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Abstract
Herein, we have proposed a scheme for numerically solving hyperbolic partial differential equations (HPDEs) with given ini-
tial conditions. The operational matrix of differentiation for exponential Jacobi functions was derived, and then a collocation 
method was used to transform the given HPDE into a linear system of equations. The preferences of using the exponential 
Jacobi spectral collocation method over other techniques were discussed. The convergence and error analyses were discussed 
in detail. The validity and accuracy of the proposed method are investigated and checked through numerical experiments.
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Introduction

Hyperbolic partial differential equations (HPDEs) constitute 
an important subclass of partial differential equations. The 
HPDEs are used in many disciplines of science and engi-
neering, such as studying the transmission and propagation 
of electrical signals [1], wave propagation [2], hypoelastic 
solids [3], astrophysics [4], process engineering [5], acoustic 
transmission [6] and random walk theory [7]. The HPDEs 
are used in shaping the vibrational motion of structures (e.g., 
beams, machines and buildings) and represent basis for fun-
damental equations of atomic physics [8, 9]. Recently, the 
study of exact and numerical solutions of either hyperbolic 
or parabolic PDEs has received increasing attention [10–15].

Spectral techniques have been successfully applied for 
approximating the solution of differential problems defined 
in unbounded domains. For problems with sufficient 
smooth analytic solutions, they exhibit exponential rates 
of convergence, high accuracy and low computational cost. 

Doha et al. [16] used a Jacobi rational spectral technique for 
solving Lane–Emden initial value problems, in astrophys-
ics, on a semi-infinite interval. Hafez et al. [17] applied a 
new collocation scheme for solving hyperbolic equations 
of second order in a semi-infinite domain. Doha et al. [18] 
proposed a new spectral Jacobi rational-Gauss collocation 
method for solving the multi-pantograph delay differential 
equations on the half line. Bhrawy et al. [19] solved some 
higher order ordinary differential equations using a new 
exponential Jacobi pseudospectral method.

In this study, we used exponential Jacobi functions for 
numerically solving the HPDEs. The operational matrices 
of derivatives and products of exponential Jacobi functions 
were derived. These matrices were jointly implemented 
with the collocation approach to evaluate the solutions of 
the HPDEs. Collocation method [20–24] is an effective 
technique for numerically approximating different kinds of 
equations.

The workflow of this paper encompass: In the next sec-
tion, we present some notations and other mathematical facts. 
“Operational matrix of differentiation for exponential Jacobi” 
section is devoted to the operational matrix of differentiation 
for exponential Jacobi functions. In “Implementation of the 
method” section, the operational matrix of differentiation for 
exponential Jacobi was used in a combination with the expo-
nential Jacobi collocation method to solve the HPDEs. The 
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error analysis was executed in “Error analysis” section. Two 
numerical examples are given in “Numerical results” section. 
Finally, some concluding remarks are mentioned in “Conclu-
sion” section.

Mathematical preliminaries

Here, we list some useful mathematical relations and identities 
needed in the construction of the exponential Jacobi opera-
tional matrix.

Exponential Jacobi functions

Consider the standard classical Jacobi polynomials 
J
(�,�)

k
(z) on the interval [−1, 1] with the weight function 

𝜔(𝜌,𝜎)(z) = (1 − z)𝜌(1 + z)𝜎 , 𝜌, 𝜎 > −1,

the set {J(�,�)
k

(z) ∶ k = 0, 1,…} forms a complete orthogonal 
system in the weighted Hilbert space L2

��,� (x)
[−1, 1] equipped 

with the inner product

and the norm

Let us define the exponential Jacobi functions by replacing 
z by 1 − 2e

−
x

L . Denoting the exponential Jacobi functions 
J
(�,�)

i
(1 − 2e

−
x

L ) by Υ(�,�)

i
(x) , x ∈ [0,∞) . Therefore, Υ(�,�)

i
(x) 

may be generated by the following recurrence relation:

where

and

The exponential Jacobi functions Υ(�,�)

i
(x) of degree i can 

be written as

J
(�,�)

0
(z) = 1, J

(�,�)

1
(z) =

1

2
(� − � + z(� + � + 2)),

(f , g)�(�,�)(x) ∶= ∫
1

−1

f (x)g(x)�(�,�)(x)dx,

‖f‖�(�,�)(x) = (f , f )
1

2

�(�,�)(x)
.

