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Abstract

The algebraic structures of the families of fuzzy sets that arise out of various notions of openness and closedness in a
double fuzzy topological space are investigated. The collection of these families forms a bounded, associative lattice. The
zero divisors and zero-divisor graph of this lattice are also identified.
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Introduction

Attanassov introduced the concept of intuitionistic fuzzy
sets in [1]. Subsequently, the concept of intuitionistic fuzzy
topological spaces was introduced by Coker [2].

Later, Lee and Im [3] initiated the concept of mated
fuzzy topological spaces, as a generalization of intuition-
istic fuzzy topological spaces introduced in [2] and smooth
fuzzy topological spaces. Also, they presented the notions
of (p, gq)-fuzzy open set, (p, g)-fuzzy closed set, closure
operator and interior operator in mated fuzzy topological
spaces. Again, in 2005, Ramadan et al. [4] ushered in the
concept of (p, g)-regular fuzzy open sets and (p, g)-regular
fuzzy closed sets in intuitionistic fuzzy topological spaces.

Later, the notions of (p, ¢)-generalized fuzzy open and
(p, g)-generalized fuzzy closed sets, (p, g)-regular gener-
alized fuzzy open and (p, g)-regular generalized fuzzy
closed sets, (p, q)-fuzzy b-open and (p, g)-fuzzy b-closed
sets and (p, g)-generalized fuzzy b-open and (p, g)-gener-
alized fuzzy b-closed sets in intuitionistic fuzzy topological
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spaces were set up and studied in [5] and [6]. These sets
were further explored in [7-10].

In [11], Gutierrez Garcia and Rodabaugh suggested that
the term “double fuzzy sets“ is more appropriate than
“intuitionistic fuzzy sets”. Therefore, we proceed by using
the term “double fuzzy topological space® instead of
“intuitionistic fuzzy topological space.”

This paper studies the structural properties of certain
families of fuzzy open sets and fuzzy closed sets in a
double fuzzy topological space. As a result, it is identified
that the collections GOf,, of (p, g)-generalized fuzzy
open sets, GCrp 4 of (p, q)-generalized fuzzy closed sets,
GO,

Fpaq
/
GCr,,

monoids. Further, the monoid structure of the collections
bCrpq of (p, g@)-fuzzy b-closed sets and bOr, , of (p, q)-
fuzzy b-open sets is also identified. But, GbOF ), and
GbCr 4, the collections of (p, g)-generalized fuzzy b-open
sets and (p, g)-generalized fuzzy b-closed sets, respec-
tively, have no such structure in general. Above all, a lat-
tice H_i , consisting of various families of fuzzy sets

of (p, g)-regular generalized fuzzy open sets and
of (p, g)-regular generalized fuzzy closed sets are

engendered by different notions of openness and closed-
ness in a double fuzzy topological space is obtained. While
H_; 4 18 associative and complemented, it is not distributive
and hence not modular. The study also analyzes the zero
divisors of U_; , and its zero divisor graph.
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Preliminaries

Throughout the paper, X denotes a nonempty set, I = [0, 1],
Ip = (0,1],1; = [0, 1), = the set of all fuzzy subsets of
X. The constant fuzzy subset taking the value « is denoted
by a. Also, the complement of a fuzzy set f is denoted by

AR
Definition 2.1 (see [12]) Consider the pair (F,F*) of
functions from IX — I such that

L F()+F()<Lyfel”
2. FO)=F1)=1,F(0)=F(1)=0
3. F(hAR)=F(fi)ANF(f) and
Fr(A NR)SF (i) VF (). fi e IX,i=1,2
4. F\/f) = NF() and
icA icA
F\H<\Fh).heieh
icA icA
The pair (F,F*) is called a double fuzzy topology on X.
The triplet (X, F,F*) is called a double fuzzy topological
space(for short dfts).

Definition 2.2 (see [3]) Let (X, F,F*) be a dfts. For each
p€ly,q€l,felX, the operator Cpp : IX x Iy x I} —
I* defined by

Crr(fp,q) = \g € I¥If <g,F(¢) >p, F*(g) < q}

is called the double fuzzy closure operator on (X, F, F*).

