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Abstract
We consider Fredholm integral equation of the first kind with noisy data and use Landweber-type iterative methods as an 
iterative solver. We compare regularization property of Tikhonov, truncated singular value decomposition and the iterative 
methods. Furthermore, we present a necessary and sufficient condition for the convergence analysis of the iterative method. 
The performance of the iterative method is shown and compared with modulus-based iterative methods for the constrained 
Tikhonov regularization.
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Introduction

Integral equations are widely involved in a variety of applica-
tions such as potential theory, optimal control, electromagnetic 
scattering antenna synthesis problem, physics and other appli-
cations, see [10, 27, 29, 40, 42]. In many applications in sci-
ence and engineering such as medical imaging (CT scanning, 
electrocardiography, etc.), geophysical prospecting (searching 
for oil, land-mines, etc.), image deblurring (astronomy, crime 
scene investigations, etc.), spectroscopy, signal processing and 
image processing [24, 30], the relation between the quantity 
observed and the quantity to be measured can be formulated 
as a Fredholm integral equation of the first kind.

Therefore, it should be no surprise that the study of such 
problems and their solving methods are very substantial lit-
erature on applications. We consider the following Fredholm 
integral equation of the first kind as the generic form

where the functions g (the right-hand side function) and K 
(the kernel) are known. Here, the function x is the unknown 
function which must be determined.

In the early twentieth century, Hadamard [19] described 
the conditions for well-posed problems, that is to say, a 
problem is well-posed when it satisfied the following three 
conditions:

1.	 The problem has a solution.
2.	 The solution is unique.
3.	 The solution depends continuously on the data(stability).

If at least one of the above conditions is violated in a prob-
lem, it is referred to as the ill-posed problem. The violations 
of conditions 1 and 2 can often be remedied with a slight 
re-formulation. The violation of stability is much harder 
than two other conditions because it implies that a small 
perturbation in the data leads to a large perturbation in the 
approximate solution [24].

Fredholm integral equations of the first kind are intrin-
sically ill-posed [11, 24, 28]; that is to say, the solution is 
extremely sensitive to small perturbations. After discretiz-
ing Eq. (1), the most of classical numerical methods, such as 
LU, QR and Cholesky factorizations, are failed to compute an 
appropriate solution for (1), see [20, 23]. These difficulties are 
inseparably connected with the compactness of the operator 
which is associated with the kernel K [28]. Several numerical 
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K(s, t)x(t)dt = g(s), c ≤ s ≤ d,
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methods have been employed to approximate the solution of 
(1), see [1, 4, 8, 12, 17, 25, 31, 35, 39].

In many practical applications, which are modeled as (1), 
the kernel K is given exactly by the underlying mathematical 
model and the function g typically consists of measured quan-
tities, i.e., g is only known with a certain accuracy and only in 
a finite set of points [20]. Due to the ill-posedness of the prob-
lem, numerical solutions are very sensitive to perturbations 
and noises. Usually, these kinds of perturbations come from 
observation, measuring and rounding errors. Therefore, we are 
interested to consider Eq. (1) with noisy function g. Solving 
an ill-posed problem with noisy data should be executed by 
regularization methods [16]. In this paper, we present a self-
regularized iterative method and explain that why our method 
can play as a regularization method.

After discretizing (1), we have the following minimizing 
problem

where A ∈ ℝ
n×n. Note that we consider the minimization 

problem (2) which is more general than solving linear sys-
tem Ax = b. It should be mentioned that a linear system of 
equations may be consistent with noise-free data whereas 
using noisy data, which we are interested in, may change it 
to an inconsistent system. Therefore, considering the mini-
mization problem is more general than the liner system. 
Eq. (2) is a discrete ill-posed problem in general if the sin-
gular values of the matrix A decay gradually to zero and the 
matrix A be an ill-conditioned (i.e., the condition number 
of A is large) [23]. Our linear system of equations here is a 
discrete ill-posed problem. Therefore, the condition number 
of the matrix A is so large and it increases with the size of 
the matrix A. As a result, rounding errors prevent the com-
putation of a meaningful solution [20].

