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Abstract
The matching polynomial of a graph has coefficients that give the number of matchings in the graph. In this paper, we 
determine all connected graphs on eight vertices whose matching polynomials have only integer zeros. A graph is matching 
integral if the zeros of its matching polynomial are all integers. We show that there are exactly two matching integral graphs 
on eight vertices.
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Introduction

Let G = (V(G),E(G)) be a simple graph with vertex set V(G) 
and edge set E(G). By order and size of G, we mean the 
number of vertices and the number of edges of G, respec-
tively, and we denote it by |V(G)| and |E(G)|, respectively. 
The maximum degree of G is Δ(G) (or Δ if G is clear from 
the context). We denote the complete graph of order n by Kn 
and the star graph of order n + 1 by K1,n . For any vertex u of 
G, we use deg(u) to denote the degree of u. By N(u) we mean 
the neighborhood set of u. Let H be an induced subgraph 
of G. Then NH(u) = N(u) ∩ V(H) , is the set of neighbors 
of u in H. An r-matching in G is a set of r pairwise non-
incident edges. The number of r-matchings in G is denoted 
by p(G, r). It is consistent to define p(G, 0) = 1 . The match-
ing polynomial of G is given by

where n = |V(G)| . By way of example, the matching poly-
nomial of a path on four vertices is x4 − 3x2 + 1 . The roots 
of �(G, x) are called the matching roots (or matching zeros) 
of G. The notation mult(�,G) is used for the multiplicity of � 

as a zero of �(G, x) . We also denote the multiset of the roots 
of the matching polynomial of G by R(G). We use exponent 
symbol to show the multiplicities of the elements of R(G).

The matching polynomial is related to the characteristic 
polynomial of G, which is defined to be the characteristic 
polynomial of the adjacency matrix of G. In particular these 
two coincide if and only if G is a forest [7]. Also the match-
ing polynomial of any connected graph is a factor of the 
characteristic polynomial of some tree [6]. The theory of 
matching polynomial is well elaborated in [3, 4, 6–9].

A graph is said to be integral if eigenvalues of its adja-
cency matrix consist entirely of integers. The notion of inte-
gral graphs dates back to Harary and Schwenk [10]. Further-
more, several explicit constructions of integral graphs of 
special types appear in the literature, see [2] and references 
therein.

The idea of studying graphs with integer matching 
polynomial zeros was first appeared in [1], where Akbari, 
Csikvari, etc., introduced the concept of matching integral 
graphs. A graph is called matching integral if all zeros of 
its matching polynomial are integers. They characterized all 
traceable graphs which are matching integral. They studied 
matching integral regular graphs and showed that for k ≥ 2 
there is only one connected matching integral k-regular 
graph, namely K7⧵

(
E(C3) ∪ E(C4)

)
 . Furthermore, it has 

been proved that there is no matching integral claw-free 
graph and K2 is the only connected matching integral graph 
with a perfect matching.

�(G, x) =

⌊ n

2
⌋�

r=0

(−1)rp(G, r)xn−2r,
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Motivated by the previous work, we are interested to char-
acterize matching integral graphs of small order. To this 
end, matching integral graphs on at most seven vertices have 
been studied by the author. It has been shown that there are 
exactly eight connected matching integral graphs up to seven 
vertices. In this paper, we determine all connected match-
ing integral graphs on eight vertices. We show that there 
are only two connected graphs with eight vertices whose all 
matching roots are integers. Our work has been organized 
into two sections. The next section contains necessary back-
ground information and various preliminary-type results 
including matching polynomial of a graph. The following 
section is devoted to studying matching integral graphs on 
eight vertices.

Preliminaries

In order to establish our results, we need the following theo-
rems and lemmas:

Remark 2.1 A graph with odd order has 0 as a matching root 
and if � is a matching zero of a graph, then so is −�.

Theorem 2.2 [11]  For any graph G, the zeros of �(G, x) 
are all real. If  Δ > 1 , then the zeros lie in the interval 
(−2

√
Δ − 1, 2

√
Δ − 1).