Definition 2.3 (see [3]) Let (X, F, F*) be a dfts. For each
p €lo,q € 1),f € IX, the operator Ir - : IX X Iy x I} — I¥
defined by

Irp(f.p,q) = \[{g € I¥|f > ¢, F(¢) >p, F*(¢) < q}
is called the double fuzzy interior operator on (X, F, F*).

Definition 2.4 (see [13]) For x € X and /1 € Iy, the fuzzy
point x, denotes the fuzzy set

x(y) = {)V7

0, otherwise

if y=x

Definition 2.5 (see [14]) A poset L is called

1. A join semi-lattice if x Vy € L for all x,y € L.
2. A meet semi-lattice if x Ay € L for all x,y € L.

L is called a lattice if it is both a join semi-lattice and a
meet semi-lattice.

Definition 2.6 A monoid is a set X with a binary operation
*: X x X — X which is associative and has an identity
element.

’r @ Springer

Lee and Im [3] introduced (p, ¢)-fuzzy open sets and
(p, g@)-fuzzy closed sets in mated fuzzy topological spaces
which in the context of a dfts takes the following form:

Definition 2.7 (see [3]) Let (X, F,F*) be a dfts. A fuzzy
set f is said to be

(1) (p, g)-fuzzy open if F(f) >p and F*(f) < g and
(i)  (p, g@)-fuzzy closed if f¢ is (p, q)-fuzzy open.

Definition 2.8 (see [4]) Let (X,F,F*) be a dfts, f €
I*,p €Iy and g € I,. Then, f is called

(i) (p, g)-regular fuzzy open (for short (p, g)-rfo) if

f=1Ipp (CF,F* (f7P7Q),P,6])~
(i)  (p, g)-regular fuzzy closed (for short (p, g)-rfc) if

f=Crr(Ipp(f,p,q):P:q)-

Notation With respect to a dfts (X,F,F*) and p €
Iy,q € I} with p + ¢ <1, we use the following notations:

OFpq = {f € as :f is a (p, q)-fuzzy open set},
Crpq=1Af €I* :f € Orpy},
Lrpg=OFpqgNCrpg,

Oy . =1{f €I*:fisa(p, g)-rfo set} and

Fpq
Crpg={f€X:f €O,,}

Abbas [5] introduced the concept of (p, g)-generalized

fuzzy closed sets in a dfts as the following:

Definition 2.9 (see [S]) Let (X,F,F*) be a dfts, f,h €
IX,p € Iy and ¢ € I, then f is said to be

(i) (p, g9)-generalized fuzzy closed (for short, (p, g)-
gfc) set if Cr g (f,p,q) <h whenever f <hand h €
OF p,4 and

(i)  (p, g)-generalized fuzzy open (for short, (p, g)-gfo)
set if f¢ is a (p, g)-gfc set.

The collection of all (p, g)-gfc sets is denoted by
GCr p,4, and the collection of all (p, g)-gfo sets is denoted
by GOprﬁq.

The concept of (p, g)-regular generalized fuzzy closed
sets was also introduced by Abbas in [5].

Definition 2.10 (see [5]) Let (X, F,F*) be a dfts, f,h €
IX,p €lyand g € I} with p+¢g<1, then fis called

(i) (p, g)-regular generalized fuzzy closed (for short,
(p, g)-rgfe) set if Crr(f,p,q) <h whenever f <h
and h € O, and

Fpq
(i) (p, g)-regular generalized fuzzy open (for short,

(p, @)-rgfo) set if f¢ is a (p, q)-gfc set.

The collection of all (p, g)-rgfc sets is denoted by

GC’F’p‘ o» and the collection of all (p, g)-rgfo sets is denoted

by GO,

Fpgq
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Mohammed et al. [6] introduced the concepts of (p, g)-
fuzzy b-closed sets and (p, g)-fuzzy b-open sets in a dfts
and studied various properties of them.

