameter for showing 
system efficiency is one of the key subjects in statistical 
inference, which can be used in various sciences such as 
lifetime, reliability of mechanical systems, statistics and 
biostatistics (Simonoff et  al. [44]). In reliability, the R 
parameter, which describes lifetime for a particular system, 
places the strength X against the stress Y  . The idea that a 
system will be disturbed if stress Y  overcomes the strength 
X originated by Birnbaum [11]. For example, in clinical 
studies if X and Y  are the response of the control group to a 
therapeutic approach and the response of the treated group, 
respectively (see Hauck et al. [26]), then R can be seen as 
the measure of treatment effect. The readers are strongly 
urged to refer to Kotz et al. [30] for further details about 
the stress–strength reliability. Furthermore, the estimation 
of stress–strength parameters under some statistical distri-
butions has been studied by many authors, such as Awad 

et al. [5], Gupta and Gupta [23], Ahmad et al. [1], Kundu 
and Gupta [31]. In addition, various statistical distributions 
based on different types of data have been considered in 
various studies. For instance, the estimation of P(Y < X) was 
used by Rezaei et al. [40] in generalized Pareto distributions. 
In another study performed by Hajebi et al. [24], a confi-
dence interval was calculated for R in generalized exponen-
tial distributions. The estimation of R has been considered 
by Huang et al. [27] for X and Y  with gamma distributions. 
In a study conducted by Asgharzadeh et al. [4], the estima-
tion of R was proposed in generalized logistic distributions. 
Moreover, the estimation of the stress–strength reliability 
R = P(Y < X) was addressed by Iranmanesh et al. [28] when 
X and Y were two independent inverted gamma distributions. 
Besides, the maximum likelihood (ML) and Bayesian esti-
mates of stress–strength reliability were addressed by Bak-
lizi [6, 7] for two-parameter exponential distributions based 
on records. Further, the estimation of R based on the upper 
record values in two-parameter bathtub-shaped lifetime dis-
tribution was studied by Tarvirdizadeh and Ahmadpour [46].

In many lifetime tests, the cases studied by the experi-
menter are those in which the units are removed before the 
failure of the experiment. The process of removal may be 
unintentional or planned by the experimenter in advance. 
To further explicate the matter, in clinical experiments, 
individuals might refuse to continue the experiment due 
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to personal reasons, or the test may be terminated before 
observing all patients whose lifetime takes longer years. 
In such cases, the experimenter would face censored data. 
Hence, a censoring scheme should be particularly defined. 
One of the key forms of censoring is progressively type II 
censored sample scheme, which is described as follows: Let 
R =

(
R1,R2,… ,Rm

)
 be a given vector which is defined by 

the experimenter and indicates the removal pattern of some 
experimental units before termination. The number of exper-
imental units is represented by n in this censored scheme 
(m < n) . Through observing the first failure, R1 of the sur-
vival units is randomly removed from the n − 1 units remain-
ing from the experiment. Likewise, R2 of the n − 2 − R1 units 
is randomly removed when the second failure is observed, 
and the experiment continues until the mth failure, in 
which all of the remaining units Rm = n − m −

∑m−1

i=1
Ri 

are removed. The progressively type II censored sam-
ple scheme is denoted by R =

(
R1,R2,… ,Rm

)
 . If 

R1 = R2 = ⋯ = Rm−1 = 0 and Rm = n − m , then the censor-
ing scheme is type II censoring.

For further information about the theory, methods and 
applications of progressively type II censored data, the read-
ers are strongly encouraged to refer to the book authored by 
Balakrishnan and Aggarwala [8]. In addition, the develop-
ment of various types of censoring schemes, the likelihood 
and Bayesian inference of parameters of different distribu-
tions based on censored data, and their applications in life-
time analysis and reliability can be found in a book authored 
by Balakrishnan and Cramer [9]. It is worth mentioning that 
some of the studies have been carried out about the esti-
mation of stress–strength reliability for some distributions 
under progressively type II censoring. For example, the 
estimation of R in exponential distributions under censored 
data has been investigated by Saraoglua et al. [41], and the 
stress–strength reliability of Weibull and inverse Weibull 
distributions has been studied under progressively censored 
data by Valiollahi et al. [49] and Yadav et al. [52], respec-
tively. In another study carried out by Shoaee and Khor-
ram [43], the estimation of the stress–strength reliability 
R = P(Y < X) was considered based on progressively type II 
censored samples when X and Y  were two independent two-
parameter bathtub-shaped lifetime distributions. Besides, 
Akdam et al. [3] obtained the estimation of R in the expo-
nential power distributions based on censored data.

In the present article, the point and confidence interval 
estimation of stress–strength reliability R are investigated 
under progressively type II censored data when X and Y have 
inverse Gaussian distributions with zero drift (IG(∞, �)) 
with the following probability density functions (pdfs)

and cumulative distribution functions (cdfs)

respectively, where �(⋅) is the cdf of standard normal 
distribution.

Tweedie [48] conducted initial studies on the statistical 
properties of inverse Gaussian distribution, and various 
real-life applications were reported for inverse Gaussian 
distribution by Chhikara and Folks [13–15]. Moreover, in 
a study conducted by Padgett and Wei [35], the ML estima-
tors of three-parameter inverse Gaussian distribution were 
obtained. Furthermore, some examples and more real-life 
applications were suggested by Chhikara and Folks [16], 
Johnson et al. [29] and Seshadri [42] for inverse Gaussian 
distribution in reliability and lifetime data analysis. In stud-
ies done by Padgett [36] and Sinha [45], the Bayes estimate 
of parameters and reliability function of two-parameter 
inverse Gaussian distribution were calculated for different 
types of prior distributions. Moreover, the Gibbs sampling 
method was used by Ahmad and Jaheen [2] and Pandey 
and Bandyopadhyay [37] to approximate the Bayes esti-
mate of parameters. In other studies performed by Patel 
[39] and Basak and Balakrishnan [10], the parameters of 
inverse Gaussian distribution were assessed based on cen-
sored data.

The inverse Gaussian distribution can be used for mod-
eling lifetime, failure time and reliability of a system, and 
this distribution has various applications in modeling and 
analyzing positively skewed data. On the other hand, we 
will usually encounter censored data in life testing exper-
iments, especially progressively type II censored data 
which contain other type of censoring. These motivate 
us to estimate the stress–strength parameter R in inverse 
Gaussian distribution under progressively type II censored 
data.

As for the present study, the R parameter is estimated 
using Bayes and ML (via expectation–maximization (EM)) 
methods. In addition, three intervals (namely bootstrap con-
fidence, HPD credible and confidence interval based on gen-
eralized pivotal quantity (GPQ)) are obtained.

(1)

f
(
x|𝜆1

)
=

√
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2𝜋x3
exp
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2x
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, x > 0,

f
(
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)
=

√
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The rest of the paper is organized as follows. In Sect. 2, 
the ML estimate of R is calculated using the fixed point itera-
tion method and EM algorithm. In this section, the Bayes 
estimate of R is also calculated using the Gibbs sampling 
method. Next, in Sect. 3, the normal, percentile, Student’s 
t bootstrap confidence intervals (CIs), Bayesian HPD cred-
ible interval and a confidence interval based on GPQ are 
presented. Subsequently, the Monte Carlo simulation is used 
to compare the performance of various estimators and CIs 
in Sect. 4, and after that in Sect. 5, real data are analyzed for 
illustrative purposes. Finally, the conclusions are presented 
in Sect. 6.

