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Abstract
In this work, an adaptive method with memory is developed such that all previous information are applied. The importance 
of the proposed method can be seen because of the optimization in important effecting factors, i.e., least number of iterations 
steps, least number of functional evaluations, least value of absolute error, and maximum efficiency index in final as well 
as in individual step as compared with the other methods. Indeed, it is proved that this adaptive method with memory has 
efficiency index 2 and competes all the existing methods without and with memory in the literature. The order of convergence 
is obtained by using two self-accelerating parameters, which is increased from 2 to 4 without any new function evaluation. It 
means that, the order of convergence can be improved until 100%. Numerical examples and the comparison with existing 
methods are included to demonstrate exceptional convergence speed of the proposed method and confirm theoretical results.
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Introduction and preliminaries

Many of the complex problems in science and engineering 
contain the function of nonlinear and transcendental nature 
in the equation of the form f (x) = 0. Numerical iterative 
schemes like Newton’s method [42] are often used to obtain 
the approximate solution of such problems because it is not 
always possible to obtain its exact solution by usual alge-
braic process. However, the condition f �(x) ≠ 0 in a neigh-
borhood of the required root is severe indeed for conver-
gence of Newton’s method, which restricts its applications in 
practice. To overcome on this difficulty, Steffensen replaced 
the first derivative of the function in the Newton’s iterate by 

forward finite difference approximation [58]. Traub in his 
book classified iterative methods for solving such equations 
as one point or multipoints [61]. We classify the iterative 
formulas by information they need as follows [61]:

1.   One-point iterative method without memory In this type 
of methods, xk+1 can be determined by only new data at 
xk. No previous information is reused. 

  Thus, xk+1 = �(xk). Then � will be called a one-point 
iterative formula (I.F.). 

  The most commonly known example is Newton’s I.F. 
(iterative formula) [42]: 

 and free derivative Steffensen’s [58] : 

2.   One-point iterative method with memory In this cat-
egory xk+1 can be determined by new information 
at xk and reused information at xk−1,… , xk−n.   Thus, 
xk+1 = �(xk;xk−1,… , xk−n). Then � will be called a one-

(1)xk+1 = xk −
f (xk)

f �(xk)
, k = 0, 1,… ,

(2)

{
wk = xk + �f (xk), k = 0, 1, 2,… ,

xk+1 = xk −
f (xk)

f [xk ,wk]
.
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point I.F. with memory. The best-known examples of a 
one-point I.F. with memory are the secant I.F. [47] 

 and Traub’s method [61] 

3.     Multipoint iterative method without memory In 
this type of methods xk+1 can be determined by 
new at xk,w1(xk),… ,wn(xk), n ≥ 1.  No old infor-
mation is  reused.   Thus xk+1 = �[xk,… , xk−n].   
Hence, xk+1 = �[xk;w1(xk),… ,wn(xk)]. In this case, � 
will be called a multipoint I.F. Pioneers in the field: 
Ostrowski’s [43] 

 and Jarratt [25] 

 also, Neta [41] 

4.   Multipoint iterative method with memory  Finally, in this 
category, let us define another iteration function � having 
arguments zj, where each such argument represents k + 1 
quantities xj,w1(xj),… ,wn(xj), (n ≥ 1). Let the iteration 
mapping be defined by xk+1 = �(zk;zk−1,… , zk−n). Then � 
is called a multipoint IF with memory. In the above-men-
tioned mapping, semicolon separates the points at which new 
information is used from the point at which old information 
is reused, i.e., at each iterative step, we must preserve infor-
mation of the last n approximations xj and for each approxi-
mation, we must calculate n expressions w1(xj),… ,wn(xj)

. Some other researchers worked on this method such as: Cor-
dero [10–13], Dezunic [15–17], Petkovic [44–49], Lotfi [33–
37], Soleymani [55, 56], Wang [63, 64], and, ….

Conjecture Kung and Traub  [31]: Kung and Traub 
proved the best one-point iterative method should 

(3)
xk+1 = xk −

(xk − xk−1)

f (xk) − f (xk−1)
f (xk), k = 1, 2,… ,

(4)

{
�k =

−1

f [xk ,xk−1]
, k = 1, 2,… ,

wk = xk + �kf (xk), xk+1 = xk −
f (xk)

f [xk ,wk]
, k = 0, 1,… .

(5)

⎧⎪⎨⎪⎩

yk = xk −
f (xk)

f �(xk)
, k = 0, 1,… ,

xk+1 = yk −
f (xk)

f �(xk)

f (yk)

f (xk)−2f (yk)
,

(6)

{
yk = xk −

2

3

f (xk)

f �(xk)
, k = 0, 1,… ,

xk+1 = xk −
1

2

f (xk)

f �(xk)−3f
�(yk)

,

(7)

⎧⎪⎪⎨⎪⎪⎩

yk = xk −
f (xk)

f �(xk)
, k = 0, 1,… ,

zk = yk −
f (yk)

f �(xk)

f (xk)+�f (yk)

f (xk)+(�−2)f (yk)
,

xk+1 = zk −
f (zk)

f �(xk)

f (xk)−f (yk)

f (xk)−3f (yk)
.

achieve order of convergence n using n function evalu-
ations. Also, any multipoint method should achieve opti-
mal order convergence 2n using n + 1 evaluations. Abbas-
bandy  [1],  Chun  [7],  Kou  [29],   and, … worked on 
one-step methods and  also, Petkovic [44], Sharma [53] and 
Thukral [60],  and …,  worked on multi-step methods.

Efficiency Index (EI) We recall the so-called efficiency 
index defined by Ostrowski  [43], as EI = p1∕n, where p is 
the order of convergence and n is the total number function 
evaluations per iteration. Lotfi [33] and Soleymani [62] have 
checked iterative methods with high efficiency index.

Note 1 We use the symbols →,O, and ∼ according to the 
following conventions  [61]. If limxn→∞ g(xn) = C, we write 
g(xn) → C or g → C. If limx→a g(x) = C, we write g(x) → C 
or g → C. If f∕g → C where C is a nonzero constant, we 
write f = O(g) or f ∼ g.

Traub investigated that it is possible to increase the order 
of convergence of without memory methods by reusing the 
obtained information of the previous iteration. If one can 
increase the order of convergence in a without memory 
method by reusing the old information, then he/she can 
develop it  with a memory method. To our surprise, there 
is not any method with memory that reuses the information 
from the all previous information. This motivated us to focus 
on this problem. Therefore, in this work, we will develop 
an adaptive memory method that uses the information not 
only from the last two steps, but also from all the previous 
iterations. This technique enables us to achieve the high-
est efficiency both theoretically and practically. Indeed, we 
will prove that this adaptive memory method has efficiency 
index 2 and hence competes all the existing methods without 
and with memory in the literature. Also, we later compare 
both numerical performances and efficiency index of our 
proposed method with some significant methods to show 
our claims. We approximate and update the introduced 
accelerator parameters in each iteration by suitable kind 
and optimal of Newton’s interpolation. We conclude that 
even with this one-step method, we need not to pay atten-
tion to higher kinds of steps in multipoint methods since this 
adaptive with memory method can achieve the efficiency 
index near 2 after three iterations, so from the theoretical 
and numerical aspects, it is enough to consider and utilize it 
practically. This paper is organized as follows:

In “A family of two-parameter iterative methods” section 
deals with modifying the optimal one-point method without 
memory introduced by family Khaksar  [28], constructed by 
introducing two iterative parameters which are calculated 
with helped of Newton’s interpolatory polynomial of differ-
ent degrees. In “Recursive adaptive method with memory” 
section, the aim of this work is presented by contributing an 
iterative method adaptive with memory for solving nonlinear 
equations, improved order of convergence from 3.56 to 4 
without adding more evaluations is presented, and achieve 
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in maximum performance index. It means that, without any 
new function calculations, we can improve convergence 
order by 100%. The comparisons of absolute errors and com-
putational efficiencies are given in “Numerical examples” 
section to illustrate convergence behavior. In “Conclusion” 
section, we give the concluding remarks.

