
Vol.:(0123456789)1 3

Mathematical Sciences (2019) 13:1–20
https://doi.org/10.1007/s40096-018-0272-2

ORIGINAL RESEARCH

A new family of adaptive methods with memory for solving nonlinear
equations

Vali Torkashvand1 · Taher Lotfi1 · Mohammad Ali Fariborzi Araghi2

Received: 7 March 2018 / Accepted: 19 November 2018 / Published online: 11 December 2018
© The Author(s) 2018

Abstract
In this work, an adaptive method with memory is developed such that all previous information are applied. The importance
of the proposed method can be seen because of the optimization in important effecting factors, i.e., least number of iterations
steps, least number of functional evaluations, least value of absolute error, and maximum efficiency index in final as well
as in individual step as compared with the other methods. Indeed, it is proved that this adaptive method with memory has
efficiency index 2 and competes all the existing methods without and with memory in the literature. The order of convergence
is obtained by using two self-accelerating parameters, which is increased from 2 to 4 without any new function evaluation. It
means that, the order of convergence can be improved until 100%. Numerical examples and the comparison with existing
methods are included to demonstrate exceptional convergence speed of the proposed method and confirm theoretical results.

Keywords Newton’s interpolatory polynomial · Adaptive method with memory · Self-accelerator · Nonlinear equation

Mathematics Subject Classification 65H05 · 65B99

Introduction and preliminaries

Many of the complex problems in science and engineering
contain the function of nonlinear and transcendental nature
in the equation of the form f (x) = 0. Numerical iterative
schemes like Newton’s method [42] are often used to obtain
the approximate solution of such problems because it is not
always possible to obtain its exact solution by usual alge-
braic process. However, the condition f �(x) ≠ 0 in a neigh-
borhood of the required root is severe indeed for conver-
gence of Newton’s method, which restricts its applications in
practice. To overcome on this difficulty, Steffensen replaced
the first derivative of the function in the Newton’s iterate by

forward finite difference approximation [58]. Traub in his
book classified iterative methods for solving such equations
as one point or multipoints [61]. We classify the iterative
formulas by information they need as follows [61]:

1. One-point iterative method without memory In this type
of methods, xk+1 can be determined by only new data at
xk. No previous information is reused.

 Thus, xk+1 = �(xk). Then � will be called a one-point
iterative formula (I.F.).

 The most commonly known example is Newton’s I.F.
(iterative formula) [42]:

 and free derivative Steffensen’s [58] :

2. One-point iterative method with memory In this cat-
egory xk+1 can be determined by new information
at xk and reused information at xk−1,… , xk−n. Thus,
xk+1 = �(xk;xk−1,… , xk−n). Then � will be called a one-

(1)xk+1 = xk −
f (xk)

f �(xk)
, k = 0, 1,… ,

(2)

{
wk = xk + �f (xk), k = 0, 1, 2,… ,

xk+1 = xk −
f (xk)

f [xk ,wk]
.

 * Taher Lotfi
 lotfi@iauh.ac.ir; lotfitaher@yahoo.com

 Vali Torkashvand
 torkashvand1978@gmail.com

 Mohammad Ali Fariborzi Araghi
 fariborzi.araghi@gmail.com

1 Faculty of Basic Science, Islamic Azad University, Hamedan
Branch, Hamedan, Iran

2 Department of Mathematics, Central Tehran branch, Islamic
Azad University, Tehran, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s40096-018-0272-2&domain=pdf

2 Mathematical Sciences (2019) 13:1–20

1 3

point I.F. with memory. The best-known examples of a
one-point I.F. with memory are the secant I.F. [47]

 and Traub’s method [61]

3. Multipoint iterative method without memory In
this type of methods xk+1 can be determined by
new at xk,w1(xk),… ,wn(xk), n ≥ 1. No old infor-
mation is reused. Thus xk+1 = �[xk,… , xk−n].
Hence, xk+1 = �[xk;w1(xk),… ,wn(xk)]. In this case, �
will be called a multipoint I.F. Pioneers in the field:
Ostrowski’s [43]

 and Jarratt [25]

 also, Neta [41]

4. Multipoint iterative method with memory Finally, in this
category, let us define another iteration function � having
arguments zj, where each such argument represents k + 1
quantities xj,w1(xj),… ,wn(xj), (n ≥ 1). Let the iteration
mapping be defined by xk+1 = �(zk;zk−1,… , zk−n). Then �
is called a multipoint IF with memory. In the above-men-
tioned mapping, semicolon separates the points at which new
information is used from the point at which old information
is reused, i.e., at each iterative step, we must preserve infor-
mation of the last n approximations xj and for each approxi-
mation, we must calculate n expressions w1(xj),… ,wn(xj)

. Some other researchers worked on this method such as: Cor-
dero [10–13], Dezunic [15–17], Petkovic [44–49], Lotfi [33–
37], Soleymani [55, 56], Wang [63, 64], and, ….