Theorem 2.3 [5] If G is a connected graph, then the larg-
est zero of �(G, x) has multiplicity 1. In other words, it is a 
simple zero.

Theorem 2.4 [6] If � = 0 , then mult(�,G) is the number of 
vertices in G missed by a maximum matching.

Theorem 2.5 [11] Let G be a graph and u be a vertex of it. 
Then the zeros of �(G⧵u, x) interlace those of �(G, x) , i.e., 
if �1 ≥ �2 ≥ ⋯ ≥ �n and �1 ≥ �2 ≥ ⋯ ≥ �n−1 are matching 
zeros of G and G⧵u , respectively, then

Theorem  2.6 [12]  For a connected graph G, if 
mult(�,G) ≥ 2 , then there is a vertex u of G such that 
mult(�,G⧵u) = mult(�,G) + 1.

Theorem 2.7 [1]  If a graph G has a perfect matching, then 
its matching polynomial has a zero in the interval (0, 1]. 
If it has no zero in the interval (0, 1), then it is the disjoint 
union of some K2.

It follows from Theorem 2.7 that the only connected 
matching integral graph which has a perfect matching is K2.

�1 ≥ �1 ≥ �2 ≥ �2 ≥ ⋯ ≥ �n−1 ≥ �n.

Theorem 2.8 [1] Let G be a graph with at least one edge. 
Assume that mult(0,G) = t . Then the interval (0,

√
f (t)] con-

tains a zero of the matching polynomial of G, where f(t) is 
defined as: 

Lemma 2.9 [5] Let G be a graph and u be a ver-
tex of it. Then for each positive integer r, we have 
p(G, r) = p(G⧵u, r) +

∑
v∈N(u) p(G⧵uv, r − 1).

By following Ghorbani’s definition [4], �(r, k, t;p, q) is 
the set of graphs obtained by adding a new vertex u to 
the graph rK1,k ∪ tK1 and joining it to the other vertices 
by p + q edges such that the resulting graph is connected 
and u is adjacent with q centers of the stars. Clearly, 
r + t ≤ p ≤ r(k + 1) + t and 0 ≤ q ≤ r.

The notations K(k, t; l) and K�(k, t; l) are used for the 
graphs �(1, k, t; l + t, 0) and �(1, k, t;l + t + 1, 1) , respec-
tively. Their matching polynomials are

The graph �(r, 1, 0; s, q) , where q = s − r and r ≤ s ≤ 2r is 
denoted by S(r, s). Its matching polynomial is

The graph �(r, k, 0; r, r) is denoted by T(r, k) and its match-
ing polynomial is

For any G ∈ �(r, 3, t; p, q) the set of graphs obtained by 
adding s copies of K3 to G and joining them by l edges to 
the vertex u of G to make a connected graph is denoted by 
ℋ(r, s, t; p, q, l) . The notation L(t, l) is used for the graph 
ℋ(0, 1, t; t, 0, l) , for l = 1, 2, 3 and its matching polynomial is

Theorem 2.10 [4]  Let G be a connected graph and z(G) be 
the number of its distinct matching zeros.

1. If z(G) = 2 , then G = K2.
2. If z(G) = 3 , then G is either a star or K3.
3. If z(G) = 4 , then G is a non-star graph with 4 vertices.
4. I f  z(G) = 5 ,  then G is  one of  the graphs 

K(k, t; l),K�(k, t; l), L(t, l), T(r, k), S(r, s) , for some inte-
gers k, t, l, r, s or a connected non-star graph with five 
vertices.

f (t) =

{
t + 1 if t ≠ 1,

3 if t = 1.

(1)
�(K(k, t; l), x) = xk+t−2(x4 − (k + t + l)x2 + (l + t)(k − 1) + t),

(2)
�(K�(k, t; l), x) = xk+t−2(x4 − (k + t + l + 1)x2 + (l + t)(k − 1) + t).

(3)�(S(r, s), x) = x(x2 − s − 1)(x2 − 1)r−1.