When solving a set of linear ill-posed equations by an 
iterative method typically, the iterates first improve, while at 
later stages the influence of the noise becomes more and more 
noticeable. This phenomenon is called semi-convergence by 
Natterer [32, p. 89].

In this paper, we consider the following Landweber-type 
method

where �k is a relaxation parameter and M is a given sym-
metric positive definite matrix. Several well-known methods 
can be written in the form of (3) for appropriate choices of 
the matrix M. With M equal to the identity, we get the clas-
sical Landweber method [29]. Cimmino’s method [9] is 
obtained with M =

1

m
diag(1∕‖ai‖2) where ai denotes the ith 

row of A. The CAV method [7] uses M = diag(1∕
∑n

j=1
Nja

2
ij
) 

where Nj is the number of nonzeroes in the jth column of A.

(2)min
x∈ℝn

‖Ax − b‖2,

(3)xk+1 = xk + �kA
TM(b − Axk), k = 0, 1,… ,

Convergence result and recent extensions, including block 
versions of (3), can be found in [6, 26]. Their condition is 
necessary for convergence analysis. Here, we present a nec-
essary and sufficient condition for the convergence analysis 
of (3) and explain that the iterative method can be a regulari-
zation method where the relaxation parameter is constant.

We use the fol lowing notat ion.  Let  R(A) 
and ‖x‖ =

√
xTx denote the range of a matrix A  and the defi-

nition of  2-norm, respectviely. The Moore-Penrose pseudoin-
verse of A is denoted by A†. Further for a symmetric positive 
definite (SPD) matrix M, ‖x‖M =

√⟨Mx, x⟩ and M1∕2 denote 
a weighted Euclidean norm and the square root of M, respec-
tively. The identity matrix of a proper size is denoted by I.

The paper is organized as follows. In "Popular direct reg-
ularization methods" section, we recall direct regularization 
methods as Tikhonov and truncated singular value decom-
position. Furthermore, we remind their filter factors show-
ing how they regularize the ill-posed problems. "Iterative 
regularization methods" section deals with Landweber-type 
iterative method and the modulus-based iterative methods. 
The "Landweber-type methods" section discusses the self-
regularization property of Landweber-type iterative method 
and presents the filter factor of Landweber-type iterative 
method. Furthermore, we give a necessary and sufficient 
condition for its convergence analysis. We also reintroduce 
different strategies of relaxation parameters, which are stud-
ied in [13, 14, 34]. We next consider the projected version 
of Landweber-type iterative method.

We describe the modulus-based iterative methods for 
constrained Tikhonov regularization [1] in "Modulus-based 
iterative methods for constrained Tikhonov regularization" 
section. In the last section, i.e., "Numerical results" section, 
we present the outcome of numerical experiments using 
examples taken from [23] for the Fredholm integral equa-
tion of the first kind.

Popular direct regularization methods

In this section, we briefly present and discuss the necessity 
of regularizing discrete ill-posed problems and recall the 
most popular regularization methods as the truncated SVD 
(TSVD) and Tikhonov regularization method.

One of the most popular methods for solving (1) or its dis-
crete version, i.e. (2), is the Tikhonov regularization method. 
The classical way to filter out the high-frequency compo-
nents associated with the small singular values is to apply 
regularization to the problem. The regularization method 
was established by Tikhonov [38, 39] and Phillips [36]. In its 
original framework, regularization is applied directly to the 
integral equation (1), see, e.g., [41]. In this presentation, we 
will restrict our discussion to regularization of (2).
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The Tikhonov regularization method replaces (2) by the 
following minimization problem

where � is referred to the regularization parameter and the 
matrix L is appropriately chosen. Typically, L is an identity 
matrix or a discrete approximation of a derivative opera-
tor [20]. The normal equations regarding the minimization 
problem (4) is

Thus, the solution of (4) can be written as

Let L = I and consider the following additive noise model

where b̄ is the noise-free right-hand side and �b is the noise-
component. Using the singular value decomposition (SVD) 
of the matrix A = U�VT , one easily gets

where {�i}
p

i=1
 are the singular values of A and rank(A) = p. 

