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Abstract
In this paper, we have applied an iterative method to the singular and nonlinear fractional partial differential of Emden–
Fowler equations types. Haar wavelets operational matrix of fractional integration will be used to solve the problem with 
the Picard technique. The singular equations turn to Sylvester equations that will be solved so that numerically solvable is 
very cost- effective. Moreover, the proposed technique is reliable enough to overcome the difficulty of the singular point at 
x = 0 . Numerical examples are providing to illustrate the efficiency and accuracy of the technique.
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Introduction

Most phenomena are modeled using differential equations 
in most fields of science such as chemistry, biology, and 
technology. Meantime, many real phenomena are modeled 
by nonlinear and singular differential equations. Recently, 
differential equations have attracted the attention of many 
researchers in science and engineering due to their vast 
applications in most branches of science (see for more 
details [4, 6, 10, 11, 16, 17]). The Emden–Fowler equa-
tion is a differential equation which arises in mathematical 
physics and astrophysics. Due to the singularity behavior 
at the point ( x = 0 ), it is numerically challenging to solve 
the Emden–Fowler problem, as well as other various lin-
ear and nonlinear singular initial value problems in quan-
tum mechanics and astrophysics. This paper deals with the 
numerical solution for the singular and nonlinear fractional 
partial differential Emden–Fowler equation using the Haar 

wavelet collocation method. Various methods for solving 
these equations are cited in [1–3, 5, 7, 13, 18, 24]. Wave-
lets are widely used in approximation theory and have been 
used repeatedly for solving differential equations over recent 
years. Wavelet-based, numerical methods are used for solv-
ing the system of equations with faster convergence and low 
computational cost. In the last two decades, wavelets have 
been used for the solution of partial differential equations. 
The wavelet algorithms for solving PDE (partial differential 
equation) are based on the Galerkin technique or the col-
location method. Among them, the Haar wavelets consist 
of piecewise constant functions, and therefore, they are the 
simplest orthonormal wavelets with compact support [17, 
20].

In this work, we have proposed a collocation method by 
the Haar wavelet for solving nonlinear and singular frac-
tional time-dependent Emden–Fowler equations [8, 19, 21]. 
The existence of a singularity at the point x = 0 , as well as a 
nonlinear part, makes find the approximate solution of these 
categories of equations difficult.

The model is of the form:

𝜕2u

𝜕x2
+

𝜁

x

𝜕u

𝜕x
+ af (x, t)F(u) + h(x, t)

=
𝜕𝛼u

𝜕t𝛼
, 0 ≤ x, t ≤ 1, 0 < 𝛼 ≤ 1,
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with initial and boundary conditions:

where g1(x), Y1(t) and Y2(t) are known functions. �
�u

�t�
 donate 

the Caputo fractional derivative to time t. Here, u is the tem-
perature, f (x, t)F(u) + h(x, t) is the nonlinear heat source, 
and t is the time variable. If h(x, t) = 0 , this equation is the 
Emden–Fowler equation [8] which has been given by:

for f (x) = 1 and F(u) = un , this equation is known as the 
first kind, while the second kind is obtained when F(u) = eu . 
These equations are solved by methods such as Adomian 
decomposition method (ADM) [15, 22, 23], modified 
homotopy perturbation method (MHPM) [12, 19], and 
homotopy perturbation method (HPM) [3]. See the details 
for more information about recent works on Lane–Emden 
equations [8, 9].

It is necessary to note that the Emden–Fowler singular par-
tial fractional differential equation is the first one to be solved 
by the Haar wavelets collocation method and the Picard tech-
nique. There are no similar works with this method for these 
equations. The key idea in this paper is to convert the nonlinear 
equation using the Picard technique to a system of linear equa-
tions and then using the Haar wavelet collocation method for 
finding the approximate solutions of such equations.

Haar wavelet, fractional integral 
and derivative

Fractional integral and derivative

In this section, we first review some basic definitions of frac-
tional calculus, which are required for establishing our results 
[14].