(4)�(T(r, k), x) = xr(k−1)+1(x2 − r − k)(x2 − k)r−1,

(5)�(L(t, l), x) = xt(x4 − (t + l + 3)x2 + 3t + l).
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Lemma 2.11 [4] Let G be a connected graph. Then the fol-
lowing hold:

1. If R(G) = {0, (±�)r, (±�)} , 0 < 𝛼 < 𝛽  , r ≥ 2 , then 
G = S(r + 1, �2 − 1).

2. If R(G) = {0t, (±�), (±�)} , 0 < 𝛼 < 𝛽 , t ≥ 2 , then G is 
one of the graphs K(k, t�; l) , K�(k, t�; l) or L(t, l) for some 
integers k, t′, l, t.

3. If R(G) = {0t, (±�)r, (±�)} , 0 < 𝛼 < 𝛽 , t ≥ 2 , r ≥ 2 , then 
G = T(r�, k) for some integers r′ > 2 and k.

Note that Lemma 2.11 is derived from the proof of 
Theorem 2.10.

Remark 2.12 [4] The graphs K(k, t; l) and K(l + t, k − l; l) are 
isomorphic. The same is true for the graphs K′.

Matching Integral Graphs on Eight Vertices

In this section, we study connected graphs on eight verti-
ces, whose all matching roots are integers. The two lemmas 
which follow provide information about the root system of 
G. Theorem 3.3 characterizes matching integral graphs on 
eight vertices.

Lemma 3.1 Let G be a connected graph on eight vertices. If 
G is matching integral, then G has a three-matching.

Proof Let n and m be the order and the size of G, respec-
tively. Since Δ ≤ 7 , Theorem 2.2 implies that the zeros of 
�(G, x) lie in the interval [−4, 4] . Assume to the contrary 
that G does not have a matching of size 3. Note that by 
Theorem 2.7 we know that G does not have a perfect match-
ing. Consequently, mult(0,G) ≠ 0, 2 . Furthermore, since n 
is even, multiplicity of 0 as a root of �(G, x) is even. Now, it 
follows from Theorem 2.3 that the root system of G is either 
R(G) = {04,±�1,±�2} , 0 < 𝜃1 < 𝜃2 ≤ 4 or R(G) = {06,±�} , 
0 < 𝜃 ≤ 4.

Case 1 If R(G) = {04,±�1,±�2} , then using Lemma 2.11, 
we find that G is one of the graphs K(k, t; l), K�(k, t; l) or 
L(t, l), for some integers k, t, l. Furthermore, as G is con-
nected, m ≥ 7.

If G is a K(k,  t;  l), then from (1) we have k + t = 6 , 
m = l + 6 and p(G, 2) = (l + t)(k − 1) + t . Since the squares 
of the roots of matching polynomial of a graph sum to its 
number of edges, we have m = �2

1
+ �2

2
 . As the product of 

squares of the nonzero roots of matching polynomial of 
a graph is equal to its number of maximum matchings, 
p(G, 2) = �2

1
�2
2
 . Therefore l + 6 = �2

1
+ �2

2
 . Now, since in 

a K(k,  t;  l), l ≤ k we have l ≤ 6 . This implies that �1 = 1 

and �2 = 3 . Hence m = 10 , p(G, 2) = 9 and l = 4 . Thus 
(l + t)(k − 1) + t = 9 and so k(4 + t) = 13 , a contradiction.

If G is a K�(k, t; l) , then from (2) we see that k + t = 6,
m = l + 7 and p(G, 2) = (l + t)(k − 1) + t . Note that in a 

K�(k, t; l) , l ≤ k . Now, a similar argument as above shows 
that

either �1 = 1, �2 = 3 or �1 = 2, �2 = 3 . In the first case, 
we have p(G, 2) = 9 and l = 3 . Hence (l + t)(k − 1) + t = 9 
and so k(3 + t) = 12 , a contradiction. In the second case, we 
have p(G, 2) = 36 and l = 6 . This gives that k = 6 and t = 0 , 
contradicting the condition (l + t)(k − 1) + t = 36.

If G is an L(t, l), then by (5) we have t = 4 , m = l + 7 
and p(G, 2) = l + 12 . Now, since l ≤ 3 and m = �2

1
+ �2

2
 , we 

deduce that �1 = 1 and �2 = 3 . Hence l = 3 and p(G, 2) = 15 . 
However p(G, 2) = �2

1
�2
2
= 9 , a contradiction.

