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Abstract
Stochastic processes are approved presentation of real systems which its development in space or time can be supposed as 
random. A semi-hidden Markov model as a type of stochastic processes is a modification of hidden Markov models with 
states that are no longer totally unobservable and are less hidden. This mathematical model is employed for modeling data 
sequences with long runs, memory and statistical inertia. In this article, we investigate the theory of the semi-hidden Markov 
model along with its parameter estimation and order estimation methods. Moreover, the proposed model is applied to model 
the error traces generated by the wireless channels. A new Markov-based trace analysis algorithm is suggested to divide a 
non-stationary network error trace into stationary parts. By means of the best semi-hidden Markov model and fitting prob-
ability distribution, we would be able to model these parts accurately. Calculating the information measure criteria and the 
autocorrelation function by running the modified Baum–Welch algorithm several times help us to find the optimal order of 
the semi-hidden Markov model.
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Introduction

A stochastic process is a probability model employed for 
describing the evolution in time of a random event. The hid-
den Markov models (HMMs) make a profitable and flexible 
class of stochastic processes which have been used satis-
factorily in a broad range of applied problems. The hidden 
Markov model (HMM) is an extension of a Markov chain 
whose states are hidden. It is a doubly stochastic model 
{(Hk,Ok)} , where {Hk} denotes the hidden state sequence 
which is a finite-state Markov chain. Given {Hk} , the Ok is 
conditionally independent and the conditional distribution of 
it relies on {Hk} only through Hn . The (HMMs) have many 

applications in different fields such as speech recognition 
[1], hand gesture recognition [2], source coding [3], seismic 
hazard assessment [4], traffic prediction [5],wireless network 
[6–8], protein structure prediction [9] and finance [10]. 
The semi-hidden Markov models (SHMMs) are stochastic 
models related to HMMs. They are discussed in [11, 12], 
recently. A principal characteristic of these models is the 
involvement of statistical inertia which admits the genera-
tion, and analysis of observation symbol contains frequent 
runs. The SHMMs cause a substantial reduction in the model 
parameter set. Therefore in most cases, these models are 
computationally more efficient models compared to HMMs 
in most cases. As long stretches of error-free transmission 
exist in wireless channels, the corresponding runlength vec-
tor is greatly shorter in length than the original binary data. 
Hence, the simulation runtime decreases considerably.

In this paper, the definition and the modified Baum–Welch 
algorithm for the parameter estimation of the SHMM are 
given first and next, the order estimation benchmarks of 
these models are discussed. Next, we present an applica-
tion of the SHMM in wireless communication for modeling 
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the error sequence generated in the CDMA system. Finally, 
conclusions are given.

The semi‑hidden Markov model

The SHMMs are the advanced types of stochastic models 
connected to HMMs. They can model the behavior of sym-
bolic sequences with inertia, memory and long runs. If we 
know the state of changing points, given these sequences 
it is probable to realize the sequence of states. Hence, the 
semi-hidden Markov model (SHMM) is not absolutely hid-
den. The SHMMs work by altering among distinct states 
and generating symbols of the alphabet in the same way as 
the HMMs. The input sequence is in terms of a runlength 
vector, and therefore, the length of the input sequence is 
extremely reduced, especially when the sequences involve 
long stretches of identical symbols.

In this section, we represent a modified version of the 
forward–backward (BWA) that is employed to estimate the 
parameters of the SHMMs. Figure 1 indicates the flowgraph 
of the SHMM.

The parameters of SHMMs can be estimated by the algo-
rithms similar to the Baum–Welch Algorithm (BWA). Sup-
pose �T

1
 be the observation sequence which is explained by 

the sequence of different observation values X1,X2,… ,XN 
and the number of repetitions m1,m2,… ,mN . Let f (�T

1
) be 

a process multidimensional distribution. We can write the 
likelihood function as

where �i = (Xi,mi) , N is the number of subsegments con-
taining identical observations and � is the model parameter 
vector which can be omitted in the equations in which its 
actual value is not important. To calculate �m(X) using the 
fast exponentiation algorithm, we express the power as a 
binary number

(1)g(�T
1
, �) = h(�N

1
, �) = �

N∏

i=1

�mi(Xi, �)�

�m(X) is found as a result of the following recursion:
Algorithm:
Initialize:

For i = 1, 2,… , k

Begin

End
We obtain the fast forward algorithm

which can be used to calculate the forward probabilities

where nt is the number of different observation series up to 
time t.

Similarly, we obtain the fast backward algorithm

for calculating the backward probabilities

We have

To indicate the forward and backward algorithm for calculat-
ing h(�N

1
, �) in block-vector form, we define

These vectors can be analyzed recursively by the following 
forward algorithm:
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Fig. 1   The semi-hidden Markov flowgraph
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The backward variable is defined as

We obtain the block-form backward algorithm as

Next, suppose that qt is the state at time t. In order to esti-
mate the model Λ , define

This can be described in relation to the forward and back-
ward variables as

Γt(i, j) = [0] unless i = XN and j = XN+1 where [0] represents 
a matrix consisting of all zeros. The probability transition 
matrix P is estimated by calculating the expected number of 
transition from i to j as 

∑N−1

t=1
Γt(i, j).