A family of two‑parameter iterative methods

In this section, we deal with modifying one-point without 
memory methods by Khaksar  [28]. So that their error equa-
tion has two accelerator elements. Khaksar’s method has the 
iterative expression:

Denoted by KM, where � ∈ ℜ − {0}, its error equation is 
given by

To transform Eq. (8) in a method with memory, with two 
accelerators, we consider the following modification of 
(8)  [28]:

where � and � are nonzero arbitrary parameters. In what fol-
lows, we present the error of Eq. (10).

(8)

{
wk = xk − �f (xk), k = 0, 1, 2,… ,

xk+1 = xk −
f (xk)

f [xk ,wk]
(1 + �

f (wk)

f [xk ,wk]
).

(9)ek+1 = (−1 + f �(�)�)(� − c2)e
2
k
+ O(e3

k
).

(10)

{
wk = xk − �kf (xk), k = 0, 1, 2,… ,

xk+1 = xk −
f (xk)

f [xk ,wk]
(1 + �k

f (wk)

f [xk ,wk]
),

Remark 1 It is worth noting that to the best of our knowl-
edge although there are many methods with memory, how-
ever, developing adaptive methods with memory has not 
been considered in the literature.

The next theorem states of the error equation of Eq. (10).

Theorem 1 Let I ⊆ � be an open interval,  f ∶ I → � be a 
scalar function which has a simple root � in the open interval 
I, and also the initial approximation x0 is sufficiently close 
the simple zero, and then, the one-step iteration method (10) 
has two orders, which satisfies the following error equation:

Proof Let � be a simple zero of equation f (x) = 0 and 
xk = � + ek. By Taylor expansion, we have :

where ck =
f (k)(�)

k!f �(�)
, k = 2, 3,… .

Expanding f (wk) about �, we get :

If f [x, y] = f (x)−f (y)

x−y
 is a divided difference, then the expres-

sion f [xk,wk] can be written in terms of ek as:

(11)ek+1 = (−1 + f �(�)�)(� − c2)e
2
k
+ O(e3

k
).

(12)f (xk) = f �(�)(ek + c2e
2
k
+ c3e

3
k
),

(13)wk = ek − f �(�)�(ek + c2e
2
k
) + O(e3

k
).

(14)
f (wk) = f �(�)(ek − f �(�)�(ek + c2e

2
k
)

+ c2(ek − f �(�)�(ek + c2e
2
k
))
2
)e2

k
+ O(e3

k
).

Dividing (14) by (15) gives us :

We also conclude by dividing Eq. (12) by (15) :

(15)

f [xk,wk]

=
f �(�)(ek + c2e

2
k
) − f �(�)(ek − f �(�)�(ek + c2e

2
k
) + c2(ek − f �(�)�(ek + c2e

2
k
))
2
)

f �(�)�(ek + c2e
2
k
)

.

(16)

f (wk)

f [xk,wk]

= −
f �(�)

2
�(ek + c2e

2
k
)(ek − f �(�)�(ek + c2e

2
k
) + c2(ek − f �(�)�(ek + c2e

2
k
))
2
)

−f �(�)(ek + c2e
2
k
) + f �(�)(ek − f �(�)�(ek + c2e

2
k
) + c2(ek − f �(�)�(ek + c2e

2
k
))
2
)
.
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By substituting (12), (14), (16),  and (17) in (8), it is obtained 
that

Therefore,

The proof is completed.   □

Remark 2 The family of one-point methods mentioned in 
Eq. (10) requires two function evaluations and has order of 
convergence two. Therefore, this family is optimal in the 
sense of the Kung–Traub conjecture and possesses the com-
putational efficiency EI = 21∕2 ≈ 1.4142.

(17)

f (xk)

f [xk,wk]

=
f �(�)

2
�(ek + c2e

2
k
)
2

f �(�)(ek + c2e
2
k
) − f �(�)(ek − f �(�)�(ek + c2e

2
k
) + c2(ek − f �(�)�(ek + c2e

2
k
))
2
)
.

(18)
xk+1 = � + ek −

f (xk)

f [xk,wk]

(
1 + �

f (wk)

f [xk,wk]

)

= � + (−1 + f �(�)�)(� − c2)e
2
k
+ O(e3

k
).

(19)ek+1 = (−1 + f �(�)�)(� − c2)e
2
k
+ O(e3

k
).

the best approximations. Hence, the following approximates 
are applied

where k = 1, 2,….
N�
2
(xk),N

�
3
(wk) and N��

3
(wk) are Newton’s interpolating 

polynomials of two and third degrees, set through three and 
four best available approximations (nodes) (xk, xk−1,wk−1) 
and (wk, xk, xk−1,wk−1), respectively. It should be noted that 
if one uses lower Newton’s interpolation, lower accelera-
tors are obtained. Replacing the fixed parameters � and � 
in the iterative formula (10) by the varying �k and �k calcu-
lated by (20), we propose the following new methods with 
memory, x0, �0, �0 are given then w0 = x0 − �0f (x0)

(20)

⎧
⎪⎨⎪⎩

�k =
1

f �(�)
≈

1

N�
2
(xk)

,

�k =
f ��(�)

2f �(�)
≈

N��
3
(wk)

2N�
3
(wk)

,

Recursive adaptive method with memory

This section concerns with extracting the novel with mem-
ory method from (10) by using two self-accelerating param-
eters. Theorem (1) states that modified method (10) has 
order of convergence 2 if � ≠

1

f �(�)
 and � ≠ c2. Now, we pose 

a main question: Is it possible to increase the order of con-
vergence ? If so, how can it be done and what is the new 
convergence order? For answering these questions, we note 
the error equation (11). It can be seen that if we set � =

1

f �(�)
 

and � = c2 =
f ��(�)

2f �(�)
, then at least the coefficient of e2

k
 disap-

pears. However, we do not know � and consequently,  f �(�) 
and f ��(�) cannot be computed. On the other hand, we can 
approximate � using available data and therefore improve 
order of convergence. Following the same idea in the meth-
ods with memory, this issue can be resaved. However, we 
are going to do it in a more efficient way, say recursive adap-
tively. Let us describe it a little more. If we use information 
from the current and only the last iteration, we come up with 
the method introduced in  [34, 36]. Also, we have considered 

(21)
⎧⎪⎨⎪⎩

�k =
1

N�
2k
(xk)

, �k =
N��
2k+1

(wk)

2N�
2k+1

(wk)
, k = 1, 2,… ,

wk = xk − �kf (xk), xk+1 = xk −
f (xk)

f [xk ,wk]
(1 + �k

f (wk)

f [xk ,wk]
), k = 0, 1, 2,… .

N�
2k
(xk),N

�
2k+1

(wk) and N��
2k+1

(wk) are Newton’s inter-
polating polynomials of 2k and 2k + 1 degrees,  set 
through 2k + 1 and 2k + 2 best available approxima-
t ions  (nodes )  (xk, xk−1,wk−1,… ,w1, x1,w0, x0) and 
(wk, xk, xk−1,wk−1,… ,w1, x1,w0, x0) respectively. Here, we 
concern the second question regarding order of convergence 
of the method with memory (10). In what follows, we dis-
cuss the general convergence analysis of the recursive adap-
tive method with memory (10). It should be noted that the 
convergence order varies as the iteration go ahead. First, we 
need the following lemma:

Lemma 1 If �k =
1

N�
2k
(xk)

, and    �k =
N��
2k+1

(wk)

2N�
2k+1

(wk)
,  then the 

estimate

where es = xs − �, es,w = wk − �.

(22)
�

(−1 + �kf
�(�)) ∼

∏k−1

s=0
eses,w,

(�k − c2) ∼
∏k−1

s=0
eses,w,
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Proof The proof is similar to Lemma 1 mentioned in  [64].
The following result determines the order of convergence 

through the one-point iterative method with memory (21).  
 □

Theorem 2 If an initial estimation x0 is close enough to a 
simple root � of f (x) = 0 and �0 and �0 must be uniformly 
bounded above, being f a real sufficiently differentiable 
function, then the R-order of convergence of the one-point 
method adaptive with memory (21) obtained from the fol-
lowing system of nonlinear equations.

where r and p are the convergence order of the sequences 
{xk} and {wk}, respectively. Also, k indicates the number of 
iterations.