Case 2 If R(G) = {06,±�} , then by Theorem 2.10 we 
conclude that G = K1,7 which is not matching integral. This 
completes the proof. □

Lemma 3.2 Let G be a connected graph on eight vertices 
which is matching integral. Then R(G) = {02,±1,±2,±3}.

Proof Let m be the size of G. By Theorem 2.2 we know that 
the zeros of �(G, x) lie in the interval [−4, 4] . Now, Theo-
rem 2.7 and the previous lemma imply that the maximum 
size of a matching in G is 3, so mult(0,G) = 2 . Furthermore, 
from Theorem 2.8 we derive that 1 is a matching root G. 
Consequently, the root system of G can be expressed as one 
of the following forms:

Case 1 R(G) = {02, (±1)2,±�} , 1 < 𝜃 ≤ 4 . Now, Lemma 
2.11 implies that G = T(r, k) , for some integers r,  k, 
r > 2 . Moreover, it follows from (4) that r(k − 1) = 1 , a 
contradiction.

Case 2 R(G) = {02,±1,±�1,±�2} , 2 ≤ 𝜃1 < 𝜃2 ≤ 4 . 
First, assume that �2 = 4 . Hence we may write 
R(G) = {02,±1,±�,±4} , � ∈ {2, 3} . This gives that 
m = �2 + 17 ≥ 21 . Now, by Theorem  2.6 there is 
a vertex u of G such that mult(0,G⧵u) = 3 . It fol-
lows  tha t  R(G⧵u) = {03,±�1,±�2} ,  0 < 𝜂1 < 𝜂2 < 4 
or R(G⧵u) = {03, (±�)2} , 0 < 𝜂 < 4 . Furthermore, as 
deg(u) ≤ 7 , |E(G⧵u)| ≥ 14.

If R(G⧵u) = {03,±�1,±�2} , then G⧵u can be a connected 
graph or a disconnected graph. First, suppose that G⧵u is 
connected. Using Lemma 2.11, we see that G⧵u is one of the 
graphs K(k, t; l), K�(k, t; l) or L(t, l), for some integers k, t, l. 
If G⧵u is a K�(k, t; l) , then from (2) it is clear that k + t = 5 
and |E(G⧵u)| = l + 6 . As l ≤ k , we have |E(G⧵u)| ≤ 11 , a 
contradiction. If G⧵u is a K(k, t; l), then since K(k, t; l) is 
a subgraph of K�(k, t;l) , we conclude that |E(G⧵u)| ≤ 11 , 
a contradiction. If G⧵u is an L(t, l), then it follows from 
(5) that t = 3 and |E(G⧵u)| = l + 6 . Since l ≤ 3 we have 
|E(G⧵u)| ≤ 9 , a contradiction. Next, assume that G⧵u is not 
connected. Since |E(G⧵u)| ≥ 14 , we deduce that G⧵u must 
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be the union of K1 and a connected graph with six vertices, 
say G1 . On the other hand, R(G1) = {02,±�1,±�2} . There-
fore G1 is of the graphs K(k�, t�; l�) , K�(k�, t�; l�) or L(t�, l�) 
for some integers k′, t′, l′ . In each case, a similar argument 
as above can be applied to the graph G1 to conclude that 
|E(G1)| < 14 , a contradiction.

If R(G⧵u) = {03, (±�)2} , then by Theorem 2.3, G⧵u is 
not connected. Now, just as in the previous case, we see 
that G⧵u has a component with six vertices. However, it is 
not possible according to the root system of the G⧵u . This 
proves that 4 is not the largest matching zero of G and so 
R(G) = {02,±1,±2,±3} . □

Armed with the above results, we are now ready to 
prove the main theorem.