(1)

Υ
(�,�)

k+1
(x) =

(2k + � + � + 1)(2k + � + � + 2)

(k + 1)(k + � + � + 1)[(
((� + 1)(� + �) + 2k2 + 2k(� + � + 1))

(2k + � + �)(2k + � + � + 2)
− e

−
x

L

)
Υ

(�,�)

k
(x)

−
(k + �)(k + �)

(2k + � + �)(2k + � + � + 1)
Υ

(�,�)

k−1
(x)

]
, k ≥ 1,

Υ
(�,�)

0
(x) = 1, Υ

(�,�)

1
(x) = (� + 1) − (� + � + 2)e−

x

L ,

(k + � + �)Υ
(�,�)

i
(x) = (k + �)Υ

(�,�−1)

i
(x) + (k + �)Υ

(�−1,�)

i
(x).

where

The set {Υ(�,�)

i
(x) ∶ i = 0, 1,…} , satisfy the following 

orthogonality relation:

where

and �ij is the well-known kronecker delta.

Function approximation

Now, approximation of u(x) by N + 1 terms of exponential 
Jacobi functions yields

where C and �(x) are the unknown coefficients vector and 
the exponential Jacobi function vector, respectively, and are 
given by:

and

Operational matrix of differentiation 
for exponential Jacobi

Here, we report the derivation of the operational matrix of 
derivatives of the exponential Jacobi functions, which is of 
important use to our numerical scheme.

Υ
(�,�)

i
(x) =

i∑

k=0

(−1)k
Γ(i + � + 1)Γ(i + k + � + � + 1)

Γ(� + k + 1)Γ(i + � + � + 1)(i − k)!k!
exp(−kx∕L),

(2)Υ
(�,�)

i
(0) =

(−1)i Γ(� + i + 1)

i! Γ(� + 1)
.

(3)∫
∞

0

Υ
(�,�)

i
(x) Υ

(�,�)

j
(x)w(�,�) dx = h

(�,�)

i
�ij,

w(�,�) = e
−

�+1

L
x(1 − e

−
x

L )� ,

h
(�,�)

i
=

LΓ(i + � + 1) Γ(i + � + 1)

i! (2i + � + � + 1) Γ(i + � + � + 1)
,

(4)u(x) ≃

N∑

j=0

cjΥ
(�,�)

j
(x) = C

T
�(x),

(5)C = [c0, c1,… , cN]
T ,

(6)ci =
1

h
(�,�)

i
∫

∞

0

u(x) Υ
(�,�)

i
(x)w(�,�) dx,

(7)�(x) = [Υ
(�,�)

0
(x),Υ

(�,�)

1
(x),… ,Υ

(�,�)

N
(x)]T .
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Theorem  1 Let �(x) be the exponential Jacobi vector 
defined in (7). The derivative of the vector �(x) can be 
expressed by

where � is  (N + 1) × (N + 1) operational matrix of the 
derivative. Then, the nonzero elements dk � for 0 ≤ k,� ≤ N 
are given as follows:

It easily noted that � is a lower-Heisenberg matrix.

Proof See, Bhrawy et al. [19].
Studying the class of exponential Jacobi functions yields many 

special orthogonal functions as a direct special cases, and these 
cases are reported in the following corollaries:

Corollary 1 (Legendre Case) If � = � = 0 , then the nonzero 
elements, of the operational matrix of the exponential Leg-
endre functions, dk � for 0 ≤ k,� ≤ N are given as follows:

Corollary 2 (ChebyshevT Case) If � = � = −
1

2
 , then 

the nonzero elements, of the operational matrix of the 
exponential Chebyshev functions of the first kind, dk � for 
0 ≤ k,� ≤ N are given as follows:

Corollary 3 (ChebyshevU Case) If � = � =
1

2
 , then the 

nonzero elements, of the operational matrix of the expo-
nential Chebyshev functions of the second kind, dk � for 
0 ≤ k,� ≤ N are given as follows:

(8)��(x) =
d�(x)

dx
≃ ��(x),

dk+1,k =
(𝜌 + k + 1)(𝜌 + 𝜎 + 2k + 1)

L(𝜌 + 𝜎 + k + 1)
, dkk = −

k

L
,

dk � =
(−1)k+�+1(2� + 𝜌 + 𝜎 + 1)

L

k−�∏

r=1

(𝜌 + k − r + 1)

(𝜌 + 𝜎 + k − r + 1)
, � < k − 1.

dk+1,k =
2k + 1

L
, dkk = −

k

L
,

dk � = (−1)k+�+1
(2� + 1)

L
, � < k − 1.

dk+1,k =
2k + 1

L
, dkk = −

k

L
,

dk � =
2(−1)k+�+1�(k −

1

2
)k−�

L(1 − k)k−�
, � < k − 1.

dk+1,k =
(2k + 3)(k + 1)

L(k + 2)
, dkk = −

k

L
,

dk � =

2(−1)k+�+1(� + 1)
(
k −

1

2

)

k−�

L(−k − 1)k−�
, � < k − 1.

Corollary 4 (ChebyshevV Case) If � = −
1

2
, � =

1

2
 , then the 

nonzero elements dk � for 0 ≤ k,� ≤ N are given as follows:

dk+1,k =
(2k + 1)2

2L(k + 1)
, dkk = −

k

L
,

dk � =

(2� + 1)(−1)k+�+1Γ(−k)
(

1

2
− k

)

k−�

LΓ(−�)
, � < k − 1.

Corollary 5 (ChebyshevW Case) If � =
1

2
, � = −

1

2
 , then the 

nonzero elements dk � for 0 ≤ k,� ≤ N are given as follows:

Remark 1 The operational matrix for r-th derivative can be 
derived as

where r ∈ N and the superscript in �(1) denote matrix pow-
ers. Thus,

Implementation of the method

The target of this part is to derive a scheme for the exponential 
Jacobi spectral collocation method based on the operational 
matrix of derivative of exponential Jacobi function to numeri-
cally solve the HPDEs on the half line. Let us consider the 
HPDEs of the form [25]

subject to the initial conditions

dk+1,k =
(2k + 3)(2k + 1)

2L(k + 1)
, dkk = −

k

L
,

dk,� =
2(−1)k+�Γ(−k)Γ

(
1

2
− �

)

LΓ
(
−k −

1

2

)
Γ(−�)

, � < k − 1,

(9)
dr�(x)

dxr
= (�(1))r�(x),

(10)�
(r) = (�(1))r, r = 1, 2,… .

(11)

�v(x, t)

�t
= �1

�v(x, t)

�x
+ �2v(x, t) + S(x, t), (x, t) ∈ [0,∞) × [0,∞),

(12)v(x, 0) = k0(x), x ∈ [0,∞),

(13)v(0, t) = k1(t), t ∈ [0,∞).



350 Mathematical Sciences (2019) 13:347–354

1 3

We approximate v(x, t), �v(x,t)

�t
 and �v(x,t)

�x
 by the double expo-

nential Jacobi functions as

where �T is (N + 1) × (M + 1) unknown matrix. Now, using 
Eqs. (14), (15) and (16), then it is easy to write

Now, we tame the collocation procedure for solving 
Eqs. (17)–(19). Suppose x(�1,�1)

i
( 0 ⩽ i ⩽ M) are the expo-

nential Jacobi collocation points of Υ(�1,�1)

i
(x) and 

t
(�2,�2)

j
(0 ⩽ j ⩽ N − 1) are the exponential Jacobi collocation 

points of Υ(�2,�2)

j
(t) . We substitute these collocation points in 

(17)–(19); therefore, the collocation scheme can be written 
as:

This yields a algebraic system of (N + 1) × (M + 1) equa-
tions in the required double exponential Jacobi coefficients 
cij, i = 0, 1,… ,M; j = 0, 1,… ,N, which can be solved 
by using any standard iteration technique, like Newton’s 

(14)
v(x, t) ≈ vN,M(x, t) =

M∑

i=0

N∑

j=0

cijΥ
(�1,�1)

i
(x)Υ

(�2,�2)

j
(t)

= �N(t)�
T�M(x),

(15)

�vN,M(x, t)

�t
=

M∑

i=0

N∑

j=0

cijΥ
(�1,�1)

i
(x)

�Υ
(�2,�2)

j
(t)

�t

= �
�

N
(t)�T�M(x),

(16)

�vN,M(x, t)

�x
=

M∑

i=0

N∑

j=0

cij
�Υ

(�1,�1)

i
(x)

�x
Υ

(�2,�2)

j
(t)

= �N(t)�
T�

�

M
(x),

(17)
�

�

N
(t)�T�M(x) = �1�N(t)�

T�
�

M
(x) + �2�N(t)�

T�M(x) + S(x, t),

(18)�N(0)�
T�M(x) = k0(x),

(19)�N(t)�
T�M(0) = k1(t),

(20)

�
�

N
(t
(�2,�2)

j
)�T�M(x

(�1,�1)

i
) = �1�N(t

(�2,�2)

j
)�T�

�

M
(x

(�1,�1)

i
)

+ �2�N(t
(�2,�2)

j
)�T�M(x

(�1,�1)

i
) + S(x

(�1,�1)

i
, t

(�2,�2)

j
),

1 ≤ i ≤ M, 0 ≤ j ≤ N − 1.

(21)�N(0)�
T�M(x

(�1,�1)

i
) = k0(x

(�1,�1)

i
), 0 ≤ i ≤ M,

(22)�N(t
(�2,�2)

j
)�T�M(0) = k1(t

(�2,�2)

j
), 0 ≤ j ≤ N − 1.

iteration solver. Consequently, the approximate solution 
vN,M(x, t) can be evaluated.

Error analysis

Here, we discuss the convergence rate of the suggested 
double basis expansion, for this target, the following lem-
mas are needed:

Lemma 1 The following definite integral is valid:

where (a)i denote the Pochhammer notation, i.e., 
(a)i = Γ(a + i)∕Γ(a).

Lemma 2 For all 𝜌 > −1 , there exist two generic constants 
0 < 𝜅1 < 𝜅2 such that:

Lemma 3 If 𝜌, 𝜎 > −1 then ∣ Υ(�,�)

i
(x) ∣≤ J∕iq where 

q = max(�, �,−
1

2
) , where J is a generic positive constant.

In this theorem, we ascertain the vanishing rate of the 
unknown expansion coefficients of the approximate solu-
tion, under certain constrains on the exact smooth solution 
of the solved problem.

Theorem 2 If v(x, t) is separable, i.e., v(x, t) = v1(x) v2(t) 
and v1, v2 are of exponential order, in the sense that, 
there exist A1,A2,�1 and �2 positive constants, such that 
|v1(x)| ≤ A1 e

−�1 x and |v2(t)| ≤ A2 e
−�2 t , then the expansion 

coefficients in (14) satisfy the following estimate:

Proof By the hypothesis of theorem, we have,

applying the inner product, and by the orthogonality relation 
(3), we get,

i.e.,

∫
∞

0

Υ
(𝜌,𝜎)

i
(x)w(𝜌+𝜇+1,𝜎)

dx =
LΓ(i + 𝜎 + 1) Γ(𝜌 + 𝜇 + 1) (−𝜇)

i

i! Γ(i + 𝜌 + 𝜎 + 𝜇 + 2)
;

𝜌 + 𝜇 > −1, 𝜎 > −1,

�1 n
�−1 n! ≤ Γ(n + �) ≤ �2 n

�−1 n!; ∀n ∈ ℕ.

|cij| ≤ C

i�1+2�1+1 j�2+2�2+1
.