Proof Let {xk} and {wk} be convergent with orders r and p 
respectively. Then

where ek = xk − � and ek,w = wk − �. Now, by Lemma (1) 
and Eq. (24),

we obtain:

Similarly, we get:

By considering the errors of wk and xk+1 in Eq. (21) and 
Eqs. (25)–(26), we conclude:

(23)

{
rkp − (1 + p)(1 + r + r2 + r3 +⋯ + rk−1) − rk = 0,

rk+1 − 2(1 + p)(1 + r + r2 + r3 +⋯ + rk−1) − 2rk = 0,

(24)

{
ek+1 ∼ er

k
∼ er

2

k−1
∼ … ∼ er

k+1

0
,

ek,w ∼ e
p

k
∼ e

rp

k−1
∼ … ∼ e

prk

0
,

(25)

(−1 + �kf
�(�)) ∼

k−1∏
s=0

eses,w = (e0e0,w)… (ek−1ek−1,w)

= (e0e
p

0
)(er

0
e
pr

0
)… (er

k−1

0
e
rk−1p

0
)

= e
(1+p)+(1+p)r+⋯+(1+p)rk−1

0

= e
(1+p)(1+r+⋯+rk−1)

0
.

(26)(�k − c2) ∼ e
(1+p)(1+r+⋯+rk−1)

0
.

(27)ek,w ∼ (−1 + �kf
�(�))ek ∼ e

(1+p)(1+r+⋯+rk−1)

0
er

k

0
,

(28)
ek+1 ∼ (−1 + �kf

�(�))(�k − c2)e
2
k
∼ e

((1+p)(1+r+⋯+rk−1))2

0
e2r

k

0
.

equating the powers of ek+1 on the right-hand sides of Eqs. 
(24)–(27) and (24)–(28), one can obtain:

And thus we prove the result.   □

Remark 3 It should be kept in mind that the system 
of equations (23) includes the previous iterations for 
k = 0, 1, 2,… . In this case, we have the regular methods with 
memory in which the information from the current and the 
previous steps are used.

Remark 4 For k = 1 , we use the information from the current 
and the one previous step. In this case, the order of conver-
gence of the method with memory can be computed from 
the following of system of equations

This  system of  equat ions  has  the  so lu t ion 
p =

1

4
(3 +

√
17) ≃ 1.78078 , and r = 1

2
(3 +

√
17) ≃ 3.56155.

This special case gives the given result by khaksar 
haghani  [28]. This is a new kind of adaptive approach with 
memory method .

Remark 5 For k = 2 , the system of equations (23) becomes :

This system of equations has the solution: p ≃ 1.95029 and 
r ≃ 3.90057.

Remark 6 If k = 3, we get:

and equating the powers of ek+1 and ek,w error exponents of 
in pairs of relations (24), and (29) we obtain:

Positive solution of the system of equations (33) is given by: 
p ≃ 1.98804 and r ≃ 3.97609.

(29)

{
rkp − (1 + p)(1 + r + r2 + r3 +⋯ + rk−1) − rk = 0,

rk+1 − 2(1 + p)(1 + r + r2 + r3 +⋯ + rk−1) − 2rk = 0.

(30)
{

rp − (1 + p) − r = 0,

r2 − 2(1 + p) − 2r = 0.

(31)
{

r2p − (1 + p + rp + r + r2) = 0,

r3 − 2(1 + p + rp + r + r2) = 0.

(32)

{
(−1 + �kf

�(�)) ∼ ek−3ek−3,wek−2ek−2,wek−1ek−1,w ∼ e
1+p+r+rp+r2+r2p

k−3
,

(�k − c2) ∼ ek−3ek−3,wek−2ek−2,wek−1ek−1,w ∼ e
2(1+p+r+rp+r2+r2p)

k−3
.

(33)
{

r3p − (1 + p + r + rp + r2 + r2p + r3) = 0,

r4 − 2(1 + p + r + rp + r2 + r2p + r3) = 0.
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Remark 7 Also, if k = 4, we conclude by the system of equa-
tions (29): (shown by TLAM)

Solving these equations,  we get : p ≃ 1.99705 and 
r ≃ 3.9941.

Remark 8 As can be easily seen that the improvement in 
the order of convergence from 2 to 4 (100% of an improve-
ment) is attained without any additional functional evalua-
tions, which points to very high computational efficiency of 
the proposed method. Therefore, the efficiency index of the 
proposed method (23) is EI = 41∕2 = 2, (k ≥ 4).

Numerical examples

In this section, the proposed derivative-free adaptive meth-
ods are applied to solve smooth as well as nonsmooth non-
linear equations and compared with the existing without 
memory and with memory methods. The iterative methods 
without memory and with memory are listed in Tables 1 
and 2, respectively. Table 3 lists the exact roots � and ini-
tial approximations x0, which are computed using the Find-
Root command of Mathematica  [23]. Table 4 compares 
evaluation function and efficiency index of the proposed 
method by with and without memory schemes. Table 5 
compares improvement percent with memory and homo-
geneous without memory. Constructed iteration adaptive 
method, with the given function f having a simple zero is 
mentioned in Table 6. Tables 7, 8 and 9 compare our pro-
posed method forty one with and without memory. In recent 
years, since in practice high-precision computations are 
applied, the higher-efficiency index schemes have become 

(34)

{
r4p − (1 + p + r + rp + r2 + r2p + r3 + r3p + r4) = 0,

r5 − 2(1 + p + r + rp + r2 + r2p + r3 + r3p + r4) = 0.

important. Due to this reason all the computations reported 
have been performed in the programming package Math-
ematica 10 using 2000 digits floating-point arithmetic using 
“SetAccuraccy”command. The errors |xk − �| of approxima-
tions to the sought zeros, produced by the different methods 
at the first three iterations, are given in Table 6 where m(−n) 

Fig. 1  f1(t), t ∈ [−�,�] Fig. 2  f2(t), t ∈ [−�,�]

Fig. 3  f3(t), t ∈ [−10, 10]

Fig. 4  f4(t), t ∈ [−3, 3]
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stands for m × 10−n. These tables also include, for each test 
function, the initial estimation values and the last value of 
the computational order of convergence COC  [44] com-
puted by the expression (if it is stable) where p is the order of convergence. At least 40 iterative 

methods with and without memory, for comparing with our 

(35)COC =
log |f (xn)∕f (xn−1)|
log |f (xn−1)∕f (xn−2)| ≈ p,

Fig. 5  f5(t), t ∈ [−5, 2]

Fig. 6  f6(t), t ∈ [−2, 2]

Fig. 7  f7(t), t ∈ [−1, 1]

Fig. 8  f8(t), t ∈ [−5, 2]

Fig. 9  f9(t), t ∈ [0, 3]

Fig. 10  f10(t), t ∈ [−4, 4]
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proposed methods, have been chosen as comes next. Test 
functions used in many papers concerning nonlinear equa-
tions. For example, the functions fi(x), i = 1, 2, 3,… , 12 are 
displayed in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, 
respectively. Figure 13 compares of methods without mem-
ory, with memory (25%, 50% and 75% of improvements) 
and recursive adaptive (100% of improvements) in terms 

of highest possible efficiency index. Complex test function 
f10 used to show that the proposed method is applicable to 
the complex domain too. In these tables symbols In, div 
have demonstrator infinity and divergence, respectively. It 
can be observed our proposed method has minimum evalu-
ation function and maximum efficiency index. Tables 4 
and 5 show that the method (23) competes the previous 
methods. In additional its efficiency index is better than all 
the previous works. In other words, it has efficiency index 
41∕2 = 2. The same results can be observed in the second and 
third columns of Table 5 and at least has evaluation function 
inter iterative methods existent methods with- and without 
memory. Some of iterative methods in the some examples 
are divergent. We also incorporated and applied the devel-
oped adaptive method with memory (34) for different test 
examples and obtained results with the same behavior as 
above. We can see that the self-accelerating parameters and 
the consequently adapting method play a key role in increas-
ing the order of convergence of the iterative method.