Conjecture Kung and Traub [31]: Kung and Traub
proved the best one-point iterative method should

(3)
xk+1 = xk −

(xk − xk−1)

f (xk) − f (xk−1)
f (xk), k = 1, 2,… ,

(4)

{
�k =

−1

f [xk ,xk−1]
, k = 1, 2,… ,

wk = xk + �kf (xk), xk+1 = xk −
f (xk)

f [xk ,wk]
, k = 0, 1,… .

(5)

⎧⎪⎨⎪⎩

yk = xk −
f (xk)

f �(xk)
, k = 0, 1,… ,

xk+1 = yk −
f (xk)

f �(xk)

f (yk)

f (xk)−2f (yk)
,

(6)

{
yk = xk −

2

3

f (xk)

f �(xk)
, k = 0, 1,… ,

xk+1 = xk −
1

2

f (xk)

f �(xk)−3f
�(yk)

,

(7)

⎧⎪⎪⎨⎪⎪⎩

yk = xk −
f (xk)

f �(xk)
, k = 0, 1,… ,

zk = yk −
f (yk)

f �(xk)

f (xk)+�f (yk)

f (xk)+(�−2)f (yk)
,

xk+1 = zk −
f (zk)

f �(xk)

f (xk)−f (yk)

f (xk)−3f (yk)
.

achieve order of convergence n using n function evalu-
ations. Also, any multipoint method should achieve opti-
mal order convergence 2n using n + 1 evaluations. Abbas-
bandy [1], Chun [7], Kou [29], and, … worked on
one-step methods and also, Petkovic [44], Sharma [53] and
Thukral [60], and …, worked on multi-step methods.

Efficiency Index (EI) We recall the so-called efficiency
index defined by Ostrowski [43], as EI = p1∕n, where p is
the order of convergence and n is the total number function
evaluations per iteration. Lotfi [33] and Soleymani [62] have
checked iterative methods with high efficiency index.

Note 1 We use the symbols →,O, and ∼ according to the
following conventions [61]. If limxn→∞ g(xn) = C, we write
g(xn) → C or g → C. If limx→a g(x) = C, we write g(x) → C
or g → C. If f∕g → C where C is a nonzero constant, we
write f = O(g) or f ∼ g.

Traub investigated that it is possible to increase the order
of convergence of without memory methods by reusing the
obtained information of the previous iteration. If one can
increase the order of convergence in a without memory
method by reusing the old information, then he/she can
develop it with a memory method. To our surprise, there
is not any method with memory that reuses the information
from the all previous information. This motivated us to focus
on this problem. Therefore, in this work, we will develop
an adaptive memory method that uses the information not
only from the last two steps, but also from all the previous
iterations. This technique enables us to achieve the high-
est efficiency both theoretically and practically. Indeed, we
will prove that this adaptive memory method has efficiency
index 2 and hence competes all the existing methods without
and with memory in the literature. Also, we later compare
both numerical performances and efficiency index of our
proposed method with some significant methods to show
our claims. We approximate and update the introduced
accelerator parameters in each iteration by suitable kind
and optimal of Newton’s interpolation. We conclude that
even with this one-step method, we need not to pay atten-
tion to higher kinds of steps in multipoint methods since this
adaptive with memory method can achieve the efficiency
index near 2 after three iterations, so from the theoretical
and numerical aspects, it is enough to consider and utilize it
practically. This paper is organized as follows:

In “A family of two-parameter iterative methods” section
deals with modifying the optimal one-point method without
memory introduced by family Khaksar [28], constructed by
introducing two iterative parameters which are calculated
with helped of Newton’s interpolatory polynomial of differ-
ent degrees. In “Recursive adaptive method with memory”
section, the aim of this work is presented by contributing an
iterative method adaptive with memory for solving nonlinear
equations, improved order of convergence from 3.56 to 4
without adding more evaluations is presented, and achieve

3Mathematical Sciences (2019) 13:1–20

1 3

in maximum performance index. It means that, without any
new function calculations, we can improve convergence
order by 100%. The comparisons of absolute errors and com-
putational efficiencies are given in “Numerical examples”
section to illustrate convergence behavior. In “Conclusion”
section, we give the concluding remarks.