Definition 2.11
set f is called

i) (p, g)-fuzzy b-closed (for short, (p, q)-fbc) if

(IF,F* (CF,F*(f,p,q),p,q))
A (Crr (Irr(f, 0, 9), 05 49)) <f

(i)  (p, g9)-fuzzy b-open (for short, (p, g)-fbo) iff f¢ is
(p, @)-fbc set.

For a dfts (X, F, F*), the collection of all (p, g)-fbo is
denoted by bOF,, and the collection of all (p, g)-fbc is
denoted by bCr 4.

In [6], the authors also introduced the concepts (p, g)-
generalized fuzzy b-closed sets and (p, g)-generalized
fuzzy b-open sets in terms of the double fuzzy b-closure
and double fuzzy b-interior operators defined as follows:

(see [6]) Let (X, F,F*) be a dfts. A fuzzy

Definition 2.12 (see [6]) Let (X, F, F*) be a dfts. Then, the
b-closure and b-interior operators in (X, F, F*) are defined
by bCrp(f,p,q) = AN{h € I* : f<hand h is (p,q)-fbc }
and bIrp-(f,p,q) = V{h € I : h<f and h is (p,q)-fbo }
where p € Iy and g € I; such that p 4+ g <1.

Definition 2.13 (see [6]) Let (X,F,F*) be a dfts, f €
I*,p €Iy and g € I} with p +¢<1, then fis called

(i) (p, g9)-generalized fuzzy b-closed (for short (p, g)-
gfbe) set if bCr p-(f, p, g) <h whenever f <h and
h € Opp4 and

(i)  (p, g)-generalized fuzzy b-open (for short (p, g)-
gfbo) set if f is a (p, g)-gfc set.

The collection of all (p, g)-gfbc sets is denoted by
GbCrp,4, and the collection of all (p, g)-gtbo sets is
denoted by GbOr, 4.

Pu and Liu defined the concept of quasi-coincidence as
follows:

Definition 2.14 (see [15]) If f, g € IX be such that f(y) +
g(y) > 1 for some y € X, then f is said to be quasi-coin-
cident with g, represented by fgg. The negation of fgg is
denoted by fgg.

Definition 2.15 (see [16]) Let (X, F,F*) be a dfts. If for
each fi,f» € IX, p € Iy and g € I, such that f{,f5 € Cr,y
and figf,, there exist gi,8 € Of,, such that
f1<g1,f><g and g,qgg>, then (X, F, F*) is called a double
fuzzy normal space.

Definition 2.16 (see [17]) Let (X, F, F*) be a dfts. Then,
forp € Iy and g € I, (XF, F*) is called (p, g)-connected if

there does not exist fi,f> € IX\ {0} such that f; Vo =1
and Cr r(f1,p,q) Nfa = Crr(f2,0,q) Nfi = 0.

Equivalently, for p € Iy and g € I, (X, F,F*) is called
(p, g)-connected if and only if there does not exist f1,f> €
CF,,,A’,{ such that fi Vf, =1 and fi Af, =0.

Definition 2.17 (see [18]) Let L be a lattice. Then, a € Lis
called a zero divisor of L if there exists a nonzero element b
in L such that a A b = 0.

The set of all zero divisors of L is represented by Z(L).

Theorem 2.18 (see [19]) Let (X,F,F*) be a dfts. Then,

Lr,, is a Boolean algebra if and only if

Lrpqg C{ya:ACX}

Regular generalized fuzzy closed sets
and regular generalized fuzzy open sets

This section investigates the algebraic structures associated

with GCr 4, GOF .4, GC}’M and GO’F,p"q.
Theorem 3.1 Cp,, CCrpy CGCrpy and O, C

OF.}Lq - GOF.,p,q‘
Proof

f€Chpy= Crp(Ier(f,p.q).p.q) =f
= F(f)>p and F*(f*) <q
=f€Crpy,
Again, f € Cppy = F(f°) >p and F*(f°) <q
= Crp(f,p,q) =f
= Crp-(f,p,q) <h whenever f <h and h € O,
=f € GCrpy,

ie., Crpy S Crpg C GCrpy.
Consequently, O, . C Of 4 € GOF py. U

The following theorem elucidates the structure of
GCrpq and GOp 4.