v(x, t) = v1(x) v2(t) =

∞∑

m=0

∞∑

k=0

ckm Υ
(�1,�1)

k
(x) Υ(�2,�2)

m
(t),

(
v1(x) v2(t),Υ

(�1,�1)

i
(x) Υ

(�2,�2)

j
(t)
)

w(�1,�1 ) w(�2,�2 )
= cij h

(�1,�1)

i
h
(�2,�2)

j
,
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where,

Now by application of integration by parts on I(�1,�1)
1

(i) and 
I
(�2,�2)

2
(j) , since v1 and v2 are of exponential order, by the 

integral formula in Lemma 1, repeated use of the estimate in 
Lemma 2 on I(�1,�1)

1
(i) and I(�2,�2)

2
(j) , the theorem is proved.  

 ◻

In this theorem, based on the result of the previous theo-
rem, we ascertain the convergence of the approximate solu-
tion as the number of retained modes increases.

T h e o r e m   3  I f  min(𝜌1 + 2𝜇1, 𝜌2 + 2𝜇2) >
1

2
 a n d 

−1 < max(𝜌1, 𝜌2, 𝜎1, 𝜎2) < −
1

2
 , then series in (14) converges 

absolutely.

Proof We show that the series |
∞∑

0

∞∑

0

cij Υ
(�1,�1)

i
(x) Υ

(�2,�2)

j
(t)| 

converges absolutely.
By the estimate in Theorem 2, using Lemma 3, then

which completes the proof of the theorem.   ◻

In this theorem, we control the estimate of two consecu-
tive approximate solutions, to ascertain the stability when 
the number of retained modes increases.

T h e o r e m   4  I f  min(𝜌1 + 2𝜇1, 𝜌2 + 2𝜇2) >
1

4
 a n d 

−1 < max(𝜌1, 𝜌2, 𝜎1, 𝜎2) < −
1

2
 , then

Proof By the triangle inequality, we have,

cij =
1

h
(�1,�1)

i
h
(�2,�2)

j
∫

∞

0
∫

∞

0

v(x, t)Υ
(�1,�1)

i
(x) Υ

(�2,�2)

j
(t)

w(�1,�1) w(�2,�2) dx dt

=
1

h
(�1,�1)

i
h
(�2,�2)

j

(

∫
∞

0

v1(x)Υ
(�1,�1)

i
(x)w(�1,�1) dx

)

(

∫
∞

0

v2(t)Υ
(�2,�2)

j
(t)w(�2,�2) dt

)

= I
(�1,�1)

1
(i) I

(�2,�2)

2
(j),

I(�r ,�r)
r

(k) =
1

h
(�r ,�r)

k
∫

∞

0

vr(z)Υ
(�r ,�r)

k
(z)w(�r ,�r) dz, r = 1, 2.

|cij Υ
(�1,�1)

i
(x) Υ

(�2,�2)

j
(t)| ≤ A

i
�1+2�1+

1

2 j
�2+2�2+

1

2

,

lim
N,M→∞

‖uN+1,M+1 − uN,M‖2 = 0.

Now, application of Lemma 2, Lemma 3 to the two norms 
of the R.H.S of the later inequality, respectively, and by the 
result of Theorem 3, we get

which completes the proof of the theorem.   ◻

Numerical results

In this section, we test our algorithm by exibiting two 
numerical experiments to check the applicability and accu-
racy of the proposed scheme. Comparison of the numeri-
cal results obtained by the suggested technique with those 
obtained by generalized Laguerre–Gauss–Radau collocation 
approach [25] confirms that the presented scheme is very 
effective and convenient. Thereby, we assert that the pro-
posed scheme is more appropriate for solving these kinds 
of problems.