A family of two‑parameter iterative methods

In this section, we deal with modifying one-point without
memory methods by Khaksar [28]. So that their error equa-
tion has two accelerator elements. Khaksar’s method has the
iterative expression:

Denoted by KM, where � ∈ ℜ − {0}, its error equation is
given by

To transform Eq. (8) in a method with memory, with two
accelerators, we consider the following modification of
(8) [28]:

where � and � are nonzero arbitrary parameters. In what fol-
lows, we present the error of Eq. (10).

(8)

{
wk = xk − �f (xk), k = 0, 1, 2,… ,

xk+1 = xk −
f (xk)

f [xk ,wk]
(1 + �

f (wk)

f [xk ,wk]
).

(9)ek+1 = (−1 + f �(�)�)(� − c2)e
2
k
+ O(e3

k
).

(10)

{
wk = xk − �kf (xk), k = 0, 1, 2,… ,

xk+1 = xk −
f (xk)

f [xk ,wk]
(1 + �k

f (wk)

f [xk ,wk]
),

Remark 1 It is worth noting that to the best of our knowl-
edge although there are many methods with memory, how-
ever, developing adaptive methods with memory has not
been considered in the literature.

The next theorem states of the error equation of Eq. (10).

Theorem 1 Let I ⊆ � be an open interval, f ∶ I → � be a
scalar function which has a simple root � in the open interval
I, and also the initial approximation x0 is sufficiently close
the simple zero, and then, the one-step iteration method (10)
has two orders, which satisfies the following error equation:

Proof Let � be a simple zero of equation f (x) = 0 and
xk = � + ek. By Taylor expansion, we have :

where ck =
f (k)(�)

k!f �(�)
, k = 2, 3,… .

Expanding f (wk) about �, we get :

If f [x, y] = f (x)−f (y)

x−y
 is a divided difference, then the expres-

sion f [xk,wk] can be written in terms of ek as:

(11)ek+1 = (−1 + f �(�)�)(� − c2)e
2
k
+ O(e3

k
).

(12)f (xk) = f �(�)(ek + c2e
2
k
+ c3e

3
k
),

(13)wk = ek − f �(�)�(ek + c2e
2
k
) + O(e3

k
).

(14)
f (wk) = f �(�)(ek − f �(�)�(ek + c2e

2
k
)

+ c2(ek − f �(�)�(ek + c2e
2
k
))
2
)e2

k
+ O(e3

k
).

Dividing (14) by (15) gives us :

We also conclude by dividing Eq. (12) by (15) :

(15)

f [xk,wk]

=
f �(�)(ek + c2e

2
k
) − f �(�)(ek − f �(�)�(ek + c2e

2
k
) + c2(ek − f �(�)�(ek + c2e

2
k
))
2
)

f �(�)�(ek + c2e
2
k
)

.

(16)

f (wk)

f [xk,wk]

= −
f �(�)

2
�(ek + c2e

2
k
)(ek − f �(�)�(ek + c2e

2
k
) + c2(ek − f �(�)�(ek + c2e

2
k
))
2
)

−f �(�)(ek + c2e
2
k
) + f �(�)(ek − f �(�)�(ek + c2e

2
k
) + c2(ek − f �(�)�(ek + c2e

2
k
))
2
)
.

4 Mathematical Sciences (2019) 13:1–20

1 3

By substituting (12), (14), (16), and (17) in (8), it is obtained
that

Therefore,

The proof is completed. □

Remark 2 The family of one-point methods mentioned in
Eq. (10) requires two function evaluations and has order of
convergence two. Therefore, this family is optimal in the
sense of the Kung–Traub conjecture and possesses the com-
putational efficiency EI = 21∕2 ≈ 1.4142.

(17)

f (xk)

f [xk,wk]

=
f �(�)

2
�(ek + c2e

2
k
)
2

f �(�)(ek + c2e
2
k
) − f �(�)(ek − f �(�)�(ek + c2e

2
k
) + c2(ek − f �(�)�(ek + c2e

2
k
))
2
)
.