Theorem 3.3 Let G be a connected matching integral graph 
on eight vertices. Then G is one of the following graphs:

Proof The proof of the theorem is quite long, and so we 
summarize here the plan of the proof. The main idea is to 
gain information about the structure of G by describing the 
structure of G⧵u , for some vertex u of G and then finding 
the possible neighbors of u in G⧵u . To this end, first using 
the root system of G, we obtain the size of G, the number of 
two matchings and three matchings in G. Then we delete a 
vertex u of G such that the multiplicity of zero increases by 
one in G⧵u . The number of two matchings in G gives us the 
sum of squares of the vertex degrees of G, which later and in 
case G⧵u is connected, will be used to determine the neigh-
bors of u in G⧵u . This way we can construct graphs whose 
number of two matchings coincides with the number of two 
matchings in G. In fact we shrink the set of possible graphs. 
So we only need to check the number of three matchings in 
the resulting graphs to determine G.

By Lemma 3.2 we have R(G) = {02,±1,±2,±3} . So 
�(G, x) = x8 − 14x6 + 49x4 − 36x2 . This already gives that 
m = 14 , p(G, 2) = 49 and p(G, 3) = 36 . Now, by Theo-
rem 2.6 we know that there exists a vertex u of G such that 
R(G⧵u) = {03,±�1,±�2}  ,  0 < 𝜂1 < 𝜂2 < 3  o r 
R(G⧵u) = {03, (±�)2} , 0 < 𝜂 < 3 . Let V(G) = {u, v1,… , v7} , 

d1,… , d8 be the degree sequence of G, where d8 = deg(u) 
and d�

1
,… , d�

7
 be the degree sequence of G⧵u . Since 

p(G, 2) =

�
14

2

�
−
∑8

i=1

�
di
2

�
, we deduce that 

∑8

i=1
d
i

2
=

112 . On the other hand, it is easy to see that

where �i = 1 , if vi ∈ N(u) and �i = 0 , otherwise. Since ∑7

i=1
�i = deg(u) , we have

L e t  m� = |E(G⧵u)|  .  W e  k n o w  t h a t 

p(G⧵u, 2) =

�
m�

2

�
−
∑7

i=1

�
d�
i

2

�
 . From this we conclude that

Later in this section we will use Eqs. (6) and (7) to find the 
degree sum of vertices of G⧵u which are adjacent to u in G. 
In the following, we distinguish three cases:

Case 1 R(G⧵u) = {03,±�1,±�2} and G⧵u is connected:

Since R(G⧵u) = {03,±�1,±�2} and G⧵u is connected, 
by Lemma 2.11 we know that G⧵u is one of the graphs 
K(k, t; l), K�(k, t; l) , or L(t, l) for some integers k, t, l.

Subcase 1.1 If G⧵u is a K(k, t; l), then by (1) we have 
k + t = 5 , m� = l + 5 and p(G⧵u, 2) = (l + t)(k − 1) + t . Fur-
thermore, m = m� + deg(u) = 14 , so deg(u) = 9 − l . Now, 
substituting these values back into (7) and then (6) yields 
the following identity:

Since �i = 1 , if vi ∈ N(u) and �i = 0 , otherwise, we deduce 
that 

∑7

i=1
d�
i
�i is the degree sum of vertices of G⧵u which 

are connected to u in G. We know that in a K(k, t; l), l ≤ k . 
This gives that deg(u) ≥ 4 . In the following table, first using 
deg(u) and l the subgraph G⧵u is described. Then by (8), the 
possible degrees of neighbors of u in G⧵u are determined. 
This helps to construct the graph G. Note that in case of 
deg(u) = 7 , since N(u) = V(G⧵u) , �i = 1 for i = 1,… , 7 , so ∑7

i=1
d�
i
�i =

∑7

i=1
d�
i
= 14 . However, Table 1 shows that it is 

not possible that deg(u) = 7.
It is easy to see that the graphs H1 and H4 are isomor-

phic. In the graph H1 we have p(H1⧵u, 3) = 0 . Furthermore, 
H1⧵uvi = K(4, 0; 4) for i = 1, 2, 3 , so p(H1⧵uvi, 2) = 12 . 

8∑

i=1

d2
i
= (deg(u))2 +

7∑

i=1

(d�
i
+ �i)

2,

(6)

(deg(u))2 + deg(u) +

7∑

i=1

d�2
i
+ +2

7∑

i=1

d�
i
�i = 112, �i = 0, 1.