The absolute errors in the given tables are

where v(x, t) and vN,M(x, t) are the exact solution and the 
numerical solution, respectively, at the point (x, t), respec-
tively. Moreover, the maximum absolute errors are given by

Example 1 [25] Consider the hyperbolic equation of first-
order of the form

subject to initial conditions,

‖uN+1,M+1 − uN,M‖2 = ‖uN+1,M+1 − uN,M+1 + uN,M+1 − uN,M‖2
≤ ‖uN+1,M+1 − uN,M+1‖2 + ‖uN,M+1 − uN,M‖2

=

������

M+1�

j=0

cN+1,j Υ
(�1,�1)

N+1
(x) Υ

(�2,�2)

j
(t)

������2

+

������

N�

i=0

ci,M+1 Υ
(�1,�1)

i
(x) Υ

(�2,�2)

M+1
(t)

������2
.

‖uN+1,M+1 − uN,M‖2 <
B

M
2𝜌1+4𝜇1−

1

2 N
2𝜌2+4𝜇2−

1

2

,

(23)E(x, t) = |v(x, t) − vN,M(x, t)|,

(24)L∞ = Max{E(x, t) ∶ ∀(x, t) ∈ [0,∞) × [0,∞)}.

(25)

�v(x, t)

�t
=

�v(x, t)

�x
+ v(x, t) + S(x, t), , x ∈ [0,∞), t ∈ [0,∞),

v(x, 0) = e−x, x ∈ [0,∞), v(0, t) = e−
√
2t, t ∈ [0,∞),
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where

The exact solution is given by

In Tables  1,  2 and  3, we give the absolute errors with 
�1 = �1 = �2 = �2 = −

1

2
 (first kind exponential Chebyshev 

functions), �1 = �1 = �2 = �2 = 0 (exponential Legendre 
functions) and �1 = �1 = �2 = �2 =

1

2
 (second kind expo-

nential Chebyshev functions), respectively, at N = M = 16 . 

S(x, t) = −
√
2e−

√
2t−x.

v(x, t) = e−(
√
2t+x).

Table 1  Comparison of the absolute errors for Example 1 at t = 0.1 
and N = M = 16

x Bhrawy et al. [25] Our method

�1 = �1 = −
1

2
,

�2 = �2 = −
1

2

�1 = �1 = 0

�2 = �2 = 0
�1 = �1 =

1

2
,

�2 = �2 =
1

2

0.1 2.84 × 10−7 2.29 × 10−8 1.04 × 10−8 2.97 × 10−8

0.2 8.79 × 10−6 1.84 × 10−8 9 × 10 × 10−9 2.64 × 10−9

0.3 1.20 × 10−5 1.84 × 10−8 8.57 × 10−9 2.45 × 10−9

0.4 1.12 × 10−5 1.48 × 10−8 7.47 × 10−9 2.15 × 10−9

0.5 7.95 × 10−6 1.51 × 10−8 6.98 × 10−9 2.02 × 10−9

0.6 3.29 × 10−6 1.33 × 10−8 6.29 × 10−9 1.79 × 10−9

0.7 1.78 × 10−6 1.08 × 10−8 5.51 × 10−9 1.58 × 10−9

0.8 6.53 × 10−6 1.05 × 10−8 5.08 × 10−9 1.48 × 10−9

0.9 1.04 × 10−5 1.06 × 10−8 4.75 × 10−9 1.37 × 10−9

1 1.32 × 10−5 9.25 × 10−9 4.24 × 10−9 1.20 × 10−9

Table 2  Comparison of the absolute errors for Example 1 at t = 0.5 
and N = M = 16