Theorem 3.2 GCr 4 is a join semi-lattice, and GOFp 4 is
a meet semi-lattice.

Proof Consider fi,f> € GCpp, and h € Of,, such that
fivf<h. Then, since fi<h and fi € GCrpy,
Crr(fi,p,q) <h. Similarly, Cr p-(f>,p,q) <h.

Therefore,  Crp-(fi V f2,0,q) = Crr-(f1,p,q) V Crp-

(2,p,q) <h.
Hence, fi Vf> € GCrpy4, ie., GCrpy is a join semi-

lattice.
Further,

’r @ Springer



328

Mathematical Sciences (2019) 13:325-334

J1./2 € GOFppg = fi.f5 € GCrpy

=fiVf; € GCrpy
= (f] /\fz)c € GCFJM]
:>f1 /\fz € GOF%q.

Hence, GOF, is a meet semi-lattice. O

Corollary 3.3 GCr,, and GOr 4 are monoids.

Proof By Theorem 3.2, GCp, is a join semi-lattice and
GOFp, is a meet semi-lattice.
Also, 0 and 1 are the identities of GCrp 4 and GOF, 4,

respectively.

O

The following example illustrates that GCr ), need not
be a meet semi-lattice and GOp , , need not be a join semi-

lattice.

Example 3.4 Let X = [ and define a double fuzzy topology
(F,F*) on X as follows:

CF,F*(fvqu) =

TN
l\)|»—‘
| -
-
<
TN
[ =
~_

N TN,
>IN = (N B
S—" ~——

TN
Si=
S| -
-

a
>
TN
CRS)
N

=]

N\
CIRS)
S~—

a Bl

—~
Bz 8l=
S|—
~~ —
.

=

11
andfﬁ(%>7
11 v 1 )
%),/

TN
| —
~—

v \_/

| > Bl o
>

TN

CRS)

N

SRS
N~

1, if f € {0,1}
13
20 iffeA
F(f) = 7 and
2 if
10’ iffeB
0, otherwise.
0, if f€{0,1}
3
10’ iffeAd
=41
e if
50’ if feB
1, otherwise.

where A ={(3), (), ), )} and
o= { ), (), ), () o),
(6 6}

Letp = . Then,

Orpq=1{0,1}UAUB, and
CFJ’-,CI = {fc :f € OF,p,q}a

Now,

andqf

’r @ Springer

AB)ar= () () omr= ()
() 0(2) onr= (1) 2)
ro(2) o re (2e) ware ()
£< 1 with f(é—é) >3

and GOr,, = {f 1 fee GCFﬁpyq}.
Now, consider the fuzzy set f € I* defined by
9 1
—, if x # —
=13
m s if x = %

But, f A (%)
GOrpg.
Generally, GCr 4 is not closed under arbitrary join and

GOr 4 is not closed under arbitrary meet as seen in the
following.
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Example 3.5 Let X = {c,d} and define a double fuzzy
topology (F, F*) on X as follows:

F(f) =

1, if fe{0,1} 0, if f € {0,1}
) " 33 1 ; 33
o, 1)‘70(0(6(54} ) 5 1f77%€<54]
1 a 9 and  F1) =4 9
y = (x) v 1= (z)
0, otherwise. 1, otherwise.
Let p=3 and g¢= Clearly, Op,,=1{0,1}U
{ac a € ( 3 orrx—zo} and

2
GCrpy = { f:0<f (—) Withf(x)gg for all x € X OR

o (s (3) oo 1mars )

Then, for the collection F = {f :0 <f<(2) with £(x)<

2 forall x € X} C GCrpq, \/f =) &GCryy,
feF

shows that GCr, , is not closed under arbitrary join. Fur-

ther, G(’)F pq is not closed under arbitrary meet since

N\ = @) & GOy, where {f°: f € F} C GOr .
fer

which

In the remaining part of this section, we concentrate on
the families GC;, , and GO} , .
Clearly, GCr,,, C GC}.,, and GOF,, C GO,

Fpq Fpg

The following theorem shows that GC. , . and GO}, ,

admit the same structure of GCr,, and GOp,,,

respectively.
is

Theorem 3.6 GCqu is a join semi-lattice, and GO,

a meet semi-lattice.