Definition 2.1 The Riemann–Liouville fractional integral 
operator of order � ≥ 0 of function u(t) is defined as:

The properties of the operator J� are given as follows:

Definition 2.2 The fractional derivative of u(t) in the Caputo 
sense is defined as:

u(x, 0) = g1(x), u(0, t) = Y1(t), u(1, t) = Y2(t),

uxx +
�

x
ux + af (x)F(u) = 0,

(1)
J𝛼u(t) =

1

Γ(𝛼) ∫
t

0

(t − 𝜏)𝛼−1u(𝜏)d𝜏,

𝛼, t > 0, J0u(t) = u(t).

(i)J�J�u(t) = J�+�u(t),

(ii)J�J�u(t) = J�J�u(t),

(iii)J�t� =
Γ(� + 1)

Γ(� + � + 1)
t�+� .

Haar wavelets

The Haar functions contain just one wavelet during some 
subinterval of time and remain zero elsewhere and orthogo-
nal. The lth Haar wavelet hl(x), x ∈ [0, 1) is defined as:

where a(l) = k

m
, b(l) =

k+0.5

m
, c(l) =

k+1

m
, l = 2

j
+ k + 1, j = 0,

1, 2, 3,… , J  are dilat ion parameters,  m = 2j  and 
k = 0, 1, 2,… 2j − 1 are translation parameters. When k = 0 
, j = 0 , we have l = 2 , which is the minimal value of l and 
the maximal value of l is 2M where M = 2j , J is maximal 
level of resolution. For the Haar wavelets, the wavelet collo-
cation method is applied. The collocation points for the Haar 
wavelets are usually taken as xj =

j−0.5

2M
, j = 1, 2, 3,… , 2M. 

For convenience, 2M is equal to m. For instance J = 2 , then 
m = 8.

Fractional integral of the Haar wavelets

The Riemann–Liouville fractional integral of the Haar scal-
ing function and the Haar wavelets are given as:

Equations (4) and (5) imply that:

and

(2)

D𝛼u(t) =

{
d
r
u(t)

dtr
𝛼 = r ∈ N;

1

Γ(r−𝛼)
∫ t

0

u(r)

(1−𝜏)𝛼−r+1
d𝜏 0 ≤ r − 1 < 𝛼 < r.

(3)hl(x) =

⎧
⎪⎨⎪⎩

1 a(l) ≤ t < b(l)

−1 b(l) ≤ t < c(l)

0 otherwise

(4)

p𝛼,1(x) =I
𝛼

a(1)
h1(x) =

1

Γ(𝛼) ∫
x

a(l)

(x − s)𝛼−1ds, 𝛼 > 0.

(5)

p𝛼,l(x) =(I
𝛼

a
hl)(x)

=
1

Γ(𝛼)

⎧⎪⎨⎪⎩

∫ x

a(l)
(x − s)𝛼−1ds, a(l) ≤ x < b(l);

∫ b(l)

a(l)
(x − s)𝛼−1ds − ∫ x

b(l)
(x − s)𝛼−1ds, b(l) ≤ x < c(l);

∫ b(l)

a(l)
(x − s)𝛼−1ds − ∫ c(l)

b(l)
(x − s)𝛼−1ds, x ≥ c(l).

(6)p�,1(x) =
(x − a(1))�

Γ(� + 1)
,

(7)

p𝛼,l(x)

=
1

Γ(𝛼 + 1)

⎧
⎪⎨⎪⎩

(x − a(l))𝛼 , a(l) ≤ x < b(l)

(x − a(l))𝛼 − 2(x − b(l))𝛼 , b(l) ≤ x < c(l)

(x − a(l))𝛼 − 2(x − b(l))𝛼 + (x − c(l))𝛼 , c(l) ≤ x.
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Any function y ∈ L2[0, 1] can be represented in terms of the 
Haar series as:

where bl are the Haar wavelet coefficients given by 
bl = ∫ 1

0
y(x)hl(x)dx. The function y(x) can be approximated 

by the truncated Haar wavelets series as:

In order to find the numerical approximation of a function, 
we put the Haar into a discrete form. So, we utilized the col-
location method. The collocation points for the Haar wave-
lets are taken as xc(i) =

i−0.5

m
 , where i = 1, 2,… ,m.