Estimation of R

Let X ∼ IG
(
∞, �1

)
 and Y ∼ IG

(
∞, �2

)
 be independent ran-

dom variables with pdfs given in (1). Let R = P(Y < X) be 
the stress–strength reliability. Then,

In this section, the ML and Bayes estimates of R are 
obtained under progressively type II censored data.

Maximum likelihood estimation

If X =
(
X1;m1∶n1

,… ,Xm1;m1∶n1

)
 is a progressively type II cen-

so re d  s amp le  f rom IG
(
∞, �1

)
 w i t h  s ch eme 

R1 =
(
R1,R2,… ,Rm1

)
 , and Y =

(
Y1;m2∶n2

,… , Ym2;m2∶n2

)
 is a 

progressively type II censored sample from IG
(
∞, �2

)
 with 

scheme R�
2
=
(
R�
1
,R�

2
,… ,R�

m2

)
 , then the likelihood function 

of �1 and �2 is given by (Balakrishnan and Cramer [9])

where

Upon using (1) and (2), the likelihood (4) reduces to

(3)

R = P(Y < X) =

∞

∫
0

�
𝜆2

2𝜋y3
exp
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dy.

(4)

L
(
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(
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}
,
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(
n1 − 1 − R1

)(
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)
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(
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)
,
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)
.

From (5) the log-likelihood function of the observed data 
x and y is

and likelihood equations of �1 and �2 are obtained as

where �(⋅) is the pdf and �(⋅) is the cdf of standard nor-
mal distribution and �̂�1 and �̂�2 are the ML estimators of the 
parameters �1 and �2 which is obtained by solving nonlinear 
Eqs. (6) and (7).

From (6) and (7), �̂�1 and �̂�2 can be obtained as a 
fixed point solution of nonlinear equations of the form 
hi
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Since �̂�i, i = 1, 2 is a fixed point solution of these nonlin-
ear equations, they can, therefore, be obtained by using a 
simple iterative procedure as hi

(
�ij
)
= �i,j+1, i = 1, 2 , where 

�ij is the jth iteration of �̂�i . The iteration procedure should be 
stopped when |||�ij − �i,j+1

||| is sufficiently small. Therefore, the 
ML estimate of the stress–strength reliability is computed to 
be

EM algorithm

To find the ML estimates of �1, �2 and R , numerical meth-
ods such as Newton–Raphson (NR) should be used to solve 
nonlinear Eqs. (6) and (7) or fixed point iteration method 
�i,j+1 = hi

(
�ij
)
 . It should be noted that these methods were 

sensitive to their initial parameter values and did not converge 
in the all cases. Another way to compute the ML estimates 
is the EM algorithm. The EM algorithm, first introduced 
by Dempster et al. [17], is an iterative method with many 
applications in the calculation of the ML of incomplete and 
missing data. For more information on the EM algorithm and 
its applications, the readers are strongly urged to refer to the 
book authored by McLachlan and Krishnan [32]. Each itera-
tion of the EM algorithm encompasses of two steps: (i) In the 
E-step, any incomplete data are replaced by their expected 
values, and (ii) in the M-step, the likelihood function is maxi-
mized with the observed data and the expected value of the 
missing data to produce an update of the parameter estimates. 
Moreover, the E- and M-steps continue to estimate the ML 
of parameters until convergence. The censored data can be 
regarded as missing data; therefore, the EM algorithm can 
be used to estimate the ML of parameters based on the type 
II censoring data (see Ng et al., [33]). The observed and cen-
sored data can be shown as follows:

respectively, where Zj  is  a 1 × Rj  vector with 
Zj =

(
Zj1, Zj2,… , ZjRj

)
 for j = 1, 2,… ,m . The vector of cen-
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X =
(
X1;m∶n,… ,Xm;m∶n

)
, Z =

(
Z1, Z2,… , Zm

)
,

combining the observed data X and the censored data Z , the 
complete data set W is obtained. The corresponding log-
likelihood function is represented by lc(W;�). As for the 
inverse Gaussian distribution, there is

The ML estimate of the parameter based on the complete 
data, using the derivatives of log-likelihood function with 
respect to � , can be obtained by solving the equation

The EM algorithm consists of two steps: the E-step and 
the M-step. In the E-step, the missing data are estimated 
given the observed data and the current estimate of the 
model parameters, say �(h). Then, the E-step of the algorithm 
requires the computation of

which mainly involves the computation of the condi-
tional expectation of functions of Z conditional on the 
observed values X and the current value of the parame-
ters. Therefore, to facilitate the EM algorithm, the condi-
tional distribution of Z , conditional on X and the current 
value of the parameters, needs to be determined. Given 
X1;m∶n = x1;m∶n,… ,Xj;m∶n = xj;m∶n , the conditional distribu-
tion of Zjk, k = 1, 2,… ,Rj is given by

where Zjk and Zjl, k ≠ l, are conditionally independent given 
Xj;m∶n = xj;m∶n (see Ng et al. [33]). According to (9), as for 
the inverse Gaussian distribution, there is
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To obtain the required conditional expectation in the EM 
algorithm, the recurrence relation is written for the moments 
in our case, (Patel, [38]). It should be noted that

where

Taking partial differential of (10) with respect to zjk , there 
is

Multiplying both sides of Eq. (11) by zr
jk

 and then inte-
grating, a recurrence relation for the moments can be 
obtained as follows:

where

Thus, in the maximization or M-step of the EM algo-
rithm, the value of θ which maximizes Q
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as the next estimate of �(h+1) . In the M-step of the (h + 1) th 
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By repeating E- and M-steps until convergence occurs, 
the ML estimate of � can be obtained. As a starting 
value, �(0) can be computed based on the pseudo-com-
plete sample by replacing the censored observations Zj by 
Xj;m∶n, j = 1, 2,… ,m , i.e.,

and hence,

Bayes estimation of R

In this subsection, the Bayes estimation of R is obtained 
under the assumption that �1, �2 are unknown. Let us 
assume that �1 and �2 have conjugate priors Gamma
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(
−

√
�1

xi

)))}

× �

m2

2

2
exp

{(
−�2

m2∑
i=1

1

2yi

)

+

m2∑
i=1

R�
i

(
ln

(
1 − 2�

(
−

√
�2

yi

)))}
.

(14)𝜋
(
𝜆i
)
=

𝛽
𝛼i
i

𝛤
(
𝛼i
)𝜆𝛼i−1

i
e

−𝜆i

𝛽i , 𝜆i > 0, i = 1, 2,

�
(
�1, �2|x, y

)
=

L
(
�1, �2||x, y

)
�
(
�1
)
�
(
�2
)

∫∞
0

∫∞
0

L
(
�1, �2||x, y

)
�
(
�1
)
�
(
�2
)
d�1d�2

,
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According to the form of the posterior density, it is obvi-
ous that the explicit Bayes estimate of parameters cannot be 
obtained. Therefore, a simulation technique is used to com-
pute the Bayes estimate of R . Moreover, the Gibbs sampling 
technique is used for the conditional posterior distributions 
of each parameter 

(
�1, �2

)
. The conditional posterior distri-

butions of �1, �2 are obtained as

The posterior pdfs of �1 and �2 do not follow a particular 
known pdfs, but their plots bear similarity to the normal dis-
tribution. Therefore, to generate random values from these 
distributions, the Metropolis–Hastings method is used with 
normal proposal distribution. Hence, the algorithm of Gibbs 
sampling is described in Algorithm 1.