Also {ui}
p

i=1
 and {vi}

p

i=1
 denote columns of U and V, respec-

tively. The functions

are called filter factors, see, e.g., [5] and [22, p. 138]. We 
will discuss the filter factors (8) later.

Similar expression as (7) can be obtained by the truncated 
SVD (TSVD), see [18, 22] for more information on TSVD. 
Indeed, the truncated approximate solution of (2) can be 
written as

for k = 1,… , p. The filter factors of TSVD method are

Since the singular values of A, i.e., �i, decay gradually 
to zero (the nature of discrete ill-posed problems), the 

(4)min
x∈ℝn

‖‖‖‖‖

(
A

�L

)
x −

(
b

0

)‖‖‖‖‖
,

(5)(ATA + �2LTL)x = ATb.

(6)x� = (ATA + �2LTL)−1ATb.

b = b̄ + 𝛿b,

(7)

x𝜇 = (ATA + 𝜇2I)−1ATb

= (V𝛴UTU𝛴VT + 𝜇2I)−1V𝛴UTb

=

p∑
i=1

𝜎2
i

𝜎2
i
+ 𝜇2

ui
T(b̄ + 𝛿b)

𝜎i
vi,

(8)�i =
�2
i

�2
i
+ �2

, i = 1, 2,… , p,

(9)xk
tsvd

=

k∑
i=1

uT
i
(b̄ + 𝛿b)

𝜎i
vi,

𝜙i =

{
1 i ≤ k

0 i > k,

quantity inside the summation (9) goes to infinity. There-
fore, we should remark here that using more singular val-
ues in (9) leads to get larger norm values for TSVD solu-
tion. For that reason, the filter factors of TSVD try to cut 
off the "unwanted" singular values. But, it is known that 
x
p

tsvd
= A†b is the solution of (2) with the minimum norm. 

After computing the singular values in TSVD method, one 
may cut off them at some point to get a proper solution for 
the problem. This contradictory remark shows a proper moti-
vation that the regularization methods must be used for ill-
posed problems. However, finding a proper singular value 
and neglecting the rest of them is a problem which is called 
finding regularization parameter. We would like to obtain 
a method which recognizes somehow automatically and 
cheaply the regularization parameter. The Tikhonov filter 
factors (8) have somehow such ability. As it is seen, when 
singular values decay to zero, the filter factors (8) have the 
same behavior of singular values. But the most important 
difficulty in Tikhonov regularization parameter is its long 
computational time (as TSVD) because of SVD’s compu-
tational complexity.

Iterative regularization methods

In this section, we recall Landweber-type iterative method 
and discuss its self-regularization property. Furthermore, we 
give a necessary and sufficient condition for its convergence 
analysis. Furthermore, we describe the modulus-based itera-
tive methods for constrained Tikhonov regularization [1].

Landweber‑type methods

In order to better understand the mechanism of semi-con-
vergence, we take a closer look at the errors in the regular-
ized solution using the Landweber-type method (3) with a 
constant relaxation parameter, i.e., �k = �.

Let x∗ = argmin ‖Ax − b̄‖M be the unique weighted least 
squares solution of minimal 2-norm.

Theorem  1  Let �k = � for k ≥ 0. Then, the iterates of 
(3) converge to a solution (call x̂  ) of (2) if and only if 
0 < 𝜆 < 2∕𝜎2

1
 with �1 the largest singular value of M

1

2A. If 
in addition x0 ∈ R(AT) then x̂  is the unique solution with 
minimal Euclidean norm.