Fp.q

Proof Consider fi,f> € GCy. pq and h € (’)'F,p_’q such that
fivfai<h. Then, since fi<h and f € GC}M7
Crr-(fi,p,q) <h. Similarly, Cr g (f2,p, q) <h. Therefore,
Crr(fi Vo,0,q) = Crp(fi,0,9) V Crp(fa, 0, q) < hy

ie., fi Vfr € GC and hence, GC/ is a join semi-

Fpaq Fipaq
lattice.
Further, fi,/» € GOy, P

= f{ Vf; € GCp,, by Theorem 3.6.

= (iNf) € GC’F‘pq

= fi Nfr € GO, .
Hence, GO}, g 1S @ meet semi-lattice. |
Corollary 3.7 GCj.,, and GOy, , are monoids.

The following example demonstrates that GC. need

Fpq
not be a meet semi-lattice and GO}.p_ , heed not be a join

semi-lattice.

Example 3.8 Consider the dfts defined in Example 3.4.

Then, for p= ;—(3)

Oy = {Q, INONONCY

and g =7+;5, we  have

’ (é‘}))%’ (%)l\/(é)} and C;pq

, 11 1 1
et ={ 10 (i) v(3) orre (3)
1t (%) VG) OR f <1 and f# @)}

and GOy, = {1/ € GC,, }.

Now, consider f € IX defined in Example 3.4. Also, let

11
3 , ifx#—
glx) = 190 %(1) Then, it is clear that
2 ifx=
250 T a0
f.g € GCqu But, fAg = (10) ¢ GCqu
Subsequently, f6,g € GOFJ,#. But,

f(\/g _(10) gGOqu

Similar to GCr,4 and GOr,4, GCp,,

closed under arbitrary join and GO;‘-AP, , heed not be closed

need not be

under arbitrary meet as shown in the following:

Example 3.9 Consider the dfts (X, F, F*) and F defined in
Example 3.5. Then, for p =

{0, 1, (20)} and

2 2
GCr,y = {f:9§f§<§) Withf(x)§§ for all x € X OR

<1 andfﬁ(%)}

1 1 /
land g =1, we have Oppyg =

But, for the collection F =4f:0<f<(3)
with f(x)< ¢ for all x € X} C GC ., \/f =d¢
. feF -
GCp g 1€ , GCp, g 18 not closed under arbitrary join.
Subsequently, GO pq 18 not closed under arbitrary
meet.

’r @ Springer
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Generalized fuzzy b-closed sets
and generalized fuzzy b-open sets

This section identifies the algebraic structures associated
with the families bCr, 4, and bOf 4 of (p, q)-fbc sets and
(p, g)-tbo sets, respectively.

Remark 4.1 1t should be noted that Cr,, C bCr,, and
OFpg € bOF 4.

In [6], it is claimed that every (p, g)-gfc set is a (p, g)-
fbc set. That is, with respect to our notations, the claim is
GCrpq C bCrp 4. But this is not true as proved in the
following:

Example 4.2 Consider the dfts defined in Example 3.5. For

p =5, and g = 5, we have seen that,

2 2
GCrpq :{f:Q§f§ <§) Withf(x)gg for all x € X OR

1<) s () onssseare )

bCrpyg _{ f:0<
9 <
20

(

Further,

land f(x )<29—O for some x € X OR

< ) OR (;(1)) <f<1 and

x) < forsomexEXORf—l}

| W

Clearly, GCrp,%bCr,, since
fs1and (sf.

Thus, in general, GCrp, € bCr 4.

fEbCrpy for

However,

U,

Theorem 4.3 (C, Fpa)

Fpaq

(bOF«,p,q n bCF,ﬂﬁq)

Proof
f €0k, ,= Irr(Cre(f,p,q0),p,q) = f
(IF,F* (CF,F*(fapaq)apa Q))

A (Crp(Irp (F 0, 9), 05 4)) <f
=f € bCrpy.