(18)
xk+1 = � + ek −

f (xk)

f [xk,wk]

(
1 + �

f (wk)

f [xk,wk]

)

= � + (−1 + f �(�)�)(� − c2)e
2
k
+ O(e3

k
).

(19)ek+1 = (−1 + f �(�)�)(� − c2)e
2
k
+ O(e3

k
).

the best approximations. Hence, the following approximates
are applied

where k = 1, 2,….
N�
2
(xk),N

�
3
(wk) and N��

3
(wk) are Newton’s interpolating

polynomials of two and third degrees, set through three and
four best available approximations (nodes) (xk, xk−1,wk−1)
and (wk, xk, xk−1,wk−1), respectively. It should be noted that
if one uses lower Newton’s interpolation, lower accelera-
tors are obtained. Replacing the fixed parameters � and �
in the iterative formula (10) by the varying �k and �k calcu-
lated by (20), we propose the following new methods with
memory, x0, �0, �0 are given then w0 = x0 − �0f (x0)

(20)

⎧
⎪⎨⎪⎩

�k =
1

f �(�)
≈

1

N�
2
(xk)

,

�k =
f ��(�)

2f �(�)
≈

N��
3
(wk)

2N�
3
(wk)

,

Recursive adaptive method with memory

This section concerns with extracting the novel with mem-
ory method from (10) by using two self-accelerating param-
eters. Theorem (1) states that modified method (10) has
order of convergence 2 if � ≠

1

f �(�)
 and � ≠ c2. Now, we pose

a main question: Is it possible to increase the order of con-
vergence ? If so, how can it be done and what is the new
convergence order? For answering these questions, we note
the error equation (11). It can be seen that if we set � =

1

f �(�)

and � = c2 =
f ��(�)

2f �(�)
, then at least the coefficient of e2

k
 disap-

pears. However, we do not know � and consequently, f �(�)
and f ��(�) cannot be computed. On the other hand, we can
approximate � using available data and therefore improve
order of convergence. Following the same idea in the meth-
ods with memory, this issue can be resaved. However, we
are going to do it in a more efficient way, say recursive adap-
tively. Let us describe it a little more. If we use information
from the current and only the last iteration, we come up with
the method introduced in [34, 36]. Also, we have considered

(21)
⎧⎪⎨⎪⎩

�k =
1

N�
2k
(xk)

, �k =
N��
2k+1

(wk)

2N�
2k+1

(wk)
, k = 1, 2,… ,

wk = xk − �kf (xk), xk+1 = xk −
f (xk)

f [xk ,wk]
(1 + �k

f (wk)

f [xk ,wk]
), k = 0, 1, 2,… .

N�
2k
(xk),N

�
2k+1

(wk) and N��
2k+1

(wk) are Newton’s inter-
polating polynomials of 2k and 2k + 1 degrees, set
through 2k + 1 and 2k + 2 best available approxima-
t ions (nodes) (xk, xk−1,wk−1,… ,w1, x1,w0, x0) and
(wk, xk, xk−1,wk−1,… ,w1, x1,w0, x0) respectively. Here, we
concern the second question regarding order of convergence
of the method with memory (10). In what follows, we dis-
cuss the general convergence analysis of the recursive adap-
tive method with memory (10). It should be noted that the
convergence order varies as the iteration go ahead. First, we
need the following lemma:

Lemma 1 If �k =
1

N�
2k
(xk)

, and �k =
N��
2k+1

(wk)

2N�
2k+1

(wk)
, then the

estimate

where es = xs − �, es,w = wk − �.

(22)
�

(−1 + �kf
�(�)) ∼

∏k−1

s=0
eses,w,

(�k − c2) ∼
∏k−1

s=0
eses,w,

5Mathematical Sciences (2019) 13:1–20

1 3

Proof The proof is similar to Lemma 1 mentioned in [64].
The following result determines the order of convergence

through the one-point iterative method with memory (21).
 □

Theorem 2 If an initial estimation x0 is close enough to a
simple root � of f (x) = 0 and �0 and �0 must be uniformly
bounded above, being f a real sufficiently differentiable
function, then the R-order of convergence of the one-point
method adaptive with memory (21) obtained from the fol-
lowing system of nonlinear equations.

where r and p are the convergence order of the sequences
{xk} and {wk}, respectively. Also, k indicates the number of
iterations.