Proof  We assume, without loss of generality, that x0 = 0. Let

Then using (3), we get

B = ATMA and c = ATMb.
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Suppose that

is the singular value decomposition (SVD) of M
1

2A, where 
M

1

2 is the square root of M. Therefore, we can present the 
matrix B as follows:

where

and rank(A) = p.

Using (10), we get

where

It follows,

Using the SVD one easily finds

where

xk = (I − �B)xk−1 + �c

= �

k−1∑
j=0

(I − �B)k−j−1c.

M
1

2A = U�VT,

(10)B = (M
1

2A)T(M
1

2A) = V�T�VT = VFVT,

F = diag(𝜎2
1
, 𝜎2

2
,… , 𝜎2

p
, 0,… , 0), and 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎p > 0,

k−1∑
j=0

(I − �B)k−j−1 = VEkV
T,

(11)

Ek = diag

(
1 − (1 − ��2

1
)k

��2
1

,… ,
1 − (1 − ��2

p
)k

��2
p

, k,… , k

)
.

(12)

xk = V(𝜆Ek)V
Tc = V(𝜆Ek)𝛴

TUTM
1

2 (b̄ + 𝛿b)

=

p∑
i=1

{
1 − (1 − 𝜆𝜎2

i
)k
}uT

i
M

1

2 (b̄ + 𝛿b)

𝜎i
vi.

(13)x∗ = VĒUTM
1

2 b̄,

(14)Ē = diag

(
1

𝜎1
,… ,

1

𝜎p
, 0,… , 0

)
.

Also note that if |1 − 𝜆𝜎2
i
| < 1 for i = 1, 2,… , p , that is, 

0 < 𝜆 <
2

𝜎2
1

 , we get

which completes the proof. 	�  ◻

The functions

in (12) are the filter factors of the Landweber-type method 
(3).

On the other hand, the obtained coefficients [see (12)]

are closed to one where the singular values are small enough. 
Since the mentioned filter factors try to cancel small singu-
lar values in the denominator of (12), we call the iterative 
method (3) by self-regularized iterative method.

We now recall different strategies of relaxation param-
eters which are studied in [13, 14, 34]. We first propose the 
following rules, see [14], for picking relaxation parameters 
in (3):

where �k is the unique root in (0, 1) of

and �1 is the largest singular value of M1∕2A. As mentioned in 
[14, Table 3.1], the roots {�k}∞k=2 can easily be precalculated. 
The aim of introducing above relaxation parameters was to 
control (postpone) the semi-convergence phenomenon.

To reduce error in the iterative method (3), the follow-
ing relaxation parameters are studied by [34]:

where rk = b − Axk and uk = ATMrk for k = 0, 1,… .

The use of a priori information (like nonnegativ-
ity) when solving an inverse problem is a well-known 

lim
k→∞

(𝜆Ek𝛴
T) = Ē.

(15)�i = 1 − (1 − ��2
i
)k, i = 1, 2,… , p,

{1 − (1 − ��2
i
)k}∕�i,

(16)(Strategy II) �k =

⎧⎪⎨⎪⎩

√
2

�2
1

for k = 0, 1,

2

�2
1

(1 − �k) for k ≥ 2,

(17)(Strategy III) �k =

⎧⎪⎨⎪⎩

√
2

�2
1

for k = 0, 1,

2

�2
1

1−�k

(1−� k
k
)2

for k ≥ 2.

gk−1(y) = (2k − 1)yk−1 − (yk−2 +⋯ + y + 1) = 0,

(18)(Strategy I) �k =
‖M1∕2rk‖2
‖ATMrk‖2 ,

(19)(Strategy IV) �k =
‖uk‖2

‖M1∕2Auk‖2 ,
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technique to improve the quality of the reconstruction. 
An advantage with projection type algorithms is the pos-
sibility to adapt them to handle convex constraints. Then 
usually, the iterates can be shown to converge toward a 
member of the underlying convex feasibility problem [3]. 
We next consider the projected version of (3) as follows:

where P� denotes the orthogonal projection onto a closed 
convex set � ∈ ℝ

n. The convergence analysis of (20) is stud-
ied by many researchers, see, e.g., [34, section 6] and [15, 
Theorem 1] for some special cases of (20) and [33, sec-
tion 4.1] for the general case. As a result of those papers, the 
iterative method (20) with the relaxation parameters (16–19) 
converges to a point in � ∩ S where S is the set of solutions 
of (2).