(7)
7∑

i=1

d�2
i
= 2

[(
m�

2

)
+ m� − p(G⧵u, 2)

]
.

(8)
7∑

i=1

d�
i
�i = 8l + 5t − (l2 + t2 + lt + 4), �i ∈ {0, 1}.
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Also H1⧵uv6 = K1,5 . Hence p(H1⧵uv6, 2) = 0 . Now, Lemma 
2.9 implies that p(H1, 3) = 36 . Thus G = H1 and we are 
done.

We also observe that the graphs H2 and H5 are isomorphic. 
In addition K(4, 1; 3) has two vertices of degree four, no matter 
which one is joined to u, the resulting graphs are isomorphic. 
Now, a similar argument as above shows that p(H2, 3) = 39 , 
a contradiction. On the other hand p(H3, 3) = 36 , so G = H3 . 
We are done again.

Subcase 1.2 If G⧵u is a K�(k, t; l) , then from (2) we see 
that k + t = 5 , m� = l + 6 and p(G⧵u, 2) = (l + t)(k − 1) + t . 
By a similar argument as in the previous case, we obtain 
deg(u) = 8 − l and

(9)
7∑

i=1

d�
i
�i = 6l + 5t − (l2 + t2 + lt + 1), �i ∈ {0, 1}.

Since in a K�(k, t; l) , l ≤ k , we have deg(u) ≥ 3 . Table 2 shows 
that we should only consider the possibility of deg(u) = 4, 5 . 
Note that again we exclude the case deg(u) = 7 , since ∑7

i=1
d�
i
�i ≠ 14.

Note that the graphs H6 and H2 are isomorphic. The graph 
H7 is isomorphic to the matching integral graph H1.

Subcase 1.3 If G⧵u is an L(t, l), then it follows from (5) that 
t = 3 , m� = l + 6 and p(G⧵u, , 2) = l + 9 . Similarly, we obtain 
deg(u) = 8 − l and

Since l ∈ {1, 2, 3} , deg(u) ≥ 5 . However, Table 3 shows that 
it is not possible that G⧵u = L(t, l) for some integers l, t.

(10)
7∑

i=1

d�
i
�i = 8 + 3l − l2, �i ∈ {0, 1}.

Table 1  Data of possible 
matching integral graphs G with 
eight vertices when G⧵u is a 
K(k, t; l) graph

deg(u) 4 5 6 7
l 5 4 3 2
G⧵u K(5, 0; 5) K(4, 1; 4) ≅ K(5, 0; 4) K(3, 2; 3) or K(4, 1; 3) K(2, 3; 2) or K(3, 2; 2)
∑7

i=1
d
�
i
�
i
 by (8) 11 12 11 or 12 8 or 10

Possible degrees 
of vertices in 
N(u)

2, 2, 2, 5 1, 2, 2, 2, 5
or 2, 2, 2, 2, 4

1, 1, 2, 2, 2, 3
or 1, 1, 2, 2, 2, 4

u cannot have any neigh-
bors in K(2, 3; 2) or 
K(3, 2; 2)

Resulting graph H1 H2 and H3 H4 and H5

Figure 1a 1b 1c

Fig. 1  Graphs K(5, 0; 5), H1 , 
K(4, 1; 4), H2 , H3 , K(3, 2; 3), 
H4 , K(4, 1; 3) and H5

(a)

(b)

(c)
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Case 2 R(G⧵u) = {03,±�1,±�2} and G⧵u is not 
connected:

Since m = 14 and deg(u) ≤ 7 , |E(G⧵u)| ≥ 7 . This implies 
that G⧵u must have a component with at least four vertices, 
say G1 . Let m� = |E(G1)|.

Subcase 2.1 If G⧵u has a component with four vertices, 
then using Theorem 2.10 we see that G⧵u can be the graphs 
K3 ∪ K1,3 , K1,2 ∪ K1,3 , K1 ∪ K2 ∪ K1,3 or 3K1 ∪ G1 , where G1 

is a connected graph on four vertices. In each case, we have 
|E(G⧵u)| ≤ 6 , a contradiction.