Proof Let {xk} and {wk} be convergent with orders r and p
respectively. Then

where ek = xk − � and ek,w = wk − �. Now, by Lemma (1)
and Eq. (24),

we obtain:

Similarly, we get:

By considering the errors of wk and xk+1 in Eq. (21) and
Eqs. (25)–(26), we conclude:

(23)

{
rkp − (1 + p)(1 + r + r2 + r3 +⋯ + rk−1) − rk = 0,

rk+1 − 2(1 + p)(1 + r + r2 + r3 +⋯ + rk−1) − 2rk = 0,

(24)

{
ek+1 ∼ er

k
∼ er

2

k−1
∼ … ∼ er

k+1

0
,

ek,w ∼ e
p

k
∼ e

rp

k−1
∼ … ∼ e

prk

0
,

(25)

(−1 + �kf
�(�)) ∼

k−1∏
s=0

eses,w = (e0e0,w)… (ek−1ek−1,w)

= (e0e
p

0
)(er

0
e
pr

0
)… (er

k−1

0
e
rk−1p

0
)

= e
(1+p)+(1+p)r+⋯+(1+p)rk−1

0

= e
(1+p)(1+r+⋯+rk−1)

0
.

(26)(�k − c2) ∼ e
(1+p)(1+r+⋯+rk−1)

0
.

(27)ek,w ∼ (−1 + �kf
�(�))ek ∼ e

(1+p)(1+r+⋯+rk−1)

0
er

k

0
,

(28)
ek+1 ∼ (−1 + �kf

�(�))(�k − c2)e
2
k
∼ e

((1+p)(1+r+⋯+rk−1))2

0
e2r

k

0
.

equating the powers of ek+1 on the right-hand sides of Eqs.
(24)–(27) and (24)–(28), one can obtain:

And thus we prove the result. □

Remark 3 It should be kept in mind that the system
of equations (23) includes the previous iterations for
k = 0, 1, 2,… . In this case, we have the regular methods with
memory in which the information from the current and the
previous steps are used.

Remark 4 For k = 1 , we use the information from the current
and the one previous step. In this case, the order of conver-
gence of the method with memory can be computed from
the following of system of equations

This system of equat ions has the so lu t ion
p =

1

4
(3 +

√
17) ≃ 1.78078 , and r = 1

2
(3 +

√
17) ≃ 3.56155.

This special case gives the given result by khaksar
haghani [28]. This is a new kind of adaptive approach with
memory method .

Remark 5 For k = 2 , the system of equations (23) becomes :

This system of equations has the solution: p ≃ 1.95029 and
r ≃ 3.90057.

Remark 6 If k = 3, we get:

and equating the powers of ek+1 and ek,w error exponents of
in pairs of relations (24), and (29) we obtain:

Positive solution of the system of equations (33) is given by:
p ≃ 1.98804 and r ≃ 3.97609.

(29)

{
rkp − (1 + p)(1 + r + r2 + r3 +⋯ + rk−1) − rk = 0,

rk+1 − 2(1 + p)(1 + r + r2 + r3 +⋯ + rk−1) − 2rk = 0.

(30)
{

rp − (1 + p) − r = 0,

r2 − 2(1 + p) − 2r = 0.

(31)
{

r2p − (1 + p + rp + r + r2) = 0,

r3 − 2(1 + p + rp + r + r2) = 0.

(32)

{
(−1 + �kf

�(�)) ∼ ek−3ek−3,wek−2ek−2,wek−1ek−1,w ∼ e
1+p+r+rp+r2+r2p

k−3
,

(�k − c2) ∼ ek−3ek−3,wek−2ek−2,wek−1ek−1,w ∼ e
2(1+p+r+rp+r2+r2p)

k−3
.

(33)
{

r3p − (1 + p + r + rp + r2 + r2p + r3) = 0,

r4 − 2(1 + p + r + rp + r2 + r2p + r3) = 0.

6 Mathematical Sciences (2019) 13:1–20

1 3

Remark 7 Also, if k = 4, we conclude by the system of equa-
tions (29): (shown by TLAM)

Solving these equations, we get : p ≃ 1.99705 and
r ≃ 3.9941.

Remark 8 As can be easily seen that the improvement in
the order of convergence from 2 to 4 (100% of an improve-
ment) is attained without any additional functional evalua-
tions, which points to very high computational efficiency of
the proposed method. Therefore, the efficiency index of the
proposed method (23) is EI = 41∕2 = 2, (k ≥ 4).