Algorithms to find an initial approximation

1
An important aspect in implementing the iterative meth-

ods for the solution of nonlinear equations and systems relies 
on the choice of the initial approximation. There are a few 
known ways in the literature [24] to extract a starting point 
for the solutions of nonlinear functions. In practice, users 
need to find out robust approximations for all the zeros in 
an interval. Thus, to remedy this and to respond on this 
need, we provide a way to extract all the real zeros of non-
linear function in the interval D = [a, b]. We use the com-
mand Reduce in Mathematica 10  [23]. Hence, we give a 
hybrid algorithm including two main steps, a predictor and 
a corrector. In the predictor step, we extract initial approxi-
mations for all the zeros in an interval up to 8 decimal 
places. Then the corrector step will be used to boost up the 
accuracy of the starting points up to any tolerance. We also 
give some significant cautions for applying on different test 

Fig. 11  f11(t), t ∈ [−5, 5]

Fig. 12  f12(t), t ∈ [−3, 3]

Fig. 13  Comparison of methods without memory,  with memory (25%, 50%, and 75% of improvements) and recursive adaptive (100% of 
improvement) in terms of highest possible efficiency index
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functions. In what follows, we keep going by choosing an 
oscillatory function f (x) = 1

10
+ cos(2 + x2) + sin(x) in the 

domain D = [0., 15.].
Let us define the function and the domain for imposing 

the Reduce[ ] command as in Algorithm 1.
One may note that Reduce[ ] works with function of exact 

arithmetic. Hence, if a nonlinear function is the floating-
point arithmetic, that is, has inexact coefficients, thus we 
should write it in the exact arithmetic when we enter it into 
the above piece of code. Now we store the list of initial 
approximations in initialValues, by the following piece of 
code, which also sort the initial points. The tol will specify 
that the accuracy of each member of the provided sequence 
to be correct up to utmost tol, decimal places (Algorithm 2).

It is obvious that f is so oscillatory, and by the above 
predictor piece of Mathematica code, we attain that it has 
59 real solutions. Note that the graph of the function f has 
been drawn in Fig. 14.

Note that if a user needs much more accuracy, thus higher 
number of steps should be taken. It should be remarked that 
in order to work with such a high accuracy, we must then 

choose more than 2000 decimal places arithmetic in our 
calculations.

However,  running the above algorithm could capture 
all the real zeros of the nonlinear functions. One is that for 
many oscillatory function or for nonsmooth functions, the 
best way is to first divide the whole interval into some 
subintervals and then find all the zeros of the function on 
the subintervals. And second, in case of having a root clus-
ter, that is, when the zeros are concentrated on a very small 
area, then it would be better to increase the first tolerance of 
our algorithm in the predictor step, to find reliable starting 
points and then start the process.

And last,  if the nonlinear function has an exact solu-
tion, that is to say, an integer be the solution of a nonlin-
ear function, then the first step of our algorithm finds this 
exact solution, and an error-like message would be gener-
ated by applying our second step. For instance, the func-
tion g(x) = (x2 − 4) sin(100x) on the interval D = [0, 10] has 
319 real solutions in which one of them (its plot is given in 
Fig. 15), that is. 2, is an exact one. Thus, the first step of the 
mentioned Algorithm 1 finds the following very efficient list 
of starting points in which 2, is the exact solution:
{0.031416, 0.0628318, 0.0942478, 

0.125664, 0.15708, 0.188496, 0.219912, 
0.251327, 0.282743, 0.314159, 0.345575, 
0.376991, 0.408407, 0.439823, 0.471239, 
0.502655, 0.534071, 0.565487, 
0.596903, 0.628319, 0.659734, 
0.69115, 0.722566, 0.753982, 0.785398, 
0.816814, 0.84823, 0.879646, 0.911062, 
0.942478, 0.973894, 1.00531, 1.03673, 
1.06814, 1.09956,1.13097, 1.16239, 
1.19381, 1.22522, 1.25664, 1.28805, 
1.31947, 1.35088,1.3823, 1.41372, 
1.44513, 1.47655, 1.50796, 1.53938, 
1.5708, 1.60221, 1.63363, 1.66504, 
1.69646,1.72788, 1.75929, 1.79071, 
1.82212, 1.85354, 1.88496, 1.91637, 
1.94779, 1.9792, 2., 2.01062, 2.04203, 
2.07345, 2.10487, 2.13628, 2.1677, 
2.19911, 2.23053, 2.26195, 2.29336, 
2.32478, 2.35619, 2.38761, 2.41903, 
2.45044,2.48186, 2.51327, 2.54469, 
2.57611,2.60752,2.63894, 2.67035, 
2.70177, 2.73319, 2.7646, 2.79602, 
2.82743, 2.85885, 2.89027, 2.92168, 
2.9531, 2.98451, 3.01593, 3.04734, 
3.07876, 3.11018, 3.14159, 3.17301, 
3.20442, 3.23584, 3.26726, 3.29867, 
3.33009, 3.3615, 3.39292, 3.42434, 
3.45575, 3.48717, 3.51858,3.55, 
3.58142, 3.61283, 3.64425, 3.67566, 
3.70708, 3.7385, 3.76991, 3.80133, 

Fig. 14  The graph of the function f with finitely many zeros in an 
interval

Fig. 15  The graph of the function g with finitely many zeros in an 
interval
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3.83274, 3.86416, 3.89557, 3.92699, 
3.95841, 3.98982, 4.02124, 4.05265, 
4.08407, 4.11549, 4.1469, 4.17832, 
4.20973, 4.24115, 4.27257, 4.30398, 
4.3354, 4.36681, 4.39823, 4.42965, 
4.46106, 4.49248, 4.52389,4.55531, 
4.58673,4.61814, 4.64956, 4.68097, 
4.71239, 4.7438, 4.77522, 4.80664, 
4.83805,4.86947, 4.90088, 4.9323, 
4.96372, 4.99513, 5.02655, 5.05796, 
5.08938, 5.1208, 5.15221, 5.18363, 
5.21504, 5.24646, 5.27788, 5.30929, 
5.34071, 5.37212, 5.40354, 5.43496, 
5.46637, 5.49779, 5.5292, 5.56062, 
5.59203, 5.62345, 5.65487, 5.68628, 
5.7177, 5.74911, 5.78053, 5.81195, 
5.84336, 5.87478, 5.90619, 5.93761, 
5.96903, 6.00044, 6.03186, 6.06327, 
6.09469, 6.12611, 6.15752, 6.18894, 
6.22035, 6.25177, 6.28319, 6.3146, 
6.34602, 6.37743, 6.40885, 6.44026, 
6.47168, 6.5031, 6.53451, 6.56593, 
6.59734, 6.62876, 6.66018, 6.69159, 
6.72301, 6.75442, 6.78584, 6.81726, 
6.84867, 6.88009, 6.9115, 6.94292, 
6.97434, 7.00575, 7.03717, 7.06858, 
7.1, 7.13142, 7.16283, 7.19425, 7.22566, 
7.25708, 7.28849, 7.31991, 7.35133, 

7.38274, 7.41416, 7.44557, 7.47699, 
7.50841, 7.53982, 7.57124, 7.60265, 
7.63407, 7.66549, 7.6969, 7.72832, 
7.75973, 7.79115, 7.82257, 7.85398, 
7.8854, 7.91681, 7.94823, 7.97965, 
8.01106, 8.04248, 8.07389, 8.13672, 
8.16814, 8.19956, 8.23097, 8.26239, 
8.2938, 8.32522, 8.35664, 8.38805, 
8.41947, 8.45088, 8.4823, 8.51372, 
8.54513, 8.57655, 8.60796, 8.63938, 
8.6708, 8.70221, 8.73363, 8.76504, 
8.79646, 8.82788, 8.85929, 8.89071, 
8.92212, 8.95354, 8.98495, 9.01637, 
9.04779, 9.0792, 9.11062, 9.14203, 
9.17345, 9.20487, 9.23628, 9.2677, 
9.29911, 9.33053, 9.36195, 9.39336, 
9.42478, 9.45619, 9.48761, 9.51903, 
9.55044,9.58186,9.61327, 9.64469, 
9.67611, 9.70752, 9.73894, 9.77035, 
9.80177, 9.83319, 9.8646, 9.89602, 
9.92743, 9.95885, 9.99026}

Now we are able to solve nonlinear equations with finitely 
many roots in an interval and find all the real zeros in a short 
piece of time. Finding robust ways, to capture the complex 
solutions along working with complex nonlinear functions, 
can be taken into account as future works.