Subcase 2.2 If G⧵u has a component with five vertices, 
then again by Theorem 2.10 we deduce that G⧵u is one of 
the graphs K2 ∪ K1,4 or 2K1 ∪ G1 , where G1 is a connected 
non-star graph on five vertices. Now, if G⧵u = K2 ∪ K1,4 , 
then |E(G⧵u)| = 5 , a contradiction. Hence we assume that 
G⧵u = 2K1 ∪ G1 . We need to investigate all connected 
graphs with five vertices and at least seven edges. See Fig. 3. 

Table 2  Data of possible matching integral graphs G with eight vertices when G⧵u is a K�(k, t; l) graph

deg(u) 3 4 5 6 7
l 5 4 3 2 1
G⧵u K

′(5, 0; 5) K
�(4, 1; 4) ≅ K

�(5, 0; 4) K
′(3, 2; 3) or

K
′(4, 1; 3)

K
′(2, 3; 2) or

K
′(3, 2; 2)

K
′(1, 4; 1)

K
′(2, 3; 1) or

K
′(3, 2; 1)

∑7

i=1
d
�
i
�
i
 by (9) 4 7 8 or 9 7 or 9 4, 7 or 8

Possible degrees 
of vertices in 
N(u)

u cannot have any 
neighbors in 
K

�(5, 0;5)

1, 2, 2, 2 1, 1, 2, 2, 2
u cannot 

have any 
neighbors in 
K

�(4, 1; 3)

u cannot have any neigh-
bors in K�(2, 3; 2) or 
K

�(3, 2; 2)

u cannot have any neighbors 
in K�(1, 4; 1) or K�(2, 3; 1) or 
K

�(3, 2; 1)

Resulting graph H6 H7

Figure 6 2a 2b 6

Fig. 2  Graphs K�(4, 1; 4) , H6 , 
K

�(3, 2; 3) and H7

(a) (b)

Table 3  Data of possible 
matching integral graphs G with 
eight vertices when G⧵u is an 
L(t, l) graph

deg(u) 5 6 7
l 3 2 1
G⧵u L(3, 3) L(3, 2) L(3, 1)
∑7

i=1
d
�
i
�
i
 by (10) 8 10 10

Possible degrees of verti-
ces in N(u)

u cannot have any neigh-
bors in L(3,3)

u cannot have any neigh-
bors in L(3,2)

u cannot have any 
neighbors in 
L(3,1)

Figure 6 6

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3  Graphs with five vertices and at least seven edges



393Mathematical Sciences (2019) 13:387–394 

1 3

These graphs with their matching polynomials are also listed 
in Appendix [4].

We recall that, we try to construct graphs with ∑8

i=1
d2
i
= 112 .  Let v1, v2 ∈ N(u)⧵V(G1) .  Obviously, 

deg(v1) = deg(v2) = 1 . Consequently 
∑8

i=3
d2
i
= 110 , where 

d8 = deg(u) and d3,… , d7 are degrees of vertices in NG1
(u) . 

In addition, since m� ≤ |E(K5)| = 10 , deg(u) ≥ 4 . In Table 4, 
the graph G1 which corresponds to the given degree of u is 
described. This helps us to obtain the sum 

∑8

i=3
d2
i
 in the 

resulting graphs. However, the table shows that G cannot 
have a component with five vertices. We also observe that 
when deg(u) = 5, 6 no matter which vertices of G1 are adja-
cent to u, 

∑8

i=3
d2
i
≠ 112.

Subcase 2.3 If G⧵u has a component with six vertices, 
then it follows from Lemma 2.11 that G⧵u = K1 ∪ G1 , where 
G1 is one of the graphs K(k, t; l), K�(k, t; l) or L(t, l) for some 
integers k, t, l. Note that R(G1) = {02,±�1,±�2} . Now, let 
v1 ∈ N(u)⧵V(G1) , so deg(v1) = 1.