Any function of two variables u(x, t) ∈ L2([a, b] × [a, b]) 
can be approximated as:

where C is m × m coefficient matrix which can be deter-
mined by the inner product cl,i = ⟨hl(x), ⟨u(x, t), hi(t)⟩⟩.

(8)y(x) =

∞∑
l=1

blhl(x),

(9)

y(x) ≈ Ym(x) =

m∑
l=1

blhl(x),

l = 2j + k + 1, j = 0, 1,… , J k = 0, 1,… 2j − 1.

(10)u(x, t) ≈

m∑
l=1

m∑
i=1

cl,ihl(x)hi(t) = HT(x)CH(t),

The Haar coefficients bl can be determined by matrix 
inversion

where H−1 is the inverse of H. Equation (11) gives the Haar 
coefficients bl which are used in (9) to get the solution y(x).

Similarly, we can obtain the fractional order integration 
matrix P of the Haar function by substituting the collocation 
points in Eqs. (6) and (7), P(l, i) = p�,l(xc(i))), as:

For instance, with � = 0.25, J = 2(m = 8) , we get the Haar 
wavelet operational matrix of fractional integration as:

We derive another operational matrix of fractional inte-
gration to solve the fractional boundary value problems. 
Let 𝜁 > 0 and z ∶ [0, �] → R be a continuous function and 
assume that the Haar function has [0, �] as compact support, 
we have:

H8×8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 1 1 1 − 1 − 1 − 1 − 1

1 1 − 1 − 1 0 0 0 0

0 0 0 0 1 1 − 1 − 1

1 − 1 0 0 0 0 0 0

0 0 1 − 1 0 0 0 0

0 0 0 0 1 − 1 0 0

0 0 0 0 0 0 1 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(11)b = yH−1,

Pm×m =

⎡⎢⎢⎢⎣

p1(xc(1)) p1(xc(2)) … p1(xc(m))

p2(xc(1)) p2(xc(2)) … p2(xc(m))

⋮ ⋮ ⋱ ⋮

pm(xc(1)) pm(xc(2)) … pm(xc(m))

⎤⎥⎥⎥⎦
.

P8×8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5516 0.7259 0.8248 0.8972 0.9554 1.0046 1.0474 1.0856

0.5516 0.7259 0.8248 0.8972 − 0.1478 − 0.4473 − 0.60239 − 0.7089

0.5516 0.7259 − 0.2783 − 0.5547 − 0.14267 − 0.0639 − 0.0385 − 0.0263

0 0 0 0 0.5516 0.7259 − 0.2783 − 0.5547

0.5516 − 0.3772 − 0.0754 − 0.0265 − 0.0142 − 0.0090 − 0.0063 − 0.0046

0 0 0.5516 − 0.3772 − 0.0754 − 0.0265 − 0.01420 − 0.0090

0 0 0 0 0.5516 − 0.3772 − 0.0754 − 0.0265

0 0 0 0 0 0 0.5516 − 0.3772

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)z(x)I�
0
h1(�) = z(x)

�

∫
0

(� − s)�ds, v�,� ,1 = z(x)C�,1,

Taking the collocation points as x(i) = i−0.5

m
 , where 

i = 1, 2,… ,m , we define the Haar matrix as:

For instance, for J = 2 , we get m = 8 and the Haar matrix 
is given by:

Hm×m =

⎡⎢⎢⎢⎣

h1(xc(1)) h1(xc(2)) … h1(xc(m))

h2(xc(1)) h2(xc(2)) … h2(xc(m))

⋮ ⋮ ⋱ ⋮

hm(xc(1)) hm(xc(2)) … hm(xc(m))

⎤⎥⎥⎥⎦
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and

For instance, � = 1, z(x) = x, � = 1.25,m = 8 , we have:

Method of solution

In this section, we describe the procedure of implement-
ing the method for singular and nonlinear fractional 
Emden–Fowler equations. First, we convert the singular 
fractional partial differential equation into discrete fractional 
PDE (partial differential equations) by the Picard technique. 
Then, we solve it to obtain the approximate solution of the 
singular and nonlinear fractional partial differential equation 
by the Haar wavelet collocation method.