f [x] := 1
10 + cos[2 + x2] + sin[x]; a = 0.; b = 15.;

zeros = Reap[soln = y[x]/.F irst[NDSolve[{y [x] == Evaluate[D[f [x], x]],
y[b] == (f [b])}, y[x], {x, a, b},Method>{”EventLocator”,
”event”>y[x], ”EventAction” :> Sow[{x, y[x]}]}]]][[2, 1]];

initialPoints = Sort[Flatten[Take[zeros, Length[zeros], 1]]];

Length[initialPoints]
Plot[f [x], {x, a, b}, Epilog>{PointSize[Medium], Red, Point[zeros]},

P lotRange>All, PerformanceGoal>”Quality”, P lotStyle>{Thick,Brown}];

2
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An important aspect of implementing high-order nonlin-
ear solvers is in finding very robust initial guesses to start 
the process, when high-precision computing is needed. As 
discussed in "Introduction and preliminaries" section, the 
convergence of our iterative methods is local. To resolve this 
shortcoming, the best way is to rely on hybrid algorithms, in 
which the first item produces a robust initial point and the 
second item employs the new iterative methods when high 
precision is required. There are some ways in the literature 
to find robust starting points, mostly based on interval math-
ematics see, for example,  [3]. But herein we take into con-
sideration the programming package Mathematica 10  [23] 
which could be efficiently applied on lists for high-precision 
computing. In fact using  [24], we could build a list of ini-
tial guesses close enough with good accuracy to start the 
procedure of our optimal derivative-free fourth-order meth-
ods. The procedure of finding such a robust list is based 
on the powerful command of   NDSolve   for the nonlinear 
function f (x) = 1

10
+ cos(2 + x2) + sin(x) on the interval 

D = [a, b]. Such a way can be written in the following piece 
of Mathematica code by considering an oscillatory function 
as the input test function on the domain D = [0., 15.]. See 
Algorithm 1. The output of Algorithm 3 is to plot the func-
tion graph f(x).

Thus now, we have an efficient list of initial approxima-
tions for the zeros of a nonlinear once differentiable function 
with finitely many zeros in an interval. The number of zeros 
and the graph of the function including the positions of the 
zeros can be given by the following commands (see Fig. 14); 
see Algorithm 4.

For this test, there are 59 zeros in the considered inter-
val which can easily be used as the starting points for our 

proposed high-order derivative-free methods. Note that 
the output of the vector “initialPoints” contains the initial 
approximations.  Note that we end this section by mention-
ing that for very oscillatory functions, it is better to first 
divide the interval into some smaller subintervals and then 
obtain the solutions. The command NDSolve uses Maxi-
mum number of 10,000 steps, if it is needed this could be 
changed. In cases when    NDSolve    fails, this algorithm 
might fail too. The output of Algorithm 4 is as follows:
{1.1103225, 2.5611445, 2.9496729, 

3.4537697, 3.9993453, 4.1889818, 
4.7622341, 4.8587772, 5.3502573, 
5.5085282, 5.8682448, 6.0980068, 
6.3442691, 6.6342307, 6.7876268, 
7.1310609, 7.2020570, 8.3675131, 
8.3999413, 8.7079140, 8.7949106, 
9.0413573, 9.1668305, 9.3646249, 
9.5223085, 9.6781865, 9.8636235, 
9.9828725, 10.192138, 10.279661, 
10.508430, 10.569895, 10.811671, 
10.856029, 11.099569, 11.141751, 
11.373401, 11.426999, 11.637691, 
11.708314, 11.895029, 11.984045, 
12.146536, 12.253911, 12.392804, 
12.518074, 12.634217, 12.776841, 
12.871042, 13.030597, 13.103445, 
13.279866, 13.331413, 13.525843, 
13.554222, 14.647052, 14.664168, 
14.849621, 14.887657 }

59
6.82717

ClearAll[” ∗ ”]
f [x] := 1

10 + cos[2 + x2] + sin[x]; a = 0.; b = 15.;
Plot[f [x], {x, a, b}, Background → LightBlue, P lotStyle→ {Magenta, Thick},

P lotRange → All, PerformanceGoal → ”Quality”]
rts = Reduce[f [x] == 0, a ≤ x ≤ b, x];

tol=8
initialV alues = Sort[N [x/.{ToRules[rts]}, tol]];

Length[initialValues]
Accuracy[initialValues]

3
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Although the choice of good initial approximations is 
of great importance in the application of iterative meth-
ods, including multipoint methods, this task is very sel-
dom considered in the literature. Recall that Steffensen-like 
methods of the second order have been most frequently used 
as predictors in the first step of multipoint methods. These 
methods are of tangent type, and therefore, they are locally 
convergent, which means that a reasonably close initial 
approximation to the sought zero should be found. Other-
wise, if the chosen initial approximation is too far from the 
sought zero (say, if it is chosen randomly), then the applied 
methods, either the ones proposed in this paper or some 
others with local convergence developed during the last two 
centuries, will probably find some other (often unwanted) 
zero or they will diverge.

Therefore,  the determination of a reasonably good 
approximation x0 that guarantees the convergence of the 
sequence of approximations {xk}k∈N to the zero of f is a sig-
nificant task. It is interesting to note that initial approxima-
tions, chosen randomly in a suitable way, give acceptable 
results when simultaneous methods for finding all roots of 
polynomial equations are applied, e.g., employing Aberth’s 
approach  [2].

There are many methods (mainly of non-iterative nature) 
and strategies for finding sufficiently good initial approxima-
tions. The well-known bisection method and its modifica-
tions belong to the simplest but not always sufficiently effi-
cient techniques. There is a vast literature on this subject so 
that we omit details here. We only note that complete root-
finding algorithms often consist of two parts: (1) slowly con-
vergent search algorithm to isolate distinct real or complex 

Fig. 16  The graph of the function h with finitely many zeros in an 
interval

Fig. 17  The graph of the function f20(x) = sin(5x)ex, f21(x) = 2 with 
finitely many zeros in an interval

Table 1  Considered methods without memory

One-step Two-step Three-step Four-step

Abbasbandy (AM)  [1] Chun (CM) [7] Bi et al. (BWRM) [6] Geum-Kim (GKM) [19]
Hansen-Patrick (HPM) [22] Dehghan-Hajarian (DHM) [14] Chun-Neta (CNM) [8] Kreetee et al. (KBTM) [30]
Newton (NM)  [43] Ezzati-Saleki (ESM) [18] Cordero et al. (CLMTM) [12] Li et al. (LMMWM) [32]
Chebyshev (ChM)  [47] Kung–Traub (KTM) [31] Kanwar et al. (KBKM) [27] Sharifi et al. (SSSLM) [52]
Halley (HM) [21] Mahehwari (MM) [39] Matinfar et al. (MAAM) [40] Thukral (TM) [60]
Steffensen (SM) [58] Ren et al. (RWBM ) [50] Singh-Jaiswal (SJM) [54] Zheng et al. (ZLHM) [66]
Zheng et al. (ZLHM) [66] Soleymani-Mousavi (SMM) [57] Taher-Khani (TkM) [59] Guo-Qian (GQM) [20]

Table 2  Studied methods with 
memory

One-step Two-step Three-step

Dzunic (DM) [15] Bassiri et al. (BBAM) [4] Dzunic et al. (DPPM) [17]
Dzunic-Petkovic (DPM) [16] Cordero et al. (CLBTM) [10] Lotfi-Assari (LAM) [33]
Khaksar (KM) [28] Cordero et al. (CLKTM) [11] Lotfi et al. (LMNKSM) [34]
Lui-Zhang (LZM) [38] Kansal et al. (KKBM) [26] Lotfi et al. (LSGAM) [35]
Secant (SecM) [47] Lotfi-Tavakoli (LTM) [37] Lotfi et al. (LSSAKM) [36]
Traub (TrM) [61] Wang et al. (WZQM) [64] Sharifi et al. (SSSM) [51]
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Table 3  The test functions Nonlinear function Root Initial guess