�

m1

2
+�1−1

1
exp

{(
−�1

(
1

�1
+

m1∑
i=1

1

2xi

))

+

m1∑
i=1

Ri

(
ln

(
1 − 2�

(
−

√
�1

xi

)))}

× �

m2

2
+�2−1

2
exp

{(
−�2

(
1

�2
+

m2∑
i=1

1

2yi

))

+

m2∑
i=1

R�
i

(
ln

(
1 − 2�

(
−

√
�2

yi

)))}
.

(15)

�
(
�1|x

)
∝ �

m1

2
+�1−1

1
exp

{(
−�1

(
1

�1
+

m1∑
i=1

1

2xi

))

+

m1∑
i=1

Ri

(
ln

(
1 − 2�

(
−

√
�1

xi

)))}

�
(
�2|y

)
∝ �

m2

2
+�2−1

2
exp

{(
−�2

(
1

�2
+

m2∑
i=1

1

2yi

))

+

m2∑
i=1

R�
i

(
ln

(
1 − 2�

(
−

√
�2

yi

)))}
.

Now, under the square error loss function, the approxi-
mate Bayes estimate of R is the posterior mean and is given 
by

where M is the burn-in period (that is, a number of iterations 
before the stationary distribution is achieved).

Confidence Interval for R

In this section, various methods are used to find confidence 
interval for the stress–strength reliability parameter R.

Bootstrap CIs

It is difficult to obtain the distribution of R̂ , the ML esti-
mator of R . Therefore, it is impossible to obtain the exact 
confidence interval of R . For this reason, the parametric 
bootstrap method is used for construction of the confidence 
interval of R , which was first proposed by Efron and Tib-
shirani [19]. Firstly, using the algorithm suggested in Bal-
akrishnan and Cramer [9], the Algorithm 2 was performed 
to generate the progressively type II censored samples with 
censoring scheme R =

(
R1,R2,… ,Rm

)
 from inverse Gauss-

ian distribution.

(16)R̂B = Ê(R|x, y) = 1

B −M

B∑
t=M+1

R(t),
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Now, the Algorithm 3 can be used to generate parametric 
bootstrap samples.

Using the bootstrap samples of R generated from Algo-
rithm 3, three different bootstrap CIs of R are obtained as 
follows:

(I) Standard normal interval:

100(1 − �)% bootstrap interval is the standard normal inter-
val as

where ŝeboot is the bootstrap estimate of the standard error 
based on R̂∗

1
,… , R̂∗

B
.

(17)
(
R̂ − z 𝛼

2

ŝeboot, R̂ + z 𝛼

2

ŝeboot

)
,

(II) Percentile bootstrap (Boot-p) interval (Efron [18]):

Let G(x) = P
(
R̂∗ ≤ x

)
 be the cdf of R̂∗ . Define R̂Bp = G−1(x) 

for a given x . Then approximate 100(1 − �)% confidence 
interval for R is given by

that is, just use the 
(

�

2

)
 and 

(
1 −

�

2

)
 quantiles of the boot-

strap sample R̂∗
1
,… , R̂∗

B
.

(III) Student’s t bootstrap (Boot-t) interval (see Hall 
[25]):

Let

(18)
(
R̂Bp

(
𝛼

2

)
, R̂Bp

(
1 −

𝛼

2

))
,

T∗
b
=

(
R̂∗
b
− R̂

)
ŝe∗

b

, b = 1,… ,B,
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where ŝe∗
b
 is an estimate of the standard error of R̂∗

b
 . Then 

100(1 − �)% bootstrap Student’s t interval is given by

where t∗
�
 is the � quantile of T̂∗

1
,… , T̂∗

B
.

HPD Credible Interval

In this subsection, the Bayesian method is used to construct 
the confidence interval for R . Since the construction of HPD 
credible interval is difficult, the method proposed by Chen 
and Shao [12] is used to construct the HPD credible interval. 
Let R(t), t = M + 1,… ,B be the posterior sample generated 
by Algorithm 1 in Sect. 2.2. Then from Chen and Shao [12], 
the 100(1 − �)% HPD credible interval is given by the short-
est interval of the form 

(
R(i),R(i+[(1−�)B])

)
 , where R[(1−�)B] is 

the [(1 − �)B] th smallest integer of 
{
R(t), t = M + 1,… ,B

}
.

Confidence interval based on GPQ

The concepts of generalized p values and generalized con-
fidence interval (GCI) were introduced by Tsui and Weera-
handi [47] and Weerahandi [50], the base of whose studies 
was GPQ, which can be utilized for complicated problems in 
statistical inference. The readers are strongly urged to study 
the book authored by Weerahandi [51].

In this section, the GPQ for �1 and �2 parameters is going 
to be calculated, after which a confidence interval can be 
constructed for the stress–strength parameter. The problem 
of estimating the parameters of the inverse Gaussian distri-
bution based on GPQ has been considered by Zhang [53].

Generalized pivotal quantity

Let X =
(
X1,X2,… ,Xn

)
 be an observable random vector 

with the distribution depending on � . An observation from 
X is denoted by x =

(
x1, x2,… , xn

)
 . To construct a GCI for 

� , first define a GPQ, Q(X; x, �) , which is a function of the 
random vector X , its observed value x and the parameter � . 
Generally, Q(X; x, �) is a GPQ for � , if it satisfies the follow-
ing two conditions:

1. For a given x , the distribution of Q(X; x, �) is free from 
unknown parameters.

2. The value of Q(X; x, �) at �̂� = �̂�0 should be � , where �̂�0 
is a ML estimate of � based on the observed sample x.

Now if Q�(X; x, �) is a � th percentile of Q(X; x, �) dis-
tribution, then the 100(1 − �)% GCI of � is any value of � 
that satisfies

(19)
(
R̂ − t∗

1−
𝛼

2

ŝeboot, R̂ − t∗𝛼
2

ŝeboot

)
,

To find a 100(1 − �)% GCI of R , the GPQ for �1 and �2 in 
inverse Gaussian distribution should be found.

If X1,X2,… ,Xn is a random sample of size n from 
IG(∞, �) , then the ML estimator of � is �̂� = n

�∑n

i=1

1

Xi

�−1

 . 
Let U =

𝜆

�̂�
 , then it is easy to verify that the distribution of U 

is free from � (Gulati and Mi, [22]). Indeed, the likelihood 
equation is n𝜆

�̂�
=
∑n

i=1

1
xi

𝜆

 , where Yi =
Xi

�
 has IG(∞, 1)-distri-

bution. So, the distribution of U =
𝜆

�̂�
 is free from � . Simi-

larly, if X =
(
X1;m∶n,… ,Xm;m∶n

)
 is a progressively Type II 

censored sample  f rom IG(∞, �) wi th  scheme 
R =

(
R1,R2,… ,Rm

)
 and ML estimator �̂� , then it is easy to 

show that distribution of U =
𝜆

�̂�
 is free from �.

Now, let �̂�(1,0) be a ML estimate of �1 based on the 
observed sample x =

(
x1;m1∶n1

,… , xm1;m1∶n1

)
 from IG

(
∞, �1

)
 

distribution. Then,

is a GPQ for �1 , since

1. The distribution of Q�1
 does not depend on any unknown 

parameters.
2. Q�1

= �1 when �̂�1 = �̂�(1,0).