Consider the following singular and nonlinear fractional 
time-dependent Emden–Fowler partial differential equation:

with initial and boundary conditions:

and applying the Picard technique to Eq. (15), we get:

with the initial and boundary conditions:

(13)
z(x)I�

0
hl(�) = z(x)

⎡⎢⎢⎣

b(l)

∫
a(l)

(� − s)�−1ds −

�

∫
b(l)

(� − s)�−1ds

⎤⎥⎥⎦
,

v�,� ,1 = z(x)C�,l.

(14)V
1.25,1

8×8
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8826 0.8826 0.8826 0.8826 0.88261 0.8826 0.88261 0.8826

0.1404 0.1404 0.1404 0.1404 0.1404 0.1404 0.1404 0.1404

0.0216 0.0216 0.0216 0.0216 0.0216 0.0216 0.0216 0.0216

0.0590 0.0590 0.0590 0.0590 0.0590 0.0590 0.0590 0.0590

0.0047 0.0047 0.0047 0.0047 0.0047 0.0047 0.0047 0.0047

0.0061 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061

0.00910 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091

0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(15)
𝜕𝛼u

𝜕t𝛼
=

𝜕2u

𝜕x2
+

𝜁

x

𝜕u

𝜕x
+ af (x, t)F(u) + h(x, t),

0 < 𝛼 ≤ 1, 0 ≤ x, t ≤ 1,

(16)
u(x, 0) = g1(x),

u(0, t) = Y1(t), u(1, t) = Y2(t),

(17)
𝜕𝛼ur+1

𝜕t𝛼
=

𝜕2ur+1

𝜕x2
+

𝜁

x

𝜕ur+1

𝜕x
+ m(x, t, ur),

0 < 𝛼 ≤ 1, , r ≥ 0

(18)

ur+1(x, 0) = g1(x), 0 ≤ x < 1.

ur+1(0, t) = Y1(t), ur+1(1, t) = Y2(t), t ∈ [0, 1]

where m(x, t, ur) ∶= af (x, t)F(u) + h(x, t) . Applying the Haar 
wavelet method to Eq. (17), we approximate the higher order 
term by the Haar wavelet series as:

Applying the fractional integral operator I2
x
 on Eq.  (19) 

gives:

where p(t) and q(t) are functions of t. Using the boundary 
conditions and Eqs. (5), (6), we get

Equation (20) can be written as:

take derivative with respect to x of order 1 to Eq. (22)

For simplicity, let

where mlp = ⟨hl(x), ⟨S(x, t), hp(t)⟩⟩ . By substituting Eqs. (24), 
(19) and (23) in Eq. (15), we obtain:

(19)
�2ur+1

�x2
=

m∑
l=1

m∑
p=1

cr+1
lp

hl(x)hp(t) = HT(x)Cr+1H(t).

(20)ur+1(x, t) = (P2

x
)TCr+1H(t) + p(t)x + q(t),

(21)

q(t) = Y1(t)

p(t) = −

m∑
l=1

m∑
p=1

cr+1
lp

(I2
x
hl(x))hp(t) + Y2(t) − Y1(t).

(22)
ur+1(x, t) =(P

2

x
)TCr+1H(t) − x((P2

x
(1))TCr+1H(t))

− x(Y2(t) − Y1(t)) + Y1(t),

(23)

�ur+1

�x
= (P1

x
)TCr+1H(t) − (P2

x
(1))TCr+1H(t) − Y2(t) + Y1(t).

(24)

S(x, t) =m(x, t, ur)

=

m∑
l=1

m∑
p=1

mlphl(x)hp(t) = HT(x)MH(t),

(25)

��ur+1

�t�
=HT(x)Cr+1H(t)

+
�

x
((P1

x
)TCr+1H(t) − (P2

x
(1))TCr+1H(t)

+ Y2(t) − Y1(t)) + HT(x)MH(t).
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Apply fractional integral operator I�
t
 to (25) and use the ini-

tial conditions to obtain:

Let K(x, t) = −g1(x) + x(Y2(t) − Y1(t)) +
�

x
I�
t
(Y2(t) − Y1(t)) . 