Numerical examples

In this section, the proposed derivative-free adaptive meth-
ods are applied to solve smooth as well as nonsmooth non-
linear equations and compared with the existing without
memory and with memory methods. The iterative methods
without memory and with memory are listed in Tables 1
and 2, respectively. Table 3 lists the exact roots � and ini-
tial approximations x0, which are computed using the Find-
Root command of Mathematica [23]. Table 4 compares
evaluation function and efficiency index of the proposed
method by with and without memory schemes. Table 5
compares improvement percent with memory and homo-
geneous without memory. Constructed iteration adaptive
method, with the given function f having a simple zero is
mentioned in Table 6. Tables 7, 8 and 9 compare our pro-
posed method forty one with and without memory. In recent
years, since in practice high-precision computations are
applied, the higher-efficiency index schemes have become

(34)

{
r4p − (1 + p + r + rp + r2 + r2p + r3 + r3p + r4) = 0,

r5 − 2(1 + p + r + rp + r2 + r2p + r3 + r3p + r4) = 0.

important. Due to this reason all the computations reported
have been performed in the programming package Math-
ematica 10 using 2000 digits floating-point arithmetic using
“SetAccuraccy”command. The errors |xk − �| of approxima-
tions to the sought zeros, produced by the different methods
at the first three iterations, are given in Table 6 where m(−n)

Fig. 1 f1(t), t ∈ [−�,�] Fig. 2 f2(t), t ∈ [−�,�]

Fig. 3 f3(t), t ∈ [−10, 10]

Fig. 4 f4(t), t ∈ [−3, 3]

7Mathematical Sciences (2019) 13:1–20

1 3

stands for m × 10−n. These tables also include, for each test
function, the initial estimation values and the last value of
the computational order of convergence COC [44] com-
puted by the expression (if it is stable) where p is the order of convergence. At least 40 iterative

methods with and without memory, for comparing with our

(35)COC =
log |f (xn)∕f (xn−1)|
log |f (xn−1)∕f (xn−2)| ≈ p,

Fig. 5 f5(t), t ∈ [−5, 2]

Fig. 6 f6(t), t ∈ [−2, 2]

Fig. 7 f7(t), t ∈ [−1, 1]

Fig. 8 f8(t), t ∈ [−5, 2]

Fig. 9 f9(t), t ∈ [0, 3]

Fig. 10 f10(t), t ∈ [−4, 4]

8 Mathematical Sciences (2019) 13:1–20

1 3

proposed methods, have been chosen as comes next. Test
functions used in many papers concerning nonlinear equa-
tions. For example, the functions fi(x), i = 1, 2, 3,… , 12 are
displayed in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12,
respectively. Figure 13 compares of methods without mem-
ory, with memory (25%, 50% and 75% of improvements)
and recursive adaptive (100% of improvements) in terms

of highest possible efficiency index. Complex test function
f10 used to show that the proposed method is applicable to
the complex domain too. In these tables symbols In, div
have demonstrator infinity and divergence, respectively. It
can be observed our proposed method has minimum evalu-
ation function and maximum efficiency index. Tables 4
and 5 show that the method (23) competes the previous
methods. In additional its efficiency index is better than all
the previous works. In other words, it has efficiency index
41∕2 = 2. The same results can be observed in the second and
third columns of Table 5 and at least has evaluation function
inter iterative methods existent methods with- and without
memory. Some of iterative methods in the some examples
are divergent. We also incorporated and applied the devel-
oped adaptive method with memory (34) for different test
examples and obtained results with the same behavior as
above. We can see that the self-accelerating parameters and
the consequently adapting method play a key role in increas-
ing the order of convergence of the iterative method.