Modulus‑based iterative methods for constrained 
Tikhonov regularization

The method is based on modulus-based iterative methods 
and its application to Tikhonov regularization with nonnega-
tivity constraint. Indeed, modulus-based iterative methods 
try to find a nonnegative solution for (2). Therefore, using 
those iterative methods involve the nonnegativity constraints 
which is useful to improve the quality of the reconstruction.

The idea behind the method is to reduce the computa-
tional effort for large-scale problems by using a Krylov sub-
space method with a fixed Krylov subspace. We briefly 
explain it, see [1] for more details. In the method, a matrix 
A ∈ ℝ

m×n is reduced to a small bidiagonal matrix by 
Golub–Kahan bidiagonalization algorithm [18]. Let 
l ≪ min{m, n}. Applying l steps of Golub–Kahan bidiago-
nalization on the matrix A with initial vector u1 =

b

‖b‖ gives 
the following decomposition

where U and V have orthonormal columns. Here, B is a 
lower bidiagonal matrix with positive diagonal and subdi-
agonal entries. Substituting x = Vly into (5) (where L = In 
and y ∈ ℝ

l ) and using (21) give equation

where Tl,� = BT
l+1,l

Bl+1,l + �2Il and b̂ = e1‖ATb‖. Here, the 
vector ej denotes the j-th column of an identity matrix with 
appropriate order. If we denote the largest singular value of 
the matrix Bl+1,l with �max, the largest eigenvalue of Tl,� is 
�2
max

+ �2 and the smallest eigenvalue is close to �2 (indeed 
bounded below by �2 ). This yields the following algorithm 
and we call it modulus-based iterative (MBI) method

(20)xk+1 = P�

(
xk + �kA

TM(b − Axk)
)
,

(21)AVl = Ul+1Bl+1,l ,A
TUl = VlB

T
l,l
,

(22)Tl,𝜇y = b̂,

Algorithm 1  MBI method

1.	 y0 = VT
l
x0

2.	 ỹ0 = VT
l
|Vly0|

3.	 For k = 1, 2, 3,…

4.	    yk+1 = (𝛼Il + Tl,𝜇)
−1
(
(𝛼Il − Tl,𝜇)ỹk + b̂)

)
5.	    ỹk+1 = VT

l
|Vlyk+1|

6.	 End For
7.	 x = Vlỹk+1 + |Vlỹk+1|

where the relaxation parameter � is defined as 
� =

√
(�2

max
+ �2)�2. To see how the regularization param-

eter � and the starting point x0 can be calculated, follow [1, 
Algorithm 2]. Here, the absolute function, i.e., |.|, for vectors 
is component wise.

Numerical results

In this section, we examine the effectiveness of the strate-
gies (I-IV) (see "Landweber-type methods" section) for the 
Landweber-type method (20). We present several examples 
that illustrate the performance of the strategies and justify 
the accuracy and efficiency of algorithm (20) where � ∈ ℝ

n 
is the nonnegative orthant. We compare algorithm (20) 
(using four strategies) with MBI algorithm, i.e., [1, Algo-
rithm 2], and the Tikhonov direct method.