f1(x) = x log(1 + x sin(x)) + e−1+x
2+x cos(x) sin(�x) � = 0 x0 = 0.3

f2(x) = sin(5x)ex − 2 � = 1.36 x0 = 1

f3(x) = 1 +
1

x4
−

1

x
− x2 � = 1 x0 = 1.4

f4(x) = (x − 2)(x10 + x + 2)e−5x � = 2 x0 = 2.3

f5(x) = ex
3−x − cos(x2 − 1) + x3 + 1 � = −1 x0 = −1.3

f6(x) =
−5x2

2
+ x4 + x5 +

1

1+x2
� = 1 x0 = 1.3

f7(x) = log(1 + x2) + e−3x+x
2

sin(x) � = 0 x0 = 0.3

f8(x) = x3 + 4x2 − 10 � = 1.3652 x0 = 1

f9(x) = x log(1 − � + x2) −
1+x2

1+x3
sin(x2) + tan(x2) � =

√
� x0 = 1.7

f10(x) = (−1 + 2i) +
1

x
+ x + sin(x) � = 0.28860 − 0.2422i x0 =

−i

2

f11(x) = (x − 2)(x6 + x3 + 1)e−x
2 � = 2 x0 = 1.8

f12(x) = ex
2−1 sin(x) + cos(2x) − 2 � = 1.44 x0 = 1.1

f13(x) = ex sin(x) + log(x4 − 3x + 1) � = 0 x0 = −0.5

f14(x) = (x − 1)(x10 + x3 + 1) sin(x) � = 1 x0 = 1.5

f15(x) = x2 sin(x2) + ex cos(x) sin(x) − 18 � = 9.98 x0 = 9.6

f16(x) = x4 + sin(
�

x2
) − 5 � = 1.41 x0 = 1

f17(x) = arcsin(x2 − 1) − x∕2 + 1 � = 0.59 x0 = 1

f18(x) =
√
x4 + 8 sin(

�

x2+2
) +

x3

x4+1
−
√
6 +

8

17

� = −2 x0 = −2.3

f19(x) = esin(x) − 1 − x∕5 � = 0 x0 = 0.5

f20(x) = arcsin(ex+2 + 1) + tanh(e−x cos(x)) − sin(�x) � = −3.98 x0 = −4.3

Table 4  Numerical results for the test functions fi(x), i = 1, 2, 3,… , 20 the proposed method (34)

Function |x1 − �| |x2 − �| |x3 − �| |x4 − �| COC EI

f1(x) , �0 = �0 = 0.1 0.189 (−4) 0.152 (−19) 0.478 (−79) 0.222 (−317) 4.0054 2.00135
f2(x) , �0 = �0 = 0.1 0.396 (−2) 0.397 (−2) 0.397 (−2) 397 (−2) 3.9988 1.99970
f3(x) , �0 = �0 = 0.1 0.492 (−3) 0.992 (−13) 0.473 (−51) 0.283 (−204) 3.9984 1.99960
f4(x) , �0 = �0 = 0.1 0.983 (−4) 0.548 (−16) 0.100 (−66) 0.214 (−270) 4.0142 2.00355
f5(x) , �0 = �0 = 0.1 0.906 (−8) 0.117 (−31) 0.160 (−126) 0.981 (−506) 3.9975 1.99937
f6(x) , �0 = �0 = 0.1 0.127 (−5) 0.412 (−22) 0.451 (−88) 0.651 (−352) 4.0000 2.00000
f7(x) , �0 = �0 = 0.1 0.187 (−3) 0.837 (−14) 0.503 (−55) 0.679 (−220) 3.9996 1.99990
f8(x) , �0 = �0 = 0.1 0.301 (−4) 0.301 (−4) 0.301 (−4) .301 (−4) 4.0000 2.00000
f9(x) , �0 = �0 = 0.1 0.129 (−10) 0.544 (−42) 0.221 (−167) 0.665 (−669) 3.9996 1.99990
f10(x) , �0 = �0 = 0.1 0.116 (1) 0.115 (1) 0.115 (1) 0.115 (1) 3.9992 1.99980
f11(x) , �0 = �0 = 0.1 0.194 (−5) 0.293 (−22) 0.861 (−90) 0.534 (−360) 4.0012 2.00300
f12(x) , �0 = �0 = 0.1 0.121 (−1) 0.779 (−2) 0.779 (−2) 0.779 (−2) 3.9998 1.99995
f13(x) , �0 = −0.001, �0 = −0.01 0.142 (−2) 0.112 (−10) 0.530 (−43) 0.361 (−172) 3.9882 1.99705
f14(x) , �0 = −0.001, �0 = −0.01 0.222 (−2) 0.640 (−2) 0.115 (−2) 0.161 (1) 3.9302 1.98247
f15(x) , �0 = �0 = 0.1 0.290 (0) 0.290 (0) 0.290 (0) 0.290 (0) 3.9976 1.99940
f16(x) , �0 = �0 = 0.1 0.421 (−2) 0.421 (−2) 0.421 (−2) 0.421 (−2) 4.0057 2.00142
f17(x) , �0 = �0 = 0.1 0.480 (−2) 0.481 (−2) 0.481 (−2) 0.481 (−2) 3.9983 1.99957
f18(x) , �0 = �0 = 0.1 0.249 (−6) 0.190 (−26) 0.377 (−107) 0.554 (−430) 4.0003 2.00007
f19(x) , �0 = �0 = 0.1 0.405 (−6) 0.154 (−27) 0.231 (−110) 0.377 (−443) 4.0179 2.00447
f20(x) , �0 = �0 = 0.1 0.615 (0) 0.598 (0) 0.598 (0) 0.598 (0) 4.0010 2.00025
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interval containing single root and (2) rapidly convergent 
iterative method for finding sufficiently close approximation 
of the isolated root to the required accuracy. In this paper we 
are concentrating on the part (2). Applying computer algebra 
systems, a typical statement for solving nonlinear equations 
reads FindRoot[equation, {x, x0}] ; see, e.g., Wolfram’s com-
putational software package Mathematica, that is, an initial 
approximation x0 is required. In finding good initial approxi-
mations, a great advance was recently achieved by devel-
oping an efficient non-iterative method of significant prac-
tical importance, originally proposed by Yun  [65]. Yun’s 
method is based on numerical integration briefly referred 
to as NIM, where tanh, arctan and signum functions are 
involved. The NIM requires neither any knowledge of the 
derivative f(x) nor any iterative process. Handling non-path-
ological cases it is not necessary to have a close approxi-
mation to the zero; instead, a real interval (not necessarily 
tight) that contains the root (so-called inclusion interval) 
is sufficient. For illustration, to find an initial approxima-
tion x0 of the zeros � = −1.4044916, 1.4044916 of the func-
tion h(x) = sin(x)2 − x2 + 1 isolated in the interval [−5, 5],  
we employed Yun’s algorithm with the statement taking 
m = 250, a = −1, b = 2, and found very good approximation 
x0 = 1.40449. The graph of function h is plotted in Fig. 16.

Table 5  Comparison evaluation function and efficiency index of the proposed method with other schemes

Without memory methods EF EFD COC EI With memory methods EF EFD COC EI

AM [1] 1 2 3.000 1.4423 DM [15] 2 0 3.550 1.8841
HPM [22] 1 2 4.000 1.5874 DPM [16] 2 0 3.000 1.7321
NM [43] 1 1 2.000 1.4142 KM [28] 2 0 3.550 1.8841
ChM [29] 1 2 3.000 1.4423 LZM  [38] 2 0 3.380 1.8385
HM  [21] 1 2 3.000 1.4423 SecM  [47] 1 0 1.680 1.6800
CM [7] 2 1 4.000 1.5874 TrM [61] 2 0 2.410 1.5524
ESM [18] 3 0 4.000 1.5874 BBAM [4] 3 0 7.220 1.9328
RWBM [50] 3 0 4.000 1.5874 CLBTM [10] 3 0 7.000 1.9129
SMM [57] 2 1 4.000 1.5874 KKBM [26] 3 0 7.000 1.9129
ZLHM [66] 3 1 4.000 1.5874 LTM [37] 4 0 12.000 1.8612
BWRM [6] 3 1 8.000 1.6818 WZQM [64] 3 0 7.530 1.9601
CNM [8] 3 1 8.000 1.6818 DPPM [17] 4 0 11.000 1.8212
CLMTM [12] 3 1 8.000 1.6818 LAM  [33] 4 0 15.500 1.9842
KBKM [27] 4 0 8.000 1.6818 LMNKSM [34] 4 0 12.000 1.8612
MAAM [40] 3 1 8.000 1.6818 LSGAM [35] 4 0 12.000 1.8612
SJM [54] 4 0 8.000 1.6818 LSSAKM [36] 4 0 14.000 1.9343
TM [60] 5 0 16.000 1.7411 SSSM [51] 4 0 12.000 1.8612
KBTM [30] 4 1 16.000 1.7411 LSSAKM [36] 4 0 12.000 1.8612
DHM [14] 3 0 3.000 1.4423 LSGAM [35] 3 0 7.238 1.9344
TkM [59] 3 1 8.000 1.6818 LAM [33] 4 0 15.000 1.9680
GQM [20] 5 0 16.000 1.7411 TLAM (34) 2 0 4.000 2.0000