Algorithms to find an initial approximation

1
An important aspect in implementing the iterative meth-

ods for the solution of nonlinear equations and systems relies
on the choice of the initial approximation. There are a few
known ways in the literature [24] to extract a starting point
for the solutions of nonlinear functions. In practice, users
need to find out robust approximations for all the zeros in
an interval. Thus, to remedy this and to respond on this
need, we provide a way to extract all the real zeros of non-
linear function in the interval D = [a, b]. We use the com-
mand Reduce in Mathematica 10 [23]. Hence, we give a
hybrid algorithm including two main steps, a predictor and
a corrector. In the predictor step, we extract initial approxi-
mations for all the zeros in an interval up to 8 decimal
places. Then the corrector step will be used to boost up the
accuracy of the starting points up to any tolerance. We also
give some significant cautions for applying on different test

Fig. 11 f11(t), t ∈ [−5, 5]

Fig. 12 f12(t), t ∈ [−3, 3]

Fig. 13 Comparison of methods without memory, with memory (25%, 50%, and 75% of improvements) and recursive adaptive (100% of
improvement) in terms of highest possible efficiency index

9Mathematical Sciences (2019) 13:1–20

1 3

functions. In what follows, we keep going by choosing an
oscillatory function f (x) = 1

10
+ cos(2 + x2) + sin(x) in the

domain D = [0., 15.].
Let us define the function and the domain for imposing

the Reduce[] command as in Algorithm 1.
One may note that Reduce[] works with function of exact

arithmetic. Hence, if a nonlinear function is the floating-
point arithmetic, that is, has inexact coefficients, thus we
should write it in the exact arithmetic when we enter it into
the above piece of code. Now we store the list of initial
approximations in initialValues, by the following piece of
code, which also sort the initial points. The tol will specify
that the accuracy of each member of the provided sequence
to be correct up to utmost tol, decimal places (Algorithm 2).

It is obvious that f is so oscillatory, and by the above
predictor piece of Mathematica code, we attain that it has
59 real solutions. Note that the graph of the function f has
been drawn in Fig. 14.

Note that if a user needs much more accuracy, thus higher
number of steps should be taken. It should be remarked that
in order to work with such a high accuracy, we must then

choose more than 2000 decimal places arithmetic in our
calculations.

However, running the above algorithm could capture
all the real zeros of the nonlinear functions. One is that for
many oscillatory function or for nonsmooth functions, the
best way is to first divide the whole interval into some
subintervals and then find all the zeros of the function on
the subintervals. And second, in case of having a root clus-
ter, that is, when the zeros are concentrated on a very small
area, then it would be better to increase the first tolerance of
our algorithm in the predictor step, to find reliable starting
points and then start the process.

And last, if the nonlinear function has an exact solu-
tion, that is to say, an integer be the solution of a nonlin-
ear function, then the first step of our algorithm finds this
exact solution, and an error-like message would be gener-
ated by applying our second step. For instance, the func-
tion g(x) = (x2 − 4) sin(100x) on the interval D = [0, 10] has
319 real solutions in which one of them (its plot is given in
Fig. 15), that is. 2, is an exact one. Thus, the first step of the
mentioned Algorithm 1 finds the following very efficient list
of starting points in which 2, is the exact solution:
{0.031416, 0.0628318, 0.0942478,

0.125664, 0.15708, 0.188496, 0.219912,
0.251327, 0.282743, 0.314159, 0.345575,
0.376991, 0.408407, 0.439823, 0.471239,
0.502655, 0.534071, 0.565487,
0.596903, 0.628319, 0.659734,
0.69115, 0.722566, 0.753982, 0.785398,
0.816814, 0.84823, 0.879646, 0.911062,
0.942478, 0.973894, 1.00531, 1.03673,
1.06814, 1.09956,1.13097, 1.16239,
1.19381, 1.22522, 1.25664, 1.28805,
1.31947, 1.35088,1.3823, 1.41372,
1.44513, 1.47655, 1.50796, 1.53938,
1.5708, 1.60221, 1.63363, 1.66504,
1.69646,1.72788, 1.75929, 1.79071,
1.82212, 1.85354, 1.88496, 1.91637,
1.94779, 1.9792, 2., 2.01062, 2.04203,
2.07345, 2.10487, 2.13628, 2.1677,
2.19911, 2.23053, 2.26195, 2.29336,
2.32478, 2.35619, 2.38761, 2.41903,
2.45044,2.48186, 2.51327, 2.54469,
2.57611,2.60752,2.63894, 2.67035,
2.70177, 2.73319, 2.7646, 2.79602,
2.82743, 2.85885, 2.89027, 2.92168,
2.9531, 2.98451, 3.01593, 3.04734,
3.07876, 3.11018, 3.14159, 3.17301,
3.20442, 3.23584, 3.26726, 3.29867,
3.33009, 3.3615, 3.39292, 3.42434,
3.45575, 3.48717, 3.51858,3.55,
3.58142, 3.61283, 3.64425, 3.67566,
3.70708, 3.7385, 3.76991, 3.80133,