Also, suppose Y =
(
Y1;m2∶n2

,… , Ym2;m2∶n2

)
 is a progres-

sively Type II censored sample from IG
(
∞, �2

)
 . Similarly, 

the GPQ for �2 is

where �̂�2 is the ML estimator of �2 and �̂�(2,0) is a 
ML estimate of �2 based on the observed sample 
y =

(
y1;m2∶n2

,… , ym2;m2∶n2

)
.

Based on the above results, the GPQ for R can be found 
by replacing the unknown parameters in (3) by (21) and 
(22). Therefore,

It is clear that the distribution of QR is very complicated. 
Therefore, it is not possible to obtain exact confidence inter-
val of R , but for each 

(
�̂�(1,0), �̂�(2,0)

)
 the distribution of QR does 

not depend on any unknown parameters. Therefore, the GCI 

(20)
P
(
Q �

2

(X; x, �) ≤ Q(X; x, �) ≤ Q1−
�

2

(X; x, �)
)
= 1 − �.

(21)Q𝜆1
=

𝜆1
/
�̂�1

1
/
�̂�(1,0)

,

(22)Q𝜆2
=

𝜆2
/
�̂�2

1
/
�̂�(2,0)

,

QR =

∞

∫
0

�
Q�2

2�y3
exp

�
−Q�2

2y

�⎛⎜⎜⎝
1 − 2�

⎛⎜⎜⎝
−

�
Q�1

y

⎞⎟⎟⎠

⎞⎟⎟⎠
dy.
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of R can be found by a Monte Carlo simulation through the 
Algorithm 4:

A simulation study

In this section, the performance of the point estimators and 
CIs presented in this paper is evaluated using a Monte Carlo 
simulation study. With 10,000 replications, the average abso-
lute biases and root-mean-squared error (RMSE) of the ML 
estimator via the EM algorithm and the numerical procedure 

Table 1  First censoring 
schemes

(m, n) C.S.

r1 (5,15) (0, 0, 0, 0, 10)

r2 (5,15) (2, 2, 2, 2, 2)

r3 (5,15) (10, 0, 0, 0, 0)

Table 2  Second censoring 
schemes

(m, n) C.S.

r1 (10,30)
(
0∗9, 20

)
r2 (10,30)

(
2∗10

)
r3 (10,30)

(
20, 0∗9

)

Table 3  Third censoring 
schemes

(m, n) C.S.

r1 (15,45) (0∗14,30)
r2 (15,45)

(
2∗15

)
r3 (15,45)

(
30, 0∗14

)
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Table 4  Average estimates 
(AVR), absolute biases and 
RMSEs of the estimators of R

m1 m2 R C.S MLE MLE (EM) Bayes (Prior 4)

AVR A.Bias RMSE AVR A.Bias RMSE AVR A.Bias RMSE

5 5 0.31
(
r1, r1

)
0.3222 0.0097 0.0725 0.3237 0.0112 0.0690 0.3091 0.0034 0.0184(

r2, r2
)

0.3239 0.0114 0.0728 0.3235 0.0110 0.0741 0.3098 0.0027 0.0189(
r3, r3

)
0.3256 0.0131 0.0820 0.3261 0.0136 0.0818 0.3107 0.0018 0.0203(

r1, r2
)

0.3226 0.0101 0.0743 0.3212 0.0087 0.0730 0.3112 0.0013 0.0184(
r1, r3

)
0.3283 0.0158 0.0785 0.3260 0.0135 0.0772 0.3119 0.0006 0.0195(

r2, r3
)

0.3242 0.0117 0.0741 0.3319 0.0194 0.0805 0.3119 0.0006 0.0207
0.5

(
r1, r1

)
0.5010 0.0010 0.0824 0.4982 0.0018 0.0794 0.5002 0.0002 0.0254(

r2, r2
)

0.4998 0.0002 0.0856 0.4992 0.0008 0.0862 0.4985 0.0015 0.0249(
r3, r3

)
0.5001 0.0001 0.0909 0.4981 0.0019 0.0926 0.4996 0.0004 0.0268(

r1, r2
)

0.4985 0.0015 0.0780 0.4995 0.0005 0.0814 0.5019 0.0019 0.0252(
r1, r3

)
0.5068 0.0068 0.0930 0.5082 0.0082 0.0865 0.5018 0.0018 0.0279(

r2, r3
)

0.4984 0.0016 0.0895 0.4974 0.0026 0.0881 0.5007 0.0007 0.0285
0.66

(
r1, r1

)
0.6487 0.0112 0.0729 0.6515 0.0084 0.0752 0.6736 0.0137 0.0248(

r2, r2
)

0.6459 0.0159 0.0790 0.6466 0.0133 0.0766 0.6737 0.0138 0.0019(
r3, r3

)
0.6491 0.0107 0.0834 0.6455 0.0144 0.0844 0.6749 0.0150 0.0228(

r1, r2
)

0.6496 0.0103 0.0759 0.6490 0.0119 0.0765 0.6746 0.0147 0.0228(
r1, r3

)
0.6484 0.0115 0.0790 0.6564 0.0035 0.0776 0.6755 0.0156 0.0234(

r2, r3
)

0.6540 0.0059 0.0814 0.6545 0.0054 0.0807 0.6746 0.0147 0.0230
0.76

(
r1, r1

)
0.7507 0.0101 0.0617 0.7494 0.0114 0.0628 0.7774 0.0168 0.0204(

r2, r2
)

0.7475 0.0133 0.0640 0.7536 0.0072 0.0633 0.7771 0.0163 0.0202(
r3, r3

)
0.7487 0.0121 0.0673 0.7461 0.0147 0.0683 0.7780 0.0172 0.0226(

r1, r2
)

0.7474 0.0134 0.0611 0.7493 0.0115 0.0593 0.7771 0.0163 0.0207(
r1, r3

)
0.7498 0.0110 0.0640 0.7552 0.0056 0.0615 0.7775 0.0167 0.0207(

r2, r3
)

0.7506 0.0102 0.0687 0.7511 0.0097 0.0642 0.7781 0.0172 0.0211
10 10 0.31

(
r1, r1

)
0.3173 0.0048 0.0495 0.3172 0.0047 0.0509 0.3116 0.0009 0.0151(

r2, r2
)