All examples are obtained by discretizing the Fredholm 
integral equation (1). The discretized version is the discrete 
ill-posed problem (2). Since, the considered discrete version 
is a consistent linear system of equations, the minimization 
problem (2) is replaced by the linear system Ax = b. We 
consider noise-free and noisy data with different noise levels 
(
‖b−b̄‖
‖b̄‖ ) 0.01%, 0.1%, 1%, 5% and 10%. We use additive inde-

pendent Gaussian noise of mean zero. The examples Phillips 
[36], Shaw [37], Foxgood [2] and Gravity [21] are produced 
by Regularization Tools [23]. In all examples of this section, 
we consider matrix A of dimension 800 × 800 and the noise-
free right-hand side is calculated by Regularization Tools 
[23]. The matrix M in (20) is the weight matrix of CAV’s 
method. The initial iterate is x0 = 0 in algorithm (20) and for 
the MBI algorithm we follow the instruction of [1, Algo-
rithm 2]. Furthermore, in MBI algorithm, we let � = 1.01 
and l = 30.

In order to analyze the errors, we compute the relative 
error The numerical examples are compared to each other 
by computing relative error ( ‖x−x

k‖
‖x‖ ) and elapsed CPU time 

in seconds. All computations were carried out running the 
Matlab version R2011b on a laptop computer with an Intel 
Core i5 and 4 GB of RAM.
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We next present our four examples that are based on Fred-
holm integral equation, i.e., (1). We use Matlab functions 
of [23] to produce the matrix A, the right-hand side vector 
b and the vector x which is the discrete version of the solu-
tion of (1) for the following examples. In our examples, the 
exact solutions are nonnegative, i.e., all components of x 
are nonnegative.

Example 1  (Phillips test) The integral equation is discre-
tized by Galerkin method using the MATLAB function 
phillips from [23]. It produces the vectors b, x and matrix 
A. The coefficient matrix A is symmetric and indefinite. 
The singular values of the matrix decay gradually to zero. 
The matrix is ill-conditioned, and its condition number is 
k(A) = 1.08 × 1010.

Example 2  (Shaw test) The discretization is carried out by 
a simple quadrature rule using the function shaw from [23]. 
It generates the matrix A and vector x. Then, the right-hand 
side is computed as b = Ax. The obtained symmetric indefi-
nite matrix A has the condition number k(A) = 2.40 × 1020. 
The singular values of A decay fairly quickly to zero.

Example 3  (Foxgood test) This equation was first used by 
Fox and Goodwin [2]. We use the function foxgood from 
[23] to determine its discrete version using simple quadra-
ture (midpoint rule). The function foxgood generates A, b 
and x. This gives a symmetric indefinite matrix A. Its singu-
lar values cluster at zero and the computed condition number 
is k(A) = 1.09 × 1020.

Example 4  (Gravity test) We use the function gravity from 
[23] to produce the matrix A which is a symmetric Toeplitz 
matrix. The test has a parameter d which is the depth at 
which the magnetic deposit is located. The default value for 
the parameter, see [23], is d = 0.25 and we use it in our tests. 
However, using a larger value for d leads to the faster decay 
of the singular values. The Matlab function gravity gener-
ates the matrix A and vector x. Then, the right-hand side is 
computed as b = Ax. The condition number for this matrix 
is k(A) = 1.41 × 1020.

In our four tests, both strategies II and III give almost the 
same results for different noise levels. Therefore, we only 
show the results regarding the strategy III in all Figs. 1, 2, 
3 and 4.

Furthermore, the strategies I and IV with low-level noise 
give almost the same results but the relative error of strategy 
I oscillates when a large amount of noise is involved in the 
data. Of course, we expect such behavior for the strategy I 
because its analysis is based on the consistency of the linear 

system which may be destroyed by noisy data. However, we 
only report the strategy IV in all figures.

We also use constant relaxation parameter � = 1.9 
which gives almost the same results as the strategy IV for 
all examples except the Foxgood test, see Fig. 3. The con-
stant relaxation parameter for that test produces the stable 
results, i.e., there is no semi-convergence phenomenon, 
but it makes slow rate of convergence whereas the strategy 
IV gives stable and very fast convergence results. Also for 
the Gravity test with 10% noise, we get the same conclu-
sion as we get for Foxgood test. However, we only present 
constant relaxation parameter � = 1.9 for Foxgood test.