Consider f € (’)F P Therefore,

CF,F* (f P q ) fc
Consequently, I (Crr(f°,p,q),p,q) <f° and

(Ie.p (Crp (F€,p: ), P, 4))

then, f¢ EC/qu CCrpyg -

A (CF,F* (IF‘F* (fcvpv q)vpv Q)) gfc
Hence, f° € bCrp, which implies f € bOrp,, ie.,
f S O;'"p q :>f € bOF,p,q‘ Thus, O;’,p,q - (bOF,p,q mbCF,p,q)~

’r @ Springer

.. /
Similarly, C a

- (b@p,p_’q N bCF,[,_q). O

Now, we investigate the algebraic structure of bOp, ,
and bCr 4.

Theorem 4.4 bCr, , is a meet semi-lattice.
Proof Let fi,f> be two (p, g)-fbc sets. Then,

Cr p (IF,F* (f /\f2»P»CI),P»C]>
= Crp(Ir.p (fi,0,9) NMrr(f2,0,9),0, )
< (CF,F* (IF,F*(]Cl7P7‘I)»p7Q))
A (Crp (Irr(f2o2: ), 2, 9))

Also, since f1 A fo <fi and fi Afo <f,

Ir - (Crr(fi Af2,P,4) P> q)
< (IFA,F* (CF,F*(fl P> q), P, 61))
A (]F7F‘ (CRF* (fLP,Q)’Pﬂ))

Therefore,

(Crp-(Irp-(fi AN2sP,q): D5 q))
A (Ipp (Crp (fi A2+ ), P2 q))
<(Crp(Irr(fi,p,q), P, )
ACr - (Irp (f2,0,4): P+ q))
A (IF,F* (CF,F* (f1,p,q),p, 6])
N (Crr(f,0,9),P-q))
= [(Crr (Ir.p (f1,0,9),P:4))
AIr.r (Crr(fi,p.q),p,49))]
A [(CFF (IF,F*(fz,Pﬂ)aPaQ))
AIrr (Crr (f2,p.4):0,q))]
<fiNf2,
Hence, fi A f> is a (p, q)-fbc. O]
Corollary 4.5 bOrf,, is a join semi-lattice.
Moreover,

Theorem 4.6 bOr,, and bCr, , are monoids.

Proof 0 is the identity in bOf, 4, and 1 is the identity in
bCrp4. The closure property follows from Theorem 4.4

and Corollary 4.5, and associativity follows from that of IX.
O

In general, bCr p, , is not a join semi-lattice and bOp , , is
not a meet semi-lattice illustrated as follows:

Example 4.7 let X =1 and consider the dfts defined in

Example 3.4. Then, for p = and q= Ev we have
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11
bCr g —{feIX 0<f<1 and f

><%OR
f<<—>and2—0f< > %OR
j{fandﬁgf( )
<fand<)£fOR

2\ 11\
</ (3) <zo)70R
3

S|=

[N W ] D [ —

vvv

and either f ) > % or

f(E),f(x)g 3 for somex;é% OR

20 4
11 C C
(E)%gfﬁ( ) 0Rf=1}

and bOppq = {f : f° € bCrpq}-
Clearly, (%), (30)s € bCrpq and ()", (35)% € bOFp .
But, (%) \Y (%)% Q bCFJ, q-

Subsequently, (5%)° A (31)s = ((295) V(3 ) & bO0p, 4,

=R 20

11
2

s

i.e., neither bCrp, 4 is a join semi-lattice nor bOF 4 is a
meet semi-lattice.

Now, we leave the following question open:

Is bCr p, closed under arbitrary meet?

Equivalently, Is bOf , , closed under arbitrary join?

The remaining part of this section investigates the
algebraic structures associated with GbCr, , and GbOp , 4.

Remark 4.8 Note that for
bCrp (f,p,q) < Crp(f,p,q).