0.3189 0.0064 0.0554 0.3173 0.0048 0.0497 0.3124 0.0001 0.0153
(
r3, r3

)
0.3193 0.0068 0.0623 0.3161 0.0036 0.0626 0.3114 0.0011 0.0181

(
r1, r2

)
0.3188 0.0063 0.0506 0.3167 0.0042 0.0531 0.3117 0.0008 0.0156

(
r1, r3

)
0.3208 0.0083 0.0567 0.3218 0.0093 0.0568 0.3132 0.0007 0.0163

(
r2, r3

)
0.3235 0.0110 0.0589 0.3216 0.0091 0.0572 0.3143 0.0018 0.0180

0.5
(
r1, r1

)
0.4965 0.0035 0.0579 0.4983 0.0017 0.0578 0.4994 0.0006 0.0202

(
r2, r2

)
0.5007 0.0007 0.0598 0.5005 0.0005 0.0609 0.5005 0.0005 0.0206

(
r3, r3

)
0.4983 0.0017 0.0720 0.4982 0.0018 0.0707 0.5004 0.0004 0.0218

(
r1, r2

)
0.5012 0.0012 0.0647 0.5004 0.0004 0.0587 0.5008 0.0008 0.0199

(
r1, r3

)
0.5071 0.0071 0.0666 0.5012 0.0012 0.0657 0.5017 0.0017 0.0214

(
r2, r3

)
0.5061 0.0061 0.0675 0.5036 0.0036 0.0669 0.5026 0.0026 0.0229

0.66
(
r1, r1

)
0.6550 0.0049 0.0526 0.6547 0.0052 0.0529 0.6696 0.0097 0.0177

(
r2, r2

)
0.6556 0.0043 0.0530 0.6556 0.0043 0.0537 0.6702 0.0103 0.0173

(
r3, r3

)
0.6513 0.0086 0.0654 0.6519 0.0079 0.0641 0.6729 0.0130 0.0207

(
r1, r2

)
0.6549 0.0050 0.0545 0.6540 0.0059 0.0537 0.6703 0.0104 0.0180

(
r1, r3

)
0.6575 0.0024 0.0579 0.6577 0.0022 0.0598 0.6720 0.0121 0.0187

(
r2, r3

)
0.6578 0.0021 0.0589 0.6543 0.0056 0.0584 0.6718 0.0119 0.0203
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(fixed-point iteration) and the approximate Bayes estimator 
of R are reported.

R̂i =
1

10, 000

10,000∑
i=1

R(i),

Absolute Bias =
1

10, 000

10,000∑
i=1

|||R̂i − R
|||,

RMSE =

√√√√ 1

10, 000

10,000∑
i=1

(
R̂i − R

)2
,

where R̂i is an approximated Bayes estimate of R (see Gel-
man et al. [21]) in ith replication.

To compute the Bayes estimates and HPD credible inter-
vals, we consider the four prior density functions as follows:

Prior 1: �1 = �2 = 1, �1 = �2 = 2

Prior 2:�1 = �2 = 1, �1 = �2 = 4

Prior 3:�1 = �2 = 3, �1 = �2 = 2

Prior 4:�1 = �2 = 3, �1 = �2 = 4

Based on our computations, the approximate Bayes esti-
mates of R based on prior 4 functioned better than the Bayes 
estimators based on other priors in terms of both absolute 
biases and RMSEs. Therefore, the results are reported for 

Table 4  (continued)
m1 m2 R C.S MLE MLE (EM) Bayes (Prior 4)

AVR A.Bias RMSE AVR A.Bias RMSE AVR A.Bias RMSE

0.76
(
r1, r1

)
0.7530 0.0078 0.0423 0.7543 0.0065 0.0425 0.7739 0.0131 0.0168

(
r2, r2

)
0.7553 0.0055 0.0421 0.7553 0.0055 0.0432 0.7748 0.0140 0.0179

(
r3, r3

)
0.7522 0.0086 0.0529 0.7522 0.0086 0.0516 0.7766 0.0158 0.0177

(
r1, r2

)
0.7553 0.0055 0.0440 0.7549 0.0059 0.0419 0.7740 0.0132 0.0160

(
r1, r3

)
0.7561 0.0047 0.0444 0.7576 0.0032 0.0465 0.7758 0.0149 0.0189

(
r2, r3

)
0.7557 0.0051 0.0467 0.7538 0.0025 0.0494 0.7552 0.0143 0.0179

15 15 0.31
(
r1, r1

)
0.3170 0.0045 0.0411 0.3172 0.0047 0.0417 0.3113 0.0012 0.0123(

r2, r2
)

0.3162 0.0037 0.0414 0.3148 0.0023 0.0418 0.3122 0.0003 0.0133(
r3, r3

)
0.3196 0.0071 0.0523 0.3160 0.0035 0.0522 0.3121 0.0004 0.0164(

r1, r2
)

0.3167 0.0042 0.0414 0.3130 0.0005 0.0414 0.3122 0.0002 0.0145(
r1, r3

)
0.3210 0.0085 0.0477 0.3195 0.0070 0.0468 0.3153 0.0028 0.0163(

r2, r3
)

0.3190 0.0065 0.0469 0.3169 0.0048 0.0476 0.3144 0.0019 0.0160
0.5

(
r1, r1

)
0.4988 0.0012 0.0472 0.4997 0.0003 0.0447 0.5005 0.0005 0.0178(

r2, r2
)

0.5003 0.0003 0.0497 0.4980 0.0020 0.0495 0.4993 0.0007 0.0176(
r3, r3

)
0.4999 0.0001 0.0610 0.5018 0.0018 0.0584 0.4995 0.0005 0.0202(

r1, r2
)

0.5012 0.0012 0.0478 0.4985 0.0015 0.0521 0.5005 0.0005 0.0164(
r1, r3

)
0.5027 0.0027 0.0570 0.5035 0.0035 0.0550 0.5038 0.0038 0.0188(

r2, r3
)

0.5042 0.0042 0.0548 0.5016 0.0016 0.0545 0.5034 0.0034 0.0202
0.66

(
r1, r1

)
0.6557 0.0042 0.0427 0.6568 0.0031 0.0396 0.6676 0.0077 0.0135(

r2, r2
)

0.6563 0.0035 0.0439 0.6550 0.0049 0.0449 0.6683 0.0084 0.0160(
r3, r3

)
0.6585 0.0013 0.0551 0.6549 0.0050 0.0570 0.6701 0.0102 0.0183(

r1, r2
)

0.6574 0.0025 0.0433 0.6575 0.0024 0.0429 0.6689 0.0090 0.0158(
r1, r3

)
0.6609 0.0008 0.0458 0.6598 0.0001 0.0491 0.6705 0.0106 0.0176(

r2, r3
)

0.6568 0.0030 0.0499 0.6584 0.0015 0.0479 0.6705 0.0106 0.0187
0.76

(
r1, r1

)
0.7580 0.0028 0.0341 0.7564 0.0044 0.0336 0.7724 0.0116 0.0138(

r2, r2
)

0.7572 0.0036 0.0354 0.7572 0.0036 0.0355 0.7732 0.0124 0.0144(
r3, r3

)
0.7550 0.0058 0.0443 0.7534 0.0074 0.0438 0.7744 0.0135 0.0177(

r1, r2
)

0.7590 0.0018 0.0344 0.7582 0.0026 0.0358 0.7728 0.0120 0.0147(
r1, r3

)
0.7589 0.0019 0.0378 0.7583 0.0025 0.0386 0.7744 0.0134 0.0164(

r2, r3
)

0.7583 0.0025 0.0395 0.7580 0.0028 0.0393 0.7740 0.0132 0.0169
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Bayes estimator based on priors 4. In addition, the proposed 
intervals are compared in terms of their coverage probability 
and expected length.

Four sets of parameter values 
(
�1 = 2, �2 = 7

)
, (

�1 = 7, �2 = 7
)
,
(
�1 = 20, �2 = 7

)
 and 

(
�1 = 45, �2 = 7

)
 

are used to compare the performance of the different 
methods and censoring schemes. Therefore, from Eq. (3), 
R = 0.3125, 0.5, 0.6599, 0.7608 . For each set of these param-
eters, 10,000 data sets are generated and comparisons are 
performed between Bayes estimates and ML estimates based 
on numerical procedure and the EM algorithm. Also differ-
ent CIs, such as bootstrap CIs, GCIs and the HPD credible 
intervals are computed and then compared in terms of their 
coverage probabilities and expected lengths.