Table 6  Comparison improvement of convergence order the proposed 
method with other schemes

With memory meth-
ods

Number 
of steps

Optimal order p Percentage 
increase

DM [15] 1 2.000 3.560 78
DPM [16] 1 2.000 3.000 50
KM [28] 1 2.000 3.560 78
LZM  [38] 1 2.000 3.380 69
TrM [61] 1 2.000 2.410 20.5
BBAM [4] 2 4.000 7.220 80.5
CLBTM [10] 2 4.000 7.000 75
KKBM [26] 2 4.000 7.000 75
LSGAM [35] 2 4.000 7.238 80.95
WZQM [64] 2 4.000 7.530 88.25
LTM [37] 3 8.000 12.000 50
DPPM [17] 3 8.000 11.000 37.5
LAM  [33] 3 8.000 15.500 93.75
LMNKSM [34] 3 8.000 12.000 50
LSGAM [35] 3 8.000 12.000 50
LSSAKM [36] 3 8.000 14.000 75
SSSM [51] 3 8.000 12.000 50
LSSAKM [36] 3 8.000 12.000 50
LAM [33] 3 8.000 15.000 87.5
TLAM (34) 1 2.000 4.000 100
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Table 7  Comparison evaluation function and efficiency index of the proposed method with other schemes for  f1,  f2,  f3 and  f4

Without memory methods EF Iter COC EI With memory methods EF Iter COC EI

f1(x) = x log(1 + x sin(x)) + e−1+x
2+x cos(x) sin(�x), � = 0, x0 = 0.3

AM 3 5 3.0000 1.44225 KM, �0 = �0 = 0.1 2 3 3.5252 1.87755
NM 2 7 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.4282 1.55827
HM 3 5 3.0000 1.44225 DPM 2 4 3.0000 1.73205
ChM 3 4 3.0000 1.44225 SecM, x1 = 0.6 2 15 1.6181 1.61808
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.5681 1.88894
RWBM, �0 = 1 3 4 4.0000 1.58740 WM, �0 = 1 3 5 4.2361 1.61803
MM 3 5 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 3 7.5214 1.95929
CNM, �0 = �0 = A0 = 1 4 3 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.000 1.93434
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 4 8.0000 1.68179 DPPM, �0 = −0.1 4 3 1.0000 1.00000
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = −1, �0 = 0.1, �0 = 5 4 3 15.5250 1.98499
SSSLM,method 6 5 3 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 4.0054 2.00135
f2(x) = sin(5x)ex − 2, � = 1.36, x0 = 1

AM 3 1000 1.0000 1.00000 KM, �0 = �0 = 0.1 2 3 3.5149 1.87451
NM 2 15 2.0000 1.41421 TrM, �0 = 0.1 2 5 0.0000 0.00000
HM 3 7 3.0000 1.44225 DPM 2 4 0.0000 0.00000
ChM 3 3 3.0000 1.44225 SecM, x1 = 1.2 2 17 1.6181 1.61808
SMM 3 4 0.0000 0.00000 DM, �0 = p0 = 0.1 3 4 1.0205 1.00679
RWBM, �0 = 1 3 4 0.0000 0.00000 WM, �0 = 0.1 3 5 4.2361 1.61803
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 5 7.4405 1.95224
CNM, �0 = �0 = A0 = 1 4 6 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 6 13.8020 1.92746
CLMTM,H1,G1 4 4 0.0000 0.00000 LSGAM, a0 = 1, �0 = 0.01 4 4 12.0000 1.86121
LSSSM 4 In div div DPPM, �0 = −0.1 4 3 1.0000 1.00000
GKM 5 3 0.000 0.00000 LAM, �0 = 0.01, p0 = −1, �0 = 0.1, �0 = 5 4 5 15.9080 1.99712
SSSLM,method 6 5 3 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 3.9988 1.99970

f3(x) = 1 +
1

x4
−

1

x
− x2, � = 1, x0 = 1.4

AM 3 6 3.0000 1.44225 KM, �0 = �0 = 0.1 2 3 3.5862 1.89373
NM 2 5 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.4062 1.55120
HM 3 5 3.0000 1.44225 DPM 2 4 3.0000 1.73205
ChM 3 5 3.0000 1.44225 SecM, x1 = 1.5 2 16 1.6181 1.61808
SMM 3 3 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.5592 1.88658
RWBM, �0 = 1 3 4 4.0000 1.58740 WM, �0 = 1 3 5 4.2361 1.61804
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 3 7.4973 1.95720
CNM, �0 = �0 = A0 = 1 4 3 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.0000 1.93434
CLMTM,H1,G1 4 3 8.0000 168179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 3 8.0000 1.68179 DPPM, �0 = −0.1 4 3 10.0000 1.77828
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5120 1.98457
SSSLM,method 6 5 3 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 3.9984 1.99960
f4(x) = (x − 2)(x10 + x + 2)e−5x, � = 2, x0 = 2.3

AM 3 1500 3.0000 1.44225 KM, �0 = �0 = 0.1 2 3 3.4123 1.84724
NM 2 5 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.4681 1.57100
HM 3 4 3.0000 1.44225 DPM 2 5 3.0000 1.73205
ChM 3 5 3.0000 1.44225 SecM, x1 = 1.8 2 17 1.6181 1.61808
SMM 3 3 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.5877 1.89412
RWBM, �0 = 1 3 4 4.0000 1.58740 WM, �0 = 1 3 6 4.2361 1.61803
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 3 7.5395 1.96086
CNM, �0 = �0 = A0 = 1 4 5 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.0000 1.93434
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
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x0 = 0.5 ∗ (a+ b+ Sign[f [a]] ∗NIntegrate[tanh[m ∗ f [x]], {x, a, b}])

note that the computational accuracy strongly depends on 
the structures of the iterative methods, the sought zero and 
the test functions as well as good initial approximations. In 
general,  in Tables 4, 5, 6, 7, 8 and 9 we have examined 
some methods with different kinds of convergence order. It 
is observed that these methods support their theoretical 
aspects. The last column of tables show computational effi-
ciency index defined by EI = COC1∕n, where n number of 
function evaluations per iteration. The numerical results 
show that proposed method is very useful to find an accept-
able approximation of the exact solution of nonlinear equa-
tions, specially when the function is non-differentiable. In 
fact, we have contributed further to the development of the 
theory of iteration processes and propose a new accurate and 
efficient higher-order derivative-free method for solving non-
linear equations numerically. In other words, the efficiency 
index of the proposed family with memory is EI = 41∕2 = 2,  
which is much better than optimal one until six-point opti-
mal methods without memory having efficiency indexes 
EI = 21∕2 ≃ 1.414, EI = 41∕3 ≃ 1.587, EI = 81∕4 ≃ 1.681,

Table 7  (continued)

Without memory methods EF Iter COC EI With memory methods EF Iter COC EI

LSSSM 4 4 8.0000 1.68179 DPPM, �0 = −0.1 4 3 1.0000 1.00000
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5130 1.98460
SSSLM,method 6 5 4 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 4.0142 2.00355

Remark 9 By changing a, b, and m, different values are 
obtained for this description: if a = −1, b = 2, and m = 6 
the output of the algorithm is 1.40143. If a = −2, b = 0,  
and m = 16 the output of the algorithm is −1.40408.  If 
a = −2, b = 0, and m = 16000, the output of the algorithm 
is −1.40457 and so on.

4
Using the command FindRoot and assigning the function 

to the two functions, then draw both functions in a concat-
enated graph.

The command WorkingPrecision specifies the accuracy 
of the operation. For example, if we want to find the root 
of equation f2(x) = sin(5x)ex − 2,  we rewrite it like this 
f20(x) = sin(5x)ex, f21(x) = 2. Then,  first,  by plotting the 
function in interval [−2, 2] and then using the code given 
below, in the package Mathematica, the approximate value 
of the root can be determined.