From Eqs. (26), (22),

In discrete form, Eq. (27) and using the collocation points, 
we have matrix form:

where H is m × m the Haar matrix, V2,1,f (x) = f (x)I2
1
HT is 

m × m is the fractional integration matrix for boundary value 
problems, and P2

x
= I2

x
HT,P�

t
= I�

t
H are m × m matrices of 

fractional integration of the Haar functions. M′ is m × m the 
coefficient matrix determined by inner products 
m�

lp
= ⟨hl(x), ⟨S(x, t), hp(t)⟩⟩ , and f (x) = x.

Let L ∶= (HT + A((P1)T − (V1,1,f (x))T)−1 is m × m matrix, 
where A is a diagonal matrix and is given by:

(26)

ur+1(x, t) =H
TCr+1P�

t
+

�

x
((P1

x
)TCr+1P�

t
+ I�

t
(Y2(t) − Y1(t)))

+ HTMP�

t
+ g1(x).

(27)

(P2

x
)TCr+1H(t) − x((P2

x
(1))TCr+1H(t)) + K(x, t)

= HTCr+1P�

t
+

�

x
((P1

x
)TCr+1P�

t

− (P2

x
(1))TCr+1H(t)) + HTMP�

t
.

(28)

(P2

x
)TCr+1H − V2,1,f (x)Cr+1H − HTCr+1P�

t

+
�

x
((P1

x
)TCr+1)P�

t
− V1,1,f (x)Cr+1P�

t
)

− HTM
�

P�

t
+ K = 0,

A =

⎡⎢⎢⎢⎣

a(x(1)) 0 … 0

0 a(x(2)) … 0

⋮ ⋮ ⋱ ⋮

0 0 … a(x(m))

⎤⎥⎥⎥⎦
with a(x(i)) =

�

x(i)
.

So Eq. (28) can be written as:

which is Sylvester equation (AX + XB = C) . Solving Eq. (29) 
for Cr+1 and substituting in Eq. (20) or Eq. (26), we get the 
solution ur+1 at the collocation points. In particular, given 
an initial approximation u0(x, t) , we get a linear fractional 
singular problem in u1(x, t) by substituting r = 0 in Eq. (20), 
which is solved by mentioned procedure to get u1(x, t) at the 
collocation points.

Numerical results and examples

In this section, we have used the above technique for solv-
ing the singular and nonlinear fractional time-dependent 
Emden–Fowler equation. In these examples, exact solutions 
are being and comparison between Haar–Picard technique 
approximate solution and the exact solution do to show the 
efficiency of our method to solve such equations.

Example 4.1 We consider the singular and nonlinear frac-
tional time-dependent Emden–Fowler heat-type equation 
[19, 22]:

where � = 5 , with initial and boundary conditions:

Exact solution for � = 1 is u(x, t) = −2 ln(1 + tx2).
We use u0 = 0 as an initial approximation and apply our 

method, we get the approximate solution of this singular 
equation. We see in Table 1 the different values of � when 

(29)
L((P2

x
)T − V2,1,f (x))Cr+1 − Cr+1P�

t
H−1 + L(K − HTM

�

P�

t
) = 0,

(30)�2u

�x2
+

�

x

�u

�x
− (24t + 16t2x2)eu − 2x2eu∕2 =

��u

�t�

(31)
u(x, 0) = 0, u(0, t) = 0,

u(1, t) = −2 ln(1 + t), 0 ≤ x, t ≤ 1,

Table 1  Absolute error 
|u

r+1(x, t) − u(x, t)|
t=0.5 , for 

m = 64 , � when it goes to � = 1 
at 6th iteration, and comparison 
of the absolute error with the 
methods MHMP [19], and 
ADM [22] in Example 4.1