Three censoring schemes are also used as given in 
Tables 1, 2 and 3. For convenience, the notation 0∗k for k 
successive zeroes is introduced.

First, the ML estimate of R is calculated, and then the 
average estimates, absolute biases and RMSEs of the ML 
estimate and the approximate Bayes estimate of R based 
on priors 4 are computed. The coverage probability and 
expected length of the 95% CIs for parameter R , such as 
the bootstrap CIs, namely the percentile interval (Boot-p) 
based on numerical procedure and EM algorithm, GCIs 
and the HPD credible intervals, are computed. To com-
pute the bootstrap confidence intervals, 10,000 bootstrap 
iterations are used. The Bayes estimates and HPD credible 
intervals are also computed based on 10,000 samples and 
discard the first 2000 values as burn-in period. In order to 
examine the convergence of sequences obtained from the 
MCMC methods, one of the preliminary tools is plotting 
a graph to show the convergence to the target distribution. 
For more precisely monitoring the convergence of MCMC 
simulations, we also use the scale reduction factor estimate 
R̂ =

√
var(𝜓)∕W  where var(�) = (n − 1)W∕n + B∕n with 

the iteration number n for each chain, and B and W are the 
between and within sequence variances, respectively (see 
Gelman et al. [21]). In our case, the scale factor value of the 
MCMC estimates is found below 1.1 which is an accept-
able value for their convergence. Note that the censoring 
schemes 

(
ri, rj

)
, i, j = 1, 2, 3 are determined in Tables 1, 2 

and 3 according to 
(
m1,m2

)
 sample sizes of observed sample 

x and y.
Based on our simulation results, from Table 4, the abso-

lute bias for small and large values of R decreases while 
the sample size increases. However, as the sample size 
increases, the RMSE decreases for each value of R , which is 
the case for all methods. It is observed that the RMSE of the 
estimators increased for values of R near 0.5. Also, the abso-
lute bias of all estimators is near zero, and for large values 

of R , the absolute bias of ML estimator based on numerical 
procedure and EM algorithm is less than the Bayes estima-
tor. Furthermore, the RMSE performance of the estimators 
is clear, and the Bayes estimator has smaller RMSE for all 
values of the stress–strength reliability.

The nominal level for the CIs or the credible intervals 
is 0.95 in each case. As can be seen in Table 5, the GCIs 
are close to the bootstrap CIs for different parameter val-
ues. Additionally, the coverage probability of the bootstrap 
and the GPQ intervals are near the nominal level. It is also 
observed that the HPD intervals with prior 4 provide the 
smallest average confidence credible lengths for the same 
censoring schemes, as well as different parameter values. 
With a rise in sample size, the coverage probability of boot-
strap CIs approached 0.95, and it provided a shorter expected 
length. In contrast, the length of other CIs decreases as the 
sample size increases. It is also observed that the expected 
length of all intervals is maximized when R = 0.5 , and if 
the exact value of the parameter R approached zero or one, 
then its value would be shorter and shorter. According to 
the performance of the Bayes estimates based on different 
priors, it is clear that the Bayes estimates and correspond-
ing credible intervals are sensitive to the values of � and � . 
Furthermore, comparing priors 1–4 in Table 5, for fixed � 
(fixed � ) the expected length will decrease when � increases 
( � increases).

A Real Example

In this section, two real data are analyzed to illustrate the use 
of our proposed estimation methods. We consider two real 
data sets which contained times to breakdown of an insulat-
ing fluid between electrodes recorded at different voltages 
(Nelson [34]). In Tables 6 and 7, the failure times (in min-
utes) are presented, which are for an insulating fluid between 
two electrodes subject to a voltage of 34 kV (data set 1) and 
36 kV (data set 2).

First, the inverse Gaussian distribution is fitted to the 
two data sets separately. The ML estimates of �1 and �2 are 
1.208 and 1.053, respectively. In addition, the Kolmogo-
rov–Smirnov (K–S) distances between the empirical dis-
tribution functions and the fitted distribution functions are 
used to check the goodness of fit. The K–S test statistic is 
computed as 0.2079 and 0.2682 and the associated p values 
are 0.3364 and 0.1921, respectively. Based on the p values, 
one cannot reject the hypothesis that the data are coming 
from the inverse Gaussian distributions. Moreover, we plot 
the empirical distribution functions and the fitted distribu-
tion functions in Fig. 1 (see Farbod and Gasparian [20]).
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Table 5  Expected lengths (EL) and coverage probability (CP) of the confidence intervals with (1 − �) = 0.95

m1 m2 R C.S. Boot-p (MLE) Boot-p (EM) GPQ Bayes Bayes Bayes Bayes

EL CP EL CP EL CP Prior 1 Prior 2 Prior 3 Prior 4

EL CP EL CP EL CP EL CP

5 5 0.31
(
r1, r1

)
0.2660 0.942 0.2684 0.940 0.2683 0.943 0.1481 0.993 0.1383 0.995 0.1200 0.999 0.1109 0.997(

r2, r2
)

0.2792 0.934 0.2791 0.939 0.2772 0.947 0.1508 0.992 0.1406 0.997 0.1202 0.999 0.1135 0.996(
r3, r3

)
0.3050 0.937 0.3053 0.949 0.3032 0.937 0.1534 0.991 0.1409 0.995 0.1261 1 0.1186 0.998(

r1, r2
)

0.2741 0.947 0.2753 0.946 0.2722 0.941 0.1489 0.995 0.1403 0.997 0.1206 1 0.1117 0.999(
r1, r3

)
0.2902 0.950 0.2903 0.946 0.2869 0.935 0.1525 0.994 0.1406 0.994 0.1241 0.998 0.1121 0.999(

r2, r3
)

0.2920 0.939 0.2918 0.940 0.2929 0.943 0.1572 0.996 0.1434 0.993 0.1226 0.999 0.1133 0.996
0.5

(
r1, r1

)
0.3170 0.944 0.3178 0.941 0.3174 0.951 0.1379 0.980 0.1359 0.979 0.1168 0.989 0.1063 0.983(

r2, r2
)

0.3274 0.952 0.3274 0.944 0.3282 0.954 0.1415 0.983 0.1287 0.973 0.1083 0.991 0.1114 0.981(
r3, r3

)
0.3545 0.934 0.3562 0.929 0.3551 0.930 0.1440 0.976 0.1337 0.975 0.1224 0.987 0.1105 0.980(

r1, r2
)

0.3231 0.944 0.3214 0.938 0.3206 0.943 0.1356 0.990 0.1282 0.986 0.1196 0.986 0.1097 0.983(
r1, r3

)
0.3372 0.935 0.3385 0.946 0.3382 0.943 0.1413 0.983 0.1292 0.985 0.1213 0.981 0.1084 0.990(

r2, r3
)

0.3406 0.932 0.3422 0.950 0.3430 0.938 0.1417 0.978 0.1297 0.979 0.1186 0.983 0.1105 0.990
0.66

(
r1, r1

)
0.2958 0.947 0.2938 0.939 0.2945 0.944 0.0824 0.898 0.0766 0.932 0.0722 0.931 0.0657 0.962(

r2, r2
)