Remark 4.9 [6] Also, note that bCr,, C GbCr,,. Con-
sequently, bOr,, € GbOp p 4.

every felX,

Contrary to the case of bCr,, and bOy, ,, GbCf,, ;, and
GbOr 4 are neither a join semi-lattice nor a meet semi-
lattice.

Example 4.10 Consider the dfts defined in Example 3.4
and let p = ﬁ and g = —0 Then, from Example 4.7, we

have

bCr - (f,p, q) =
f, if f€bCrpy

1 2 ! ! ’
ol )
N 111\ 7T
OR f< (5> with 3 Sf(ﬁ)ﬁﬁ
it f<1 with < (5> < and

fx )7%f0rallx;é ow;g()

i (2) <7 it 4 <1 ()2
o () ()it}
and f(x)gg for some x €
«Qusrmmre(0 (1)
()01
«Q)rs(3),
()0 (3, 55 (3) oo (3):

11
where o = 1 —f(%>

. (3
- <<
(D)<

Then, GbCp,,qz{fEIX:f;é(é)orf;é()orf;é( L)
or f # (4} and

{f:f €GbCrpy}.

Note that there are plenty of fuzzy sets fi,f, € GbCr 4
such that fi V f> = (). But, (3) & GbCr,, 4. Hence, GbCr 4

is not a join semi-lattice.

Similarly, GbCr, 4 is not a meet semi-lattice. Conse-
quently, GbOF ;, , is not a join semi-lattice or a meet semi-
lattice.

1
3

GbOr g =

A lattice associated with a double fuzzy
topological space

For a given dfts (X,F,F*), and p € Iy, g € I, with p+
g<1, take [L;q ={Lrpg: OFpg:Crpq» GOF pq, GCrp g,
GO}M, GC}M, bOF p g bCr g, GbOp 4, GBCr 4, I*},
where Lr,, is a De Morgan algebra as shown in [19].
Then, l[iq

diagram is given in the following if all the elements in H_I; q

is a lattice under set inclusion, whose Hasse

are distinct:

’r @ Springer
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LF,p,q

Hasse diagram of L£ a

Examples 3.4, 3.8, 4.7 and 4.10 establish the existence
of a dfts in which all the 12 elements of I]_If_ 4 are distinct.
It is easy to observe that,

Theorem 5.1 The lattice [L[f p is associative and

complemented.
However,

Theorem 5.2 The lattice [L[f p is not distributive and hence
not modular.

Proof GbCFJ,ﬂ A (bCF,[,"q \Y GbOFJ,’q) = GbCF,p,q 75
bCrpg = (GbCppq NbCrpg) V (GBCrp g A GbOp, ). O

The following theorem characterizes the situation under
which the lattice [Lg , contains only the greatest and the
least elements:

Theorem 53 Let (X,F,F*) be a dfts. Then, L) =
{Lr g, ¥} if and only if OF 4 = Cr p .

Proof Suppose Ofp 4 = Crp 4. Then,

F€O0rpq=f€Crpq
= Crr(f,p,q) =f
= Irp(Crp (f.0:9);0,9) =f
=fe0

/
Fp.q

. /
1.€., OF,p,q Q OF,p‘q'

Hence, Crpy = OFpq = O}ﬂp’q, since (’)}ﬁp’q C OFpy
always. Therefore, GCp,, = GC}% . Consequently,
/
GOppq=GOp, .

For any f € IX, f < Crr-(f,p,q). Then, Crr(f,p,q) =
V{g € Crpq : f<8} = Crr(fir,q) = V{g € Orpy :
f<g}, since Cppy = Oppq. Hence, Vh € Op,, with
f < ha CF,F*(fap7 Q) < h7

@ Springer

ie., GCr,, = I*. Consequently, GOp,,, = I*.