x EHWCM EHWCM EHWCM Method [19] Method [22] uexact

for � = 0.75 for � = 0.9 for � = 1 for � = 1 for � = 1 for � = 1

0 3.0985e−03 2.8271e−04 2.2534e−06 2.3700e−04 0 0
0.1 1.4562e−02 6.9296e−03 3.8818e−07 2.2300e−04 5.3985e−15 − 9.9751e−03
0.2 1.0179e−02 4.3346e−03 4.6257e−07 2.1300e−04 2.0974e−11 − 3.9605e−02
0.3 6.8774e−03 2.6360e−03 6.8850e−07 3.1900e−04 2.6652e−09 − 3.9605e−02
0.4 4.1240e−03 1.3311e−03 4.6909e−06 2.3500e−04 8.1781e−08 − 1.5392e−01
0.5 1.7164e−03 2.6316e−04 2.5043e−05 2.3600e−04 1.1487e−06 − 2.3557e−01
0.6 4.3222e−04 6.4554e−04 7.0896e−05 3.3100e−04 9.8258e−06 − 3.3103e−01
0.7 2.3821e−03 1.4126e−03 1.5046e−04 2.2700e−04 5.9617e−05 − 4.3827e−01
0.8 4.1489e−03 2.0612e−03 2.6759e−04 1.3300e−04 2.8116e−04 − 5.5526e−01
0.9 5.7582e−03 2.6064e−03 4.2135e−04 2.6000e−05 1.0935e−03 − 6.8007e−01
1 7.2280e−03 3.0627e−03 6.0658e−04 0 3.6531e−03 − 8.1093e−01
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it goes to � = 1 ; the absolute errors show that the solution 
of method converges to exact solution. We also compare 
our results on the absolute error by the method introduced 
in [19, 22]. In Fig. 1, absolute errors show that increasing 
the number of iterations, approximate solutions to the pre-
sent method approach the exact solution, and also we plotted 
absolute errors of approximate solutions in different values 
m for � = 1 in Fig. 2, as can be seen, by increasing the reso-
lution m approximate solutions approach the exact solution.

Example 4.2 Consider the singular and nonlinear fractional 
time-dependent Emden–Fowler heat-type equation [19]:

(32)

�2u

�x2
+

(
�

x

)
�u

�x
− �t(tx)−2+�

(x2 − t(−1 + � + �)eu − t2(tx))−2+2��2e2u =
��u

�t�

with initial and boundary conditions

where � and � are constants and exact solution for � = 1 is 
u(x, t) = − ln(3 + (tx)�).

We use u0(x, t) = − ln(3) as an initial approximation and 
apply our technique, we get approximate solution of this sin-
gular problem. In Table 2, we set � = 1, � = 1 . In Table 2, we 
see the different values of � when it goes to � = 1 ; the absolute 
error shows the solution of method converges to the exact 
solution. We have got a comparison with the numerical results 
in [19], and our solution by present method is in Table 2. 
Another case of Example 4.2 is that � = 2, � = 2 . In Table 3, 
we see the different values of � when it goes to � = 1 . Abso-
lute error shows the solution of method converges to exact 
solution. We have got a comparison with numerical results 

(33)
u(x, 0) = − ln(3), u(0, t) = − ln(3),

u(1, t) = − ln(3 + t�), 0 ≤ x, t ≤ 1,

Table 2  Absolute error 
|u

r+1(x, t) − u(x, t)|
t=0.5 , for 

m = 64 , � when it goes to � = 1 
at 6th iteration, and comparison 
of the absolute error with 
MHPM [19], ADM [22] in 
Example 4.2