One of the most important problems with SHMMs is 
order estimation. The information criteria are the recti-
fication of the parameters and uncertainty in the model. 
They are based on the maximum log-likelihood estimate 
(L) of the model. These criteria try to choose an order of 
the model with small generalization error. Three common 
criteria for the mentioned purpose are as follows in which 
k and n are the numbers of parameters and observations, 
respectively:

1.	 The Akaike information criterion (AIC) was proposed 
by Akaike (1973) [13]. It is defined as 

2.	 The Bayesian information criterion (BIC) was intro-
duced by Schwarz (1978) [14]. It is computed as 

3.	 The Hannan–Quinn information criterion (HQC) is cal-
culated as 
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(16)Γt(i, j) = Pr(qt = i, qt+1 = j|�T
1
,Λ)

(17)Γt(i, j) =
�t(i)ΛXNXN+1

ΛXNXN+1

m(XN+1)−1�t(j)

P(�T
1
|Λ)

(18)AIC = − 2log(L) + 2k

(19)BIC = − 2log(L) + klogn

(20)HQC = − 2log(L) + 2klog(log(n))

An application of the SHMM in wireless 
communication

Modeling wireless communication errors is substantial for 
simulation-based performance assessment of network proto-
cols or for utilizing information about these error characteris-
tics within a protocol. Discrete channel models (DCMs) were 
employed in wireless systems such as code-division multiple 
access (CDMA) [15], orthogonal frequency division modula-
tion (OFDM) [16] and global system for mobile communica-
tion (GSM) [17]. HMMs are dominant tools with high accu-
racy which employed as the discrete channel model (DCM) 
for modeling stochastic processes. These models are applied 
for precise simulation of errors in wireless systems [18–22]. 
In this section, the SHMM is used for modeling the errors of 
the CDMA as the DCM. The order estimation is profitable for 
interpreting the model. Moreover, it is vital to ensure stabil-
ity. The estimation of the order of the HMM was investigated 
in [23]. They discussed the optimal order estimation of the 
SHMM for the error sequences generated by the CDMA.

The CDMA specification

The CDMA is a channel access method employed by vari-
ous radio communication technologies. It has considerable 
advantages over other similar technologies. CDMA proposes 
a high put-through rate and can prevail over resilient interfer-
ence which leads to an increase in the system capacity. The 
importance of the CDMA makes its modeling necessary to 
assess and analyze the error control pattern. The superiority 
of the CDMA makes the modeling necessary for assessing and 
analyzing the error control pattern. These errors are yielded 
by comparing the detected with desired symbols and can be 
shown by the SHMM. Refer to [24, 25] for more details about 
CDMA. The block diagram for the SHMM-based simulation 
model of a CDMA link is given in Fig. 2. In Fig. 2, a multi-
user CDMA system is shown which is considered to increase 
the capacity of the system. In this system, K users have con-
sidered which one user is the desired one and the other K-1 
users are the interfering users. Both have the same blocks. All 
these users then transmit simultaneously in the same frequency 
band and are distinguished at the receiver by the user specific 
spreading code. The interfering users appear as interference to 
the desired user because of nonzero cross-correlation values 
between the spreading codes. All the desired user, interfering 
users and additive noise combine in the wireless channel.

Analysis of the CDMA system with the SHMM

The simulation of a CDMA system is performed in this sec-
tion. It includes interference and thermal noise. It operates 
in a multipath/fading environment. The Rayleigh fading 
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on each multipath component is exhibited. Each MAI sig-
nal uses the same PN-sequence as the signature/spreading 
sequence. BPSK modulation is regarded, and pulse shaping 
is ignored. All MAI signals and the desired signal are chip 
synchronized at the receiver. The input parameters are sup-
posed to be KfactordB = 0, SF = 63, Number of Interferers 
(NoI) = 30, and Mpathdelay= [2 25 85] with 12,000 symbols 
are supposed. The run test is performed, and the p value 
is obtained 0.295. It indicates that at a significance level 
of � = 0.05 , the error trace produced from the waveform 
level simulation is randomly distributed. The slow fading 
causes this non-stationary. Moreover, existence of the inertia 
which is the characteristic of SHMM is evident. The original 
error trace is separated into lossy and error-free traces. The 
first trace is comprised of 1′s and 0′s with the first element 
being a 1, and the second one contains zeros in runlength 
vector form. Therefore, two random processes with space 
S = {0, 1, 2,…} are as follows:

•	 {Ln|n ≥ 0} : The lossy state length process, where Ln 
shows the length of the nth state.

•	 {Gn|n ≥ 0} : The error-free state length process, where Gn 
shows the number of elements in the nth error-free state.

The length of a lossy trace is determined by the change of state 
constant (C) which is the sum of the mean and standard devia-
tion of the error burst runlengths. The run test is performed 
on the lossy trace, and the p-value (two-tailed) smaller than 
0.0001 admits the acceptance of the stationary hypothesis at 
the significance level of 0.05. Different SHMMs are trained 

to model the lossy trace. It is observed that the SHMM with 2 
states is the best model. The sample autocorrelation function 
(ACF) comparison of the lossy data trace with 2 to 6 state 
SHMM is exhibited in Fig. 3; Furthermore, the MSE ACFs 
are calculated for judging simpler (Table 1).