Below is the program output and its graph in Fig. 17.

Conclusion

In this work, we developed a new kind of with memory 
methods for solving nonlinear equations. Convergence anal-
ysis proves that these new derivative-free methods preserve 
their order of convergence. To this end, based on Newton’s 
interpolatory polynomial of different degrees. One should 

��������[�̂����[��] == �, �, �, ���������������− > ��]

{�− > �.�������������������������������������������������}

EI = 161∕5 ≃ 1.741, EI = 321∕6 ≃ 1.781, EI = 641∕7 ≃ 1.814 , 
respectively. Also, which are better than the other methods 
given in [1, 4–20],  [22, 25–30, 32–41],  [44–64, 66]. A 
comparison between the without memory, with memory 
and adaptive methods in terms of the maximum efficiency 
index alongside the number of steps per cycle are given in 
Fig 5. All algorithms are implemented using symbolic Math 
of MATHEMATICA [23]. Adaptive method with memory 
has minimum evaluation function, and not evaluation deriva-
tive, hence competes with methods existent with and without 
memory.
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Table 8  Comparison evaluation function and efficiency index of the proposed method with other schemes for  f5,  f6,  f7 and  f8

Without memory methods EF Iter COC EI With memory methods EF Iter COC EI

f5(x) = ex
3−x − cos(x2 − 1) + x3 + 1, � = −1, x0 = −1.3

AM 3 5 3.0000 1.44225 KM, �0 = �0 = 0.1 2 5 3.5610 1.88706
NM 2 5 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.4520 1.56549
HM 3 4 3.0000 1.44225 DPM 2 4 3.0000 1.73205
ChM 3 4 3.0000 1.44225 SecM, x1 = −1.6 2 18 1.6181 1.61808
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.5674 1.88876
RWBM, �0 = 1 3 4 4.0000 1.58740 WM, �0 = 1 3 5 4.2361 1.61803
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 3 7.5223 1.95937
CNM, �0 = �0 = A0 = 1 4 3 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.000 1.93434
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 3 8.0000 1.68179 DPPM, �0 = −0.1 4 4 1.0000 1.00000
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5100 1.98451
SSSLM,method 6 5 3 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 4.0000 2.00000

f6(x) =
−5x2

2
+ x4 + x5 +

1

1+x2
, � = 1, x0 = 1.3

AM 3 6 3.0000 1.44225 KM, �0 = �0 = 0.1 2 5 3.5609 1.88703
NM 2 7 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.2545 1.50151
HM 3 5 3.0000 1.44225 DPM 2 4 3.0000 1.73205
ChM 3 5 3.0000 1.44225 SecM, x1 = 0.8 2 16 1.61825 1.61825
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.4986 1.87045
RWBM, �0 = 1 3 4 4.0000 1.58740 WM, �0 = 1 3 6 4.23606 1.61803
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 3 7.5090 1.95822
CNM, �0 = �0 = A0 = 1 4 5 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.0000 1.93434
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 3 8.0000 1.68179 DPPM, �0 = −0.1 4 3 10.0000 1.77828
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5190 1.9848
SSSLM,method 6 5 4 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 4.0000 2.00000

f7(x) = log(1 + x2) + e−3x+x
2

sin(x), � = 0, x0 = 0.3

AM 3 6 3.0000 1.44225 KM, �0 = �0 = 0.1 2 5 3.5622 1.88738
NM 2 5 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.3980 1.54855
HM 3 5 3.0000 1.44225 DPM 2 4 3.0000 1.73205
ChM 3 5 3.0000 1.44225 SecM, x1 = 0.5 2 16 1.61803 1.61803
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.5659 1.88836
RWBM, �0 = 1 3 4 4.0000 1.58740 WM, �0 = 1 3 5 4.2361 1.61808
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 3 7.5122 1.95849
CNM, �0 = �0 = A0 = 1 4 3 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.0000 1.93434
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 4 8.0000 1.68179 DPPM, �0 = −0.1 4 4 10.0000 1.77828
GKM 5 2 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5110 1.98454
SSSLM,method 6 5 3 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 3.9996 1.99990
f8(x) = x3 + 4x2 − 10, � = 1.3652, x0 = 1

AM 3 4 3.0000 1.44225 KM, �0 = �0 = 0.1 2 5 3.7320 1.93184
NM 2 5 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.4693 1.57140
HM 3 4 3.0000 1.44225 DPM 2 4 3.0000 1.73205
ChM 3 4 3.0000 1.44225 SecM, x1 = 1.1 2 18 1.61803 1.61803
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.7320 1.93184
RWBM, �0 = 1 3 6 4.0000 1.58740 WM, �0 = 1 3 5 4.2361 1.61804
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 4 9.0000 2.08008
CNM, �0 = �0 = A0 = 1 4 3 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 4 15.0000 1.96799
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
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Table 8  (continued)

Without memory methods EF Iter COC EI With memory methods EF Iter COC EI

LSSSM 4 4 8.0000 1.68179 DPPM, �0 = −0.1 4 4 10.0000 1.77828
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 16.0000 2.00000
SSSLM,method 6 5 3 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 4.0000 2.00000

Table 9  Comparison evaluation function and efficiency index of the proposed method with other schemes for  f9,  f10,  f11 and  f12

Without memory methods EF Iter COC EI With memory methods EF Iter COC EI

f9(x) = x log(1 − � + x2) −
1+x2

1+x3
sin(x2) + tan(x2), � =

√
�, x0 = 1.7

AM 3 5 3.0000 1.44225 KM, �0 = �0 = 0.1 2 5 3.5614 1.88717
NM 2 5 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.4452 1.56637
HM 3 4 3.0000 1.44225 DPM 2 4 3.0000 1.73205
ChM 3 4 3.0000 1.44225 SecM, x1 = 1.5 2 16 1.61803 1.61803
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.5698 1.88939
RWBM, �0 = 1 3 6 4.0000 1.58740 WM, �0 = 1 3 6 4.2361 1.61803
MM 3 3 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 4 7.5321 1.96022
CNM, �0 = �0 = A0 = 1 4 3 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.0000 1.93434
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 3 8.0000 1.68179 DPPM,�0 = −0.1 4 3 10.0000 1.77828
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5140 1.98464
SSSLM,method 6 5 3 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 3.9996 1.99990

f10(x) = (−1 + 2i) +
1

x
+ x + sin(x), � = 0.28860 − 0.2422i, x0 =

−i

2

AM 3 5 3.0000 1.44225 KM, �0 = �0 = 0.1 2 5 3.5594 1.88664
NM 2 6 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.5471 1.59596
HM 3 4 3.0000 1.44225 DPM 2 5 3.0000 1.73205
ChM 3 4 3.0000 1.44225 SecM, x1 = −i 2 21 1.61803 1.61803
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.6273 1.90455
RWBM, �0 = 1 3 5 4.0000 1.58740 WM, �0 = 1 3 5 4.2361 1.61803
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 4 7.3943 1.94819
CNM, �0 = �0 = A0 = 1 4 3 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.0020 1.93441
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 3 8.0000 1.68179 DPPM, �0 = −0.1 4 3 10.0000 1.77828
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5090 1.98448
SSSLM,method 6 5 8 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 3.9992 1.99980

f11(x) = (x − 2)(x6 + x3 + 1)e−x
2, � = 2, x0 = 1.8

AM 3 8 3.0000 1.44225 KM, �0 = �0 = 0.1 2 5 3.5616 1.88722
NM 2 7 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.4323 1.55958
HM 3 5 3.0000 1.44225 DPM 2 5 3.0000 1.73205
ChM 3 25 1.0000 1.00000 SecM, x1 = 2.2 2 18 1.61803 1.61803
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.5639 1.88783
RWBM, �0 = 1 3 5 4.0000 1.58740 WM, �0 = 1 3 5 4.2361 1.61803
MM 3 6 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 4 7.5314 1.96016
CNM, �0 = �0 = A0 = 1 4 7 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.0000 1.93434
CLMTM,H1,G1 4 8 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 4 8.0000 1.68179 DPPM, �0 = −0.1 4 4 1.0000 1.00000
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5140 1.98464
SSSLM,method 6 5 4 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 4.0000 2.00000
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