� = 1, � = 1

x EHWCM EHWCM EHWCM Method [19] Method [22] uexact

for � = 0.75 for � = 0.9 for � = 1 for � = 1 for � = 1 for � = 1

0 1.0469e−03 1.8169e−04 8.1552e−07 1.0110e−04 0 − 1.0986e+00
0.1 8.8755e−03 3.6928e−03 6.1983e−07 8.2000e−05 2.5368e−10 − 1.0994e+00
0.2 7.8872e−03 3.5372e−03 3.1181e−07 6.3500e−05 8.0082e−09 − 1.1019e+00
0.3 6.2794e−03 2.8480e−03 1.5219e−07 4.6800e−05 6.0003e−08 − 1.1061e+00
0.4 4.6839e−03 2.0873e−03 5.9851e−08 3.2400e−05 2.4953e−07 − 1.1119e+00
0.5 3.2065e−03 1.3708e−03 2.8345e−09 2.1000e−05 7.5166e−07 − 1.1192e+00
0.6 1.8556e−03 7.2382e−04 5.4828e−08 1.2400e−05 1.8465e−06 − 1.1282e+00
0.7 6.1892e−04 1.4762e−04 1.3447e−07 6.6000e−06 3.9407e−06 − 1.1386e+00
0.8 5.1737e−04 3.7178e−04 2.9955e−07 3.0000e−06 7.5874e−06 − 1.1506e+00
0.9 1.5697e−03 8.3704e−04 6.6463e−07 1.1000e−06 1.3505e−05 − 1.1639e+00
1 2.5466e−03 1.2578e−03 1.4287e−06 0 2.2593e−05 − 1.1787e+00

Table 3  Absolute error 
|u

r+1(x, t) − u(x, t)|
t=0.5 , for 

m = 64 , � when it goes to � = 1 
at 6th iteration, and comparison 
of the absolute error with the 
MHPM [19], ADM [22] in 
Example 4.2

� = 2, � = 2

x EHWCM EHWCM EHWCM Method [19] Method [22] uexact

for � = 0.75 for � = 0.9 for � = 1 for � = 1 for � = 1 for � = 1

0 1.5395e−05 8.4526e−06 4.8160e−06 7.6700e−05 0 − 1.0986e+00
0.1 9.7758e−04 3.5702e−04 4.1849e−06 7.5500e−05 1.9278e−10 − 1.3083e+00
0.2 2.2468e−03 8.7310e−04 2.6365e−06 7.2100e−05 1.2315e−08 − 1.1314e+00
0.3 3.4442e−03 1.3753e−03 1.9325e−06 6.6600e−05 1.3984e−07 − 1.1474e+00
0.4 4.5009e−03 1.8247e−03 1.4151e−06 5.9100e−05 7.8231e−07 − 1.1632e+00
0.5 5.4031e−03 2.2087e−03 9.7598e−07 5.0200e−05 2.9678e−06 − 1.1787e+00
0.6 6.1553e−03 2.5253e−03 5.6222e−07 4.0100e−05 8.8022e−06 − 1.1939e+00
0.7 6.7682e−03 2.7776e−03 1.2109e−07 2.9500e−05 2.2022e−05 − 1.2090e+00
0.8 7.2546e−03 2.9707e−03 4.0989e−07 1.8900e−05 4.8628e−05 − 1.2238e+00
0.9 7.6280e−03 3.1106e−03 1.0668e−06 8.9000e−06 9.7591e−05 − 1.2384e+00
1 7.9052e−03 3.2043e−03 1.6854e−06 2.2200e−16 1.8160e−04 − 1.2528e+00
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in [19], and our solution by present method is in Table 3. We 
note that the methods in [19, 22] are modified homotopy per-
turbation method, and the Adomian decomposition method 
(ADM) that solve Examples 4.1 and 4.2 in integer derivative 
with respect to t that means � = 1 . For two cases of values 
of � , � , we plotted in Figs. 3, 4 absolute errors of different 
iterations for m = 64 , � = 1 , as can be seen, increasing the 
iterations approximate solutions approach the exact solutions, 
also Figs. 5, 6 show that increasing the resolution m, absolute 
errors becomes less each time.