Based on our numerical results, the strategy IV gives 
the fastest convergence rate and the most stable results 
compare to different strategies of the relaxation parameter 
and MBI algorithm, see Figs. 1, 2, 3 and 4.

The convergence rate of MBI algorithm depends on the 
amount of noise. Indeed, using more noise in data gives 
faster convergence rate and reverse. However, in our 
numerical tests, using 10% noise gives the best results for 
the MBI algorithm and they may be comparable with the 
strategy IV. In Fig. 1f (Phillips test), the strategy IV has 
faster than MBI algorithm in few first iterations and the 
strategy does not show semi-convergence phenomenon but 
the MBI algorithm does. The Fig. 2f (Shaw test) shows 
that the semi-convergence phenomenon happen neither for 
strategy IV nor MBI algorithm. However, the strategy IV 
gives better results than MBI algorithm. We not only get 
the same conclusion as explained for Fig. 3f but also the 
strategy IV gives much faster convergence rate than MBI 
algorithm. In Fig. 4f, we have the same interpretation as 
Phillips test.

All results in Tables 1, 2, 3 and 4 report the average rel-
ative errors and CPU times (in seconds) for different meth-
ods over 100 runs within 30 iterations and using 5% noise. 
We report the results at 30-th iteration where MBI algo-
rithm does not show semi-convergence behavior and that 
iteration gives the smallest relative error for the method. 
Furthermore, we use the function discrep from [23], i.e. 
Discrepancy principle criterion, to compute Tikhonov’s 
regularization parameter. We also use the exact value of 
‖�b‖ in the function discrep. Based on the explained results 
on Figs. 1, 2, 3 and 4, we only report the results of strategy 
IV, constant relaxation parameter � = 1.9, MBI algorithm 
and Tikhonov method with 5% noise.

The Tables 1, 2, 3 and 4 show that the most time-con-
suming method is Tikhonov and its relative error is larger 
than the cases strategy IV and the MBI algorithm. The 
relative error of Tikhonov method is smaller than the case 
� = 1.9 (except the Shaw test, see Table 2). Furthermore, 
using � = 1.9 (within 30 iterations) produces larger rela-
tive error than strategy IV and the MBI algorithm whereas 
it is minimum time-consuming strategy. Therefore, one 
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may only compare two successful cases, i.e., strategy IV 
and the MBI algorithm. Both cases have almost the same 
computational times, whereas the relative error of strategy 
IV is smaller than the MBI algorithm.
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Fig. 1   Relative error histories for Phillips test

Table 1   Phillips test problem with 5% noise

Method Relative error CPU time

Tikhonov 0.039 0.440
� = 1.9 0.046 0.040
Strategy IV 0.020 0.060
MBI 0.030 0.070
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Conclusion

We recall Landweber-type iterative method to obtain a 
solution for the Fredholm integral equation of the first 
kind with noisy data. We present the self-regularization 
property of the iterative method and give a necessary and 
sufficient condition for the convergence analysis of the 
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Fig. 2   Relative error histories for Shaw test

Table 2   Shaw test problem with 5% noise

Method Relative error CPU time

Tikhonov 0.163 0.340
� = 1.9 0.148 0.040
Strategy IV 0.121 0.050
MBI 0.162 0.070
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iterative method with constant relaxation parameter. Our 
numerical results confirm that Landweber-type iterative 
method is able to produce accurate and stable results for 
the integral equation with noisy data. However, MBI algo-
rithm shows proper results as our method, whereas the 
noise level is enough large.
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Fig. 3   Relative error histories for Foxgood test

Table 3   Foxgood test problem with 5% noise

Method Relative error CPU time

Tikhonov 0.065 0.340
� = 1.9 0.089 0.040
Strategy IV 0.038 0.060
MBI 0.070 0.070
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Fig. 4   Relative error histories for Gravity test
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