0.3025 0.939 0.3009 0.941 0.3013 0.939 0.0841 0.909 0.0767 0.918 0.0725 0.954 0.0689 0.955(
r3, r3

)
0.3296 0.938 0.3291 0.943 0.3290 0.941 0.0887 0.911 0.0789 0.911 0.0752 0.919 0.0667 0.964(

r1, r2
)

0.2979 0.943 0.2979 0.943 0.2978 0.938 0.0845 0.903 0.0765 0.917 0.0730 0.942 0.0668 0.952(
r1, r3

)
0.3093 0.947 0.3097 0.948 0.3115 0.933 0.0875 0.901 0.0781 0.934 0.0755 0.935 0.0685 0.953(

r2, r3
)

0.3134 0.950 0.3148 0.949 0.3168 0.947 0.0886 0.902 0.0798 0.907 0.0752 0.948 0.0697 0.950
0.76

(
r1, r1

)
0.2426 0.935 0.2429 0.936 0.2423 0.946 0.0583 0.773 0.0543 0.827 0.0496 0.855 0.0448 0.911(

r2, r2
)

0.2477 0.919 0.2508 0.932 0.2481 0.939 0.0607 0.784 0.0539 0.847 0.0517 0.846 0.0452 0.912(
r3, r3

)
0.2785 0.920 0.2767 0.928 0.2758 0.936 0.0623 0.777 0.0581 0.798 0.0532 0.875 0.0480 0.875(

r1, r2
)

0.2441 0.942 0.2478 0.939 0.2454 0.944 0.0617 0.776 0.0551 0.831 0.0506 0.864 0.0471 0.876(
r1, r3

)
0.2578 0.949 0.2575 0.941 0.2605 0.945 0.0622 0.797 0.0549 0.851 0.0528 0.862 0.0471 0.883(

r2, r3
)

0.2629 0.951 0.2626 0.943 0.2619 0.935 0.0637 0.728 0.0580 0.784 0.0523 0.819 0.0476 0.883
10 10 0.31

(
r1, r1

)
0.1913 0.943 0.1906 0.931 0.1907 0.945 0.1124 0.993 0.1040 0.997 0.0953 0.998 0.0905 0.998(

r2, r2
)

0.1993 0.954 0.1992 0.937 0.1993 0.935 0.1162 0.991 0.1093 0.993 0.0983 1 0.0932 0.994
(
r3, r3

)
0.2336 0.946 0.2346 0.946 0.2333 0.956 0.1285 0.992 0.1200 0.994 0.1085 0.998 0.1035 0.997

(
r1, r2

)
0.1965 0.956 0.1964 0.944 0.1939 0.944 0.1132 0.996 0.1072 0.998 0.0957 0.998 0.0926 0.998

(
r1, r3

)
0.2146 0.945 0.2134 0.936 0.2139 0.947 0.1202 0.993 0.1117 0.996 0.1032 0.997 0.0959 1

(
r2, r3

)
0.2194 0.944 0.2183 0.935 0.2155 0.945 0.1216 0.991 0.1159 0.998 0.1034 0.997 0.0955 1

0.5
(
r1, r1

)
0.2276 0.944 0.2273 0.937 0.2274 0.942 0.1134 0.971 0.1047 0.990 0.0993 0.986 0.0910 0.985

(
r2, r2

)
0.2385 0.953 0.2362 0.937 0.2359 0.938 0.1151 0.971 0.1061 0.986 0.1027 0.993 0.0916 0.991

(
r3, r3

)
0.2774 0.955 0.2771 0.945 0.2758 0.935 0.1235 0.976 0.1178 0.982 0.1088 0.987 0.1015 0.989

(
r1, r2

)
0.2324 0.937 0.2336 0.934 0.2335 0.941 0.1147 0.981 0.1061 0.980 0.1003 0.987 0.0932 0.985

(
r1, r3

)
0.2536 0.935 0.2545 0.938 0.2547 0.935 0.1168 0.984 0.1104 0.986 0.1059 0.984 0.0955 0.988

(
r2, r3

)
0.2573 0.946 0.2593 0.950 0.2585 0.944 0.1191 0.983 0.1095 0.986 0.1056 0.991 0.0987 0.990

0.66
(
r1, r1

)
0.2065 0.944 0.2054 0.935 0.2058 0.937 0.0712 0.922 0.0676 0.937 0.0636 0.962 0.0613 0.962

(
r2, r2

)
0.2149 0.934 0.2154 0.924 0.2161 0.944 0.0717 0.915 0.0666 0.948 0.0656 0.959 0.0601 0.960

(
r3, r3

)
0.2539 0.944 0.2527 0.945 0.2525 0.927 0.0773 0.901 0.0724 0.925 0.0696 0.957 0.0628 0.971

(
r1, r2

)
0.2113 0.949 0.2112 0.950 0.2102 0.948 0.0736 0.912 0.0662 0.941 0.0660 0.967 0.0617 0.958

(
r1, r3

)
0.2313 0.942 0.2299 0.946 0.2317 0.945 0.0767 0.903 0.0719 0.932 0.0693 0.948 0.0633 0.974
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Table 5  (continued)

m1 m2 R C.S. Boot-p (MLE) Boot-p (EM) GPQ Bayes Bayes Bayes Bayes

EL CP EL CP EL CP Prior 1 Prior 2 Prior 3 Prior 4

EL CP EL CP EL CP EL CP
(
r2, r3

)
0.2352 0.950 0.2336 0.940 0.2350 0.926 0.0755 0.908 0.0716 0.929 0.0681 0.944 0.0631 0.960

0.76
(
r1, r1

)
0.1663 0.947 0.1656 0.935 0.1635 0.945 0.0499 0.832 0.0460 0.837 0.0431 0.895 0.0402 0.925(

r2, r2
)

0.1735 0.937 0.1736 0.937 0.1738 0.946 0.0494 0.805 0.0467 0.872 0.0453 0.886 0.0423 0.912
(
r3, r3

)
0.2067 0.937 0.2080 0.953 0.2961 0.949 0.0554 0.795 0.0503 0.848 0.0469 0.881 0.0423 0.908

(
r1, r2

)
0.1717 0.956 0.1685 0.936 0.1696 0.946 0.0499 0.843 0.0466 0.864 0.0448 0.893 0.0401 0.908

(
r1, r3

)
0.1865 0.947 0.1861 0.941 0.1865 0.943 0.0548 0.794 0.0500 0.834 0.0493 0.864 0.0433 0.909

(
r2, r3

)
0.1898 0.944 0.1908 0.948 0.1924 0.944 0.0543 0.795 0.0502 0.851 0.0481 0.870 0.0418 0.909

15 15 0.31
(
r1, r1

)
0.1551 0.956 0.1556 0.947 0.1555 0.945 0.0946 0.996 0.0888 0.996 0.0822 0.992 0.0773 0.997(

r2, r2
)

0.1612 0.944 0.1626 0.949 0.1625 0.943 0.0953 0.992 0.0917 0.995 0.0856 1 0.0801 1(
r3, r3

)
0.1998 0.926 0.1995 0.938 0.1988 0.929 0.1116 0.992 0.1053 0.993 0.0971 0.997 0.0902 0.997(

r1, r2
)

0.1596 0.946 0.1607 0.937 0.1606 0.928 0.0944 0.991 0.0904 0.997 0.0843 0.996 0.0779 0.998(
r1, r3