Example 4.3 Consider the following singular and nonlinear 
fractional time-dependent in homogeneous Emden–Fowler 
equation:

where h(x, t) = ((−x4−x2+20)t−5x2−5)
√
tx2+5+(tx2+5)2

(tx2+5)
5
2

 , with initial 

and boundary condition:

(34)�2u

�x2
+

�

x

�u

�x
+ eu − e

u

2 + h(x, t) =
��u

�t�

(35)
u(x, 0) = − ln(5), u(0, t) = − ln(5),

u(1, t) = − ln(5 + t), 0 ≤ x, t ≤ 1,

Table 4  Absolute error 
|u

r+1(x, t) − u(x, t)| , for m = 64 , 
when � goes to 1 at 4th iteration 
in Example 4.3

x = t EHWCM EHWCM EHWCM EHWCM EHWCM EHWCM uexact

for � = 0.5 for � = 0.6 for � = 0.7 for � = 0.8 for � = 0.9 for � = 1 for � = 1

0 5.2714e−04 1.5764e−04 4.3971e−05 2.2429e−05 8.8187e−06 1.5425e−09 − 1.6094e+00
0.1 5.5938e−03 4.6680e−03 3.6036e−03 2.4014e−03 1.1397e−03 1.2773e−07 − 1.6104e+00
0.2 5.0322e−03 4.3098e−03 3.4931e−03 2.5330e−03 1.3759e−03 8.1484e−08 − 1.6134e+00
0.3 4.1904e−03 3.5627e−03 2.8775e−03 2.0985e−03 1.1662e−03 4.2659e−08 − 1.6184e+00
0.4 3.2784e−03 2.7336e−03 2.1622e−03 1.5449e−03 8.4562e−04 2.5738e−08 − 1.6253e+00
0.5 2.3462e−03 1.8956e−03 1.4464e−03 9.9290e−04 5.2127e−04 2.4648e−08 − 1.6341e+00
0.6 1.4372e−03 1.0967e−03 7.8131e−04 4.9376e−04 2.3525e−04 3.4371e−08 − 1.6448e+00
0.7 6.2014e−04 4.0001e−04 2.2073e−04 8.9498e−05 1.2319e−05 4.8842e−08 − 1.6573e+00
0.8 1.7881e−05 1.0509e−04 1.6401e−04 1.7263e−04 1.2137e−04 5.8531e−08 − 1.6715e+00
0.9 2.7151e−04 2.9046e−04 2.7740e−04 2.2816e−04 1.3775e−04 4.8794e−08 − 1.6873e+00
1 1.6263e−09 1.4268e−09 1.1378e−09 7.7845e−10 3.8059e−10 2.4304e−08 − 1.7047e+00
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Fig. 1  Absolute errors for � = 1,m = 64 of different iterations, Example 4.1
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where � is constant and � = 1 , and exact solution for � = 1 
is u(x, t) = − ln(5 + tx2).

We use u0 = − ln(5) as an initial approximation and apply 
our technique, we get the approximate solution of this sin-
gular problem. We see in Fig. 7 increasing the iterations at 

each stage, the absolute errors show that the solution of the 
method converges to the exact solution. In Table 4, we list 
the absolute errors for different values of � , as can be seen, 
when � tends to 1, absolute errors also decrease and the 
approximate solution approaches the exact solution.
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Conclusion

We have proposed the Haar wavelet collocation–Picard 
method for solving the singular and nonlinear time-depend-
ent Emden–Fowler-type equations with initial and bound-
ary conditions of the fractional order. Indeed, we combined 
the Haar wavelet and the Picard technique to solve singu-
lar and nonlinear fractional partial differential equations 
such as Examples 4.1, 4.2, and 4.3. The main advantage 
of this method is that the singular and nonlinear fractional 
partial differential equation can be converted into an alge-
braic system of linear equations. We note that the use of the 
Haar wavelets and the Picard technique for solving these 
singular and nonlinear fractional equations is the first one 
to occur. We clearly realized that the method is more accu-
rate on computing the approximate solutions and the results 
showed the efficiency of the method. Tables 1 and 3 show 
that our results are more accurate as compared to modified 
homotopy perturbation method introduced in [19] and Ado-
mian decomposition method [22]. The method proposed in 
this paper is easy to implement for this type of singular and 
nonlinear fractional partial differential equations and does 
not require complex computations.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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