(1) If G1 is a K(k, t; l), then by (1) we have k + t = 4 
and m� = l + 4 . Since m′ ≥ 7 , l ∈ {3, 4} . Furthermore, 
m� + deg(u) = 14 , so l + deg(u) = 10 . This gives that 

deg(u) ≥ 6 . But, Table 5 shows that G1 could not be a 
K(k, t; l) graph.

(2) If G1 is a K�(k, t; l) , then from (2) we have k + t = 4 
and m� = l + 5 . Now, it is easy to see that l + deg(u) = 9 
and l ≥ 2 . Hence deg(u) ≥ 5 . However, Table 6 shows that 
we can exclude the possibility of deg(u) = 6, 7.

We note that in case of deg(u) = 5 , if there is a ver-
tex v ∈ NG1

(u) such that degG1
(v) = 5 , then 

∑8

i=1
d2
i
≥ 118 , 

a contradiction. Now, it is easy to see that the graph 
H10 is isomorphic to the matching integral graph H3 . If 
deg(u) = 6 , then no matter how u is joined to five vertices 
of K�(3, 1; 3) , in the resulting graph we have 

∑8

i=1
d2
i
≥ 118 , 

a contradiction.

Table 4  Data of possible matching integral graphs G on eight vertices 
when G⧵u has a component with five vertices

deg(u) 4 5 6 7
|N

G1
(u)| 2 3 4 5

m
′ 10 9 8 7

G1 K5 K5⧵e Graphs (c) or 
(d) in Fig. 3

Graphs (e), (f), 
(g) or (h) in 
Fig. 3

∑8

i=3
d
2
i
 in the 

resulting graph
114 ≥ 114 ≥ 116 ≥ 122

Table 5  Data of possible matching integral graphs G on eight vertices 
when a K(k, t; l) graph of order 6 is a component of G⧵u

deg(u) 6 7
l 4 3
G1 K(4, 0; 4) K(3, 1; 3) ≅ K(4, 0; 3)

|N
G1
(u)| 5 6

Resulting graph H8 or H9

Figure 4 6
∑8

i=1
d
2
i

114 or 118 122

Fig. 4  Graphs K(4, 0;\, 4), H8 
and H9

Table 6  Data of possible matching integral graphs G on eight vertices 
when a K�(k, t;l) graph of order 6 is a component of G⧵u

deg(u) 5 6 7
l 4 3 2
G1 K

�(4, 0; 4) K
�(3, 1; 3) ≅ K

�(4, 0; 3) K
�(2, 2; 2) 
or 
K

�(3, 1; 2)

|N
G1
(u)| 4 5 6

Resulting graph H10

Figure 5 6 6
∑8

i=1
d
2
i

112 ≥ 118 128 or 126

Fig. 5  Graphs K�(4, 0; 4) and H10

Table 7  Data of possible 
matching integral graphs G on 
eight vertices when an L(t, l) 
graph of order 6 is a component 
of G⧵u

deg(u) 6 7
l 3 2
G1 L(2, 3) L(2, 2)
|N

G1
(u)| 5 6

Figure 6 6
∑8

i=1
d
2
i

≥ 118 124



394 Mathematical Sciences (2019) 13:387–394

1 3

(3) If G1 is an L(t, l), then from (5) we see that t = 2 
and m� = l + 5 . This gives that l + deg(u) = 9 , so l ≥ 2 and 
deg(u) ≥ 6 . However, Table 7 shows that G1 could not be 
an L(t, l) graph.

Case 3 R(G⧵u) = {03, (±�)2}:
We know that if R(G⧵u) = {03, (±�)2} , then G⧵u is not 

connected. Now, by a similar argument as in Case 2, we 
obtain that G⧵u has a component with at least four verti-
ces. Now, according to the root system of G⧵u and with the 
aid of Theorem 2.10 we see that G⧵u could be the graph 
K1,2 ∪ K1,3 , K3 ∪ K1,3 , K1 ∪ K2 ∪ K1,3 or K2 ∪ K1,4 . In each 
case we have |E(G⧵u)| < 7 , a contradiction.

Therefore we showed that the graphs H1 and H3 are the 
only matching integral graphs on eight vertices. The proof 
is now complete.

  ◻

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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