)
0.1795 0.948 0.1803 0.936 0.1796 0.933 0.1035 0.987 0.0983 0.998 0.0915 0.998 0.0853 0.997(

r2, r3
)

0.1835 0.926 0.1831 0.938 0.1824 0.930 0.1043 0.997 0.0986 0.996 0.0922 0.999 0.0832 0.998
0.5

(
r1, r1

)
0.1873 0.954 0.1877 0.947 0.1864 0.930 0.0988 0.993 0.0934 0.991 0.0833 0.992 0.0835 0.995(

r2, r2
)

0.1951 0.947 0.1941 0.940 0.1954 0.938 0.1001 0.985 0.0941 0.988 0.0914 0.989 0.0867 0.990(
r3, r3

)
0.2386 0.934 0.2376 0.927 0.2394 0.945 0.1117 0.972 0.1056 0.981 0.1013 0.985 0.0953 0.991(

r1, r2
)

0.1921 0.943 0.1926 0.937 0.1905 0.934 0.0976 0.978 0.0944 0.987 0.0905 0.988 0.0812 0.989(
r1, r3

)
0.2158 0.944 0.2155 0.936 0.2148 0.926 0.1062 0.980 0.0991 0.980 0.0958 0.986 0.0875 0.993(

r2, r3
)

0.2188 0.927 0.2186 0.938 0.2189 0.947 0.1063 0.982 0.0989 0.985 0.0955 0.991 0.0887 0.992
0.66

(
r1, r1

)
0.1682 0.956 0.1686 0.947 0.1695 0.937 0.0639 0.941 0.0597 0.959 0.0587 0.971 0.0543 0.979(

r2, r2
)

0.1751 0.933 0.1764 0.932 0.1764 0.934 0.0662 0.950 0.0616 0.954 0.0598 0.978 0.0560 0.970(
r3, r3

)
0.2157 0.937 0.2154 0.948 0.2156 0.940 0.0719 0.914 0.0662 0.931 0.0667 0.955 0.0606 0.967(

r1, r2
)

0.1708 0.937 0.1731 0.945 0.1723 0.949 0.0652 0.944 0.0616 0.952 0.0609 0.969 0.0556 0.962(
r1, r3

)
0.1944 0.940 0.1934 0.948 0.1942 0.946 0.0715 0.927 0.0673 0.929 0.0653 0.946 0.0603 0.975(

r2, r3
)

0.1965 0.956 0.1964 0.942 0.1966 0.941 0.0723 0.911 0.0666 0.945 0.0649 0.962 0.0888 0.995
0.76

(
r1, r1

)
0.1348 0.955 0.1345 0.948 0.1337 0.947 0.0433 0.853 0.0408 0.891 0.0395 0.924 0.0363 0.937(

r2, r2
)

0.1418 0.932 0.1394 0.933 0.1407 0.934 0.0435 0.845 0.0404 0.881 0.0402 0.905 0.0374 0.929(
r3, r3

)
0.1745 0.948 0.1755 0.946 0.1756 0.935 0.0494 0.831 0.0462 0.854 0.0443 0.915 0.0426 0.894(

r1, r2
)

0.1387 0.938 0.1375 0.947 0.1374 0.939 0.0452 0.836 0.0415 0.882 0.0395 0.914 0.0374 0.932(
r1, r3

)
0.1541 0.947 0.1556 0.945 0.1559 0.945 0.0494 0.811 0.0458 0.893 0.0441 0.889 0.0402 0.914(

r2, r3
)

0.1576 0.942 0.1587 0.946 0.1595 0.947 0.0491 0.820 0.0456 0.859 0.0447 0.883 0.0401 0.916

Table 6  Data set 1 (34 kV)
0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.50
7.35 8.01 8.27 12.06 31.75 32.52 33.91 36.71 72.89

Table 7  Data set 2 (36 kV)
0.35 0.59 0.96 0.99 1.69 1.97 2.07 2.58 2.71 2.90
3.67 3.99 5.35 13.77 25.50
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The generated data and corresponding censored schemes 
are shown in Table 8.

The bootstrap interval is calculated based on 100,000 
parametric bootstrap resamples using the ML estimates 
given in Sect. 2, and the interval endpoints are found as 
the lower and upper 2.5% quantiles of the estimated boot-
strap distribution of R . The ML estimate of R becomes 
R̂ = 0.5046 . The 95% bootstrap CIs from (17)–(19) are 
computed as (0.3438, 0.6654), (0.3420, 0.6571), (0.4732, 
0.5583), respectively. Moreover, the 95% bootstrap CIs 
based on EM algorithm are computed as (0.3425, 0.6667), 
(0.3425, 0.6582), (0.4645,0.5694), respectively. Using Algo-
rithm 4 in Sect. 3.3, 100,000 values of QR are generated. The 
95% lower and upper generalized confidence limits of the 
stress–strength reliability are obtained as the lower and upper 
2.5% quantiles of the ordered values of QR . The resultant 

interval is computed as (0.3489, 0.6647). The Bayesian 
intervals are obtained based on Gibbs sampling technique. 
In addition, 10,000 observations are obtained from the pos-
terior distribution of R . The HPD interval based on prior 4 
is found through the algorithm presented by Chen and Shao 
[12]. From (16), the approximate Bayes estimate of R, based 
on B = 10,000 samples and discard the first M = 2000 values 
as burn-in period, becomes R̂B = 0.5061 . The interval based 
on Gibbs sampling is given by (0.4929,0.5211). The simu-
lated values and histogram of R generated by the algorithm 
of Gibbs sampling are plotted in Fig. 2. In this example, 
the scale factor value of the MCMC estimates based on 20 
sequences is 1.001 which is an acceptable value for their 
convergence. It can be seen that the HPD interval has the 
shortest expected length, and all intervals covered the exact 
value of the stress–strength reliability parameter.

Fig. 1  The empirical distribu-
tion function (dashed) and fitted 
distribution functions for data 
sets 1 and 2

Table 8  Data and the 
corresponding censored 
schemes

i 1 2 3 4 5 6

xi 0.19 0.96 1.31 4.15 7.35 12.06
Ri 1 0 2 3 2 5
yi 0.35 0.99 1.97 2.07 2.90 3.99
R′
i

2 1 0 2 1 3

Fig. 2  Simulated values of R 
and histogram of R
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Conclusions

Based on progressively type II censored samples, point esti-
mates and CIs of stress–strength reliability R = P(Y < X) are 
considered by different methods where X and Y  denoted two 
independent inverse Gaussian distributions with unknown 
parameters. Based on our simulation results, concerning 
the performance of the estimators in terms of RMSEs, it is 
observed that the Bayes estimator for all values of R func-
tioned better than the ML estimators for stress–strength 
reliability.

The results demonstrated that the expected lengths 
of all intervals tend to decrease either the exact value of 
stress–strength reliability which gets closer to the extremes 
or the sample size increases. As for the coverage probability, 
the bootstrap and the GCIs are near the nominal level, and 
the HPD credible interval based on prior 4 functioned better.

Based on interval lengths, it appears that the HPD inter-
val is the shortest for all values of R . The GCI is close to 
the bootstrap CIs. Therefore, it can be concluded that the 
Bayesian interval has the best overall performance in terms 
of coverage probability and interval length.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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