Again for any felI*, Irp(f,p,q) <f. But since
OFpg = Crpag:
Crr-(Irr-(f,1:q), 0, q) = Ir p-(f,p,q) <f. Therefore, f €
bCr, 4 for all f € IX,

ie., bCr,, = I*X. Hence, bOf,, = I*.
L g ={Lrpg '} Then,
OFpq=Crpg=Lrpg For, if Op,,=1I% then
Crpq = I*. Consequently, Lr,, = IX a contradiction. [J

Conversely,  suppose

In the light of the above theorem, the following obser-
vation is obvious:

Theorem 5.4 Let (X,F,F*) be a dfts such that [L;q =
{0,1} for all p€ly and q €1, with p+ q<1. Then,
(X, F,F*) is double fuzzy normal.

Let L be a finite bounded lattice. The zero-divisor graph
of L is a simple graph G(L) with vertices in Z*(L) =
Z(L) \ {0}, the set of nonzero zero divisors of L and, for
any two distinct elements a and b in Z*(L), the vertices
a and b are adjacent if and only if a A b = 0. Now, the zero
divisors of L] are Z(L] ) =L \ {I*}.

Also, the zero-divisor graph G(L] ) of L is K55 which
is a five-regular complete bipartite graph as shown in the
following

GOppe GO

GbOp, 4

/
Fpya
Foy. ‘i F
G(Ly,) : The zero-divisor graph of L, ,
All the crisp sets in Lr 4, except 1 are its zero divisors!

Theorem 5.5 Let (X,F,F*) be a dfts. Then,
{14 € Lrpq :ACX} CZ(Lrpy)-

Proof Since Lrp, = OFpqNCrpg, for any f € Lrpgy,

f¢ € Lrp 4. In particular, for f € Lr,, \ {1} such that f =

%4 for some ACX,3g =f“€ Lr,4,8#0and fAg=0.
Hence, {4 € Lrpg: ACX} C Z(Lrpyg)- O

Remark 5.6 From the proof of above theorem, it also
follows that if f =y, € Z(Lrpy), then {h€ Lp,,:
h<ys} CZ(LFpyq), since h AfS<f Af°=0.

Theorem 5.7 Let (X,F,F*) be dfts and Lr,, be a Boo-
lean algebra for some p € ly,q € I} with p+ q < 1. Then,

Z(ﬁF%q) = ﬁF-p,q \ {1}.
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Proof By Theorem 2.18, Lr,, C {y4 : A C X}. Also, by
Theorem 5.5,

{ta € Lrpq 1 ACX} CZ(Lrpy).
Moreover, by definition of the set of zero divisors of a

lattice L, Z(L)CL.
Hence, Z(Lrpq) = Lrpg \ {1}, by Theorem. 0

In [19], the authors had proved that Cr ), is a bounded
lattice. Hence,

Conclusion

For a given dfts, the algebraic structures of the families of
(p, @)-gfo sets (GOF, ), (p, q)-gfc sets (GCrpq), (P, @)-
rgfo sets (GO}J,_’ ) (s q)-refe sets (GC}_’p’q), (p, g)-fbe sets
(bCrpg)s Py @)-fbo  sets  (bOFp,), (p, @)-glbc  sets
(GbCrpq) and (p, q@)-gftbo (GbOF ) are investigated. The

following table summarizes the results obtained:

Property Family
Ly Pq Or Pq Cr Pq GOF Pq GCr p2 GO/F,M Gc;ipq bOF p2 bCr p2 GbOr p2 GbCr Pq
Join semi-lattice I 17 17 X 7 X 17 7 X
Meet semi-lattice % 17 17 % X 7 X X 7
Monoid % 17 17 %4 17 17 I 7 7 X

Theorem 5.8 A dfts (X,F,F*) is (p, q)-connected iff the
subgraph of G(Crp4) induced by the vertices having the

property fV g = 1 is empty.
Proof
(X,F,F*) is (p,q) — connected
< Af,8 €Crpq\{0} suchthat fVg=1andfAg=0

& either fAg#QorfVg#1foranyf,g€ Crp,y\ {0}
< the subgraph of G(Crp,4) induced by the vertices
having the property f V g = 1 is empty.

Whenever these families are distinct and different from
IX, together with IX, they form a bounded associative,
complemented lattice, I]_5_ 4 Some properties of the dfts

reflected in the lattice 17

1 and its zero-divisor graph are

also brought out.
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