x Bhrawy et al. [25] Our method

�1 = �1 = −
1

2
,

�2 = �2 = −
1

2

�1 = �1 = 0

�2 = �2 = 0
�1 = �1 =

1

2
,

�2 = �2 =
1

2

0.1 8.95 × 10−6 7.65 × 10−8 3.54 × 10−8 1.50 × 10−8

0.2 4 × 10 × 10−6 6.22 × 10−8 3.09 × 10−8 1.34 × 10−8

0.3 1.39 × 10−5 6.16 × 10−8 2.90 × 10−8 1.23 × 10−8

0.4 2.07 × 10−5 5.04 × 10−8 2.54 × 10−8 1 × 10 × 10−8

0.5 2.47 × 10−5 5.05 × 10−8 2.36 × 10−8 1.00 × 10−8

0.6 2.62 × 10−6 4.48 × 10−8 2.13 × 10−8 9.13 × 10−9

0.7 2.55 × 10−5 3.68 × 10−8 1.87 × 10−8 8.19 × 10−9

0.8 2.31 × 10−5 3.53 × 10−8 1.72 × 10−8 7.45 × 10−9

0.9 1.93 × 10−5 3.51 × 10−8 1.61 × 10−8 6.80 × 10−9

1 1.45 × 10−5 3.08 × 10−8 1.43 × 10−8 6.11 × 10−9

Table 3  Comparison of the absolute errors for Example 1 at t = 1 and 
N = M = 16

x Bhrawy et al. [25] Our method

�1 = �1 = −
1

2
,

�2 = �2 = −
1

2

�1 = �1 = 0

�2 = �2 = 0
�1 = �1 =

1

2
,

�2 = �2 =
1

2

0.1 4.87 × 10−5 1.71 × 10−8 2.47 × 10−8 2.19 × 10−8

0.2 4.89 × 10−5 2.37 × 10−8 2.34 × 10−8 1.99 × 10−8

0.3 4.17 × 10−5 1.51 × 10−8 2.02 × 10−8 1.79 × 10−8

0.4 3.03 × 10−5 1.99 × 10−8 1.91 × 10−8 1.63 × 10−8

0.5 1.75 × 10−5 1.24 × 10−8 1.66 × 10−8 1.47 × 10−8

0.6 4.74 × 10−6 1.21 × 10−8 1.51 × 10−8 1.33 × 10−8

0.7 6.68 × 10−6 1.53 × 10−8 1.42 × 10−8 1.21 × 10−8

0.8 1.61 × 10−5 1.16 × 10−8 1.26 × 10−8 1.09 × 10−8

0.9 2.32 × 10−5 6.90 × 10−9 1.09 × 10−8 9.79 × 10−9

1 2.79 × 10−5 7.26 × 10−9 1.00 × 10−8 8.87 × 10−9
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Fig. 1  L∞ error for Example 1 versus N = M and �1 = �1 = �2 = �2
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Fig. 2  L∞ error for Example 2 versus N = M and �1 = �1 = �2 = �2



353Mathematical Sciences (2019) 13:347–354 

1 3

Moreover, the results obtained by our method are compared 
with these obtained by generalized Laguerre–Gauss–Radau 
collocation method [25]. Figure 1 shows L∞ error versus 
N = M and �1 = �1 = �2 = �2.

Example 2 [25] Consider the following hyperbolic equation 
of first-order

subject to initial conditions,

The exact solution is given by

Table 4 lists the results obtained by the our method in terms 
of absolute errors at N = M = 16 for different values of 
�1, �1, �2, �2, x and t. Figure 2 shows the L∞ error versus 
�1 = �1 = �2 = �2 and N = M . Moreover, the results in 
Table 5 are more accurate if compared with these obtained 

(26)

�v(x, t)

�t
=

�v(x, t)

�x
+ v(x, t) + e−t−x(cos(t) − sin(t)), x ∈ [0,∞),

t ∈ [0,∞),

v(x, 0) = 0, x ∈ [0,∞), v(0, t) = e−t sin(t), t ∈ [0,∞).

v(x, t) = e−(t+x) sin(t).

by generalized Laguerre–Gauss–Radau collocation method 
[25].

Conclusion

We developed an accurate numerical technique and 
applied it to solve hyperbolic partial differential equa-
tions. The proposed operational matrix in combination 
with the exponential Jacobi spectral-collocation approach 
was elaborated for reducing the solution of hyperbolic 
first-order partial differential equations on the semi-infi-
nite domain to an algebraic system of equations, which 
can be solved more easily. The operational matrices of 
derivatives of exponential Legendre, ChebyshevT, U, V, 
W functions can be obtained as direct special cases of the 
operational matrix of exponential Jacobi functions. The 
numerical results evince the high efficiency and accuracy 
of our approach.
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