The criteria AIC, BIC and HQC of the different SHMMs 
are given in Table 2. It is obvious that all these measures 
choose 2-state SHMM as the best model. The best parameters 
of this model are estimated as follows:

The best fitting distributions for the runlength of error-
free and lossy traces are the generalized Pareto distribution 
(GPD) and two-parameter Gamma distribution, respectively. 
Figures 4 and 5 indicate the cumulative distribution function 
(CDF) for the Gn and Ln along with their empirical cumu-
lative distribution functions. The CDF forms of (GPD) and 
gamma(�, �) distributions are as follows:

with domain:

and

(21)A =

(
0 1

0.1271 0.8729

)
B =

(
0.2692 0.7308

)

(22)F(x) =

{
1 − (1 + k

(x−�)

�
)
−

1

k , if k ≠ 0

1 − exp(−
(x−�)

�
), if k = 0

(23)
{

𝜇 ≤ x ≤ ∞, for k ≥ 0

𝜇 ≤ x ≤ 𝜇 −
𝜎

k
, for k < 0

Fig. 2   Block diagram of the SHMM implementation for the CDMA
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(24)F(x) =
Γx(�)

Γ(�)

Fig. 3   The ACF comparison of 
lossy data with different states 
of SHMM

Table 1   MSE ACFs of different 
SHMMs for the lossy trace

Model MSE ACF

2-state 0.000989
3-state 0.001202
4-state 0.001132
5-state 0.001283
6-state 0.001269

Table 2   AIC, BIC and HQC 
values of different SHMMs for 
the lossy trace

Model k Log-likelihood AIC BIC HQC

2-state SHMM 4 305.3651 618.7302 624.0041229 614.8977144
3-state SHMM 9 305.3651 628.7302 640.5965263 620.1071073
4-state SHMM 16 305.1949 642.3898 663.4854912 627.0598575
5-state SHMM 25 305.1932 660.3864 693.3484175 636.4333648
6-state SHMM 36 305.1948 682.3896 729.8549052 647.8972293

Fig. 4   The error-free state 
runlength distribution

where Γ is the Gamma function and Γx is the incomplete 
Gamma function.

The parameters for these best distributions are 
k = 0.05811, � = 5.3891, � = 1.6524 for the (GPD) and 
� = 2.1861, � = 0.70809 for the Gamma distribution.

The binary data are produced by generating lossy trace 
utilizing the 2-state SHMM and by generating runlengths of 
the error-free trace from the GPD as follows:

1.	 Choose the number of lossy and error-free frames (N) to 
generate in the artificial trace.
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2.	 Identify the length of an error-free state (glen) from the 
Gn using the inverse CDF method.

3.	 Generate a sequence of zeros (glen) to make an error-free 
burst.

4.	 Identify the length of lossy state (llen) from the Ln using 
the inverse CDF method.

5.	 Generate a sequence of (llen) burst which is either lossy 
or error-free frames based on 2-state SHMM.

6.	 Compound the two sequences to the artificial trace.

7.	 Stop if all N frames have been generated, else return to 
step 2. The original and artificial error traces are com-
pared according to the ACF in Fig. 6. It is evident that 
the two plots are matched. Moreover, from Fig. 7, it can 
be concluded that the distributions of error-free intervals 
for these two sequences are in the same manner which 
validates the accuracy of our mathematical model.

Fig. 5   The lossy state runlength 
distribution

Fig. 6   The ACF comparison of 
the original and artificial error 
traces

Fig. 7   The error-free interval 
distribution comparison of the 
original and artificial error 
traces
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Conclusion

Analyzing the network protocol and performance depends 
on the methods of modeling and simulating channel condi-
tions. Wireless channels usually face bursty errors. In this 
paper, we demonstrated that the SHMM as a discrete channel 
model can accurately model the errors of a CDMA system. 
The simulation contained the effects of multipath, additive 
white Gaussian noise and multiple access interference to 
generate the error sequence. The original error trace exhib-
ited a non-stationary performance. Therefore, we divided the 
data into two lossy and error-free traces to obtain stationary 
behavior. The SHMM was used to model the lossy trace. The 
AIC, BIC, HQC and sample autocorrelation criteria were 
employed to find the best model as a 2-state SHMM. The 
best fitting of a runlength of the lossy and error-free trace 
was the two-parameter Gamma distribution and the gener-
alized Pareto distribution, respectively. An artificial binary 
error trace was generated by integrating the 2-state (SHMM) 
and generalized Pareto distribution according to the algo-
rithm we explained. The original error trace matched closely 
with the artificial one according to the sample autocorrela-
tion function. All in all, the semi-hidden Markov model is a 
reliable stochastic model for modeling symbolic sequences 
with long runs and statistical inertia. It has become a precise 
mathematical feature to model the error traces generated by 
wireless channels.
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tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
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Creative Commons license, and indicate if changes were made.
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