Fig. 14 The graph of the function f with finitely many zeros in an
interval

Fig. 15 The graph of the function g with finitely many zeros in an
interval

10 Mathematical Sciences (2019) 13:1–20

1 3

3.83274, 3.86416, 3.89557, 3.92699,
3.95841, 3.98982, 4.02124, 4.05265,
4.08407, 4.11549, 4.1469, 4.17832,
4.20973, 4.24115, 4.27257, 4.30398,
4.3354, 4.36681, 4.39823, 4.42965,
4.46106, 4.49248, 4.52389,4.55531,
4.58673,4.61814, 4.64956, 4.68097,
4.71239, 4.7438, 4.77522, 4.80664,
4.83805,4.86947, 4.90088, 4.9323,
4.96372, 4.99513, 5.02655, 5.05796,
5.08938, 5.1208, 5.15221, 5.18363,
5.21504, 5.24646, 5.27788, 5.30929,
5.34071, 5.37212, 5.40354, 5.43496,
5.46637, 5.49779, 5.5292, 5.56062,
5.59203, 5.62345, 5.65487, 5.68628,
5.7177, 5.74911, 5.78053, 5.81195,
5.84336, 5.87478, 5.90619, 5.93761,
5.96903, 6.00044, 6.03186, 6.06327,
6.09469, 6.12611, 6.15752, 6.18894,
6.22035, 6.25177, 6.28319, 6.3146,
6.34602, 6.37743, 6.40885, 6.44026,
6.47168, 6.5031, 6.53451, 6.56593,
6.59734, 6.62876, 6.66018, 6.69159,
6.72301, 6.75442, 6.78584, 6.81726,
6.84867, 6.88009, 6.9115, 6.94292,
6.97434, 7.00575, 7.03717, 7.06858,
7.1, 7.13142, 7.16283, 7.19425, 7.22566,
7.25708, 7.28849, 7.31991, 7.35133,

7.38274, 7.41416, 7.44557, 7.47699,
7.50841, 7.53982, 7.57124, 7.60265,
7.63407, 7.66549, 7.6969, 7.72832,
7.75973, 7.79115, 7.82257, 7.85398,
7.8854, 7.91681, 7.94823, 7.97965,
8.01106, 8.04248, 8.07389, 8.13672,
8.16814, 8.19956, 8.23097, 8.26239,
8.2938, 8.32522, 8.35664, 8.38805,
8.41947, 8.45088, 8.4823, 8.51372,
8.54513, 8.57655, 8.60796, 8.63938,
8.6708, 8.70221, 8.73363, 8.76504,
8.79646, 8.82788, 8.85929, 8.89071,
8.92212, 8.95354, 8.98495, 9.01637,
9.04779, 9.0792, 9.11062, 9.14203,
9.17345, 9.20487, 9.23628, 9.2677,
9.29911, 9.33053, 9.36195, 9.39336,
9.42478, 9.45619, 9.48761, 9.51903,
9.55044,9.58186,9.61327, 9.64469,
9.67611, 9.70752, 9.73894, 9.77035,
9.80177, 9.83319, 9.8646, 9.89602,
9.92743, 9.95885, 9.99026}

Now we are able to solve nonlinear equations with finitely
many roots in an interval and find all the real zeros in a short
piece of time. Finding robust ways, to capture the complex
solutions along working with complex nonlinear functions,
can be taken into account as future works.

f [x] := 1
10 + cos[2 + x2] + sin[x]; a = 0.; b = 15.;

zeros = Reap[soln = y[x]/.F irst[NDSolve[{y [x] == Evaluate[D[f [x], x]],
y[b] == (f [b])}, y[x], {x, a, b},Method>{”EventLocator”,
”event”>y[x], ”EventAction” :> Sow[{x, y[x]}]}]]][[2, 1]];

initialPoints = Sort[Flatten[Take[zeros, Length[zeros], 1]]];

Length[initialPoints]
Plot[f [x], {x, a, b}, Epilog>{PointSize[Medium], Red, Point[zeros]},

P lotRange>All, PerformanceGoal>”Quality”, P lotStyle>{Thick,Brown}];

2

11Mathematical Sciences (2019) 13:1–20

1 3

An important aspect of implementing high-order nonlin-
ear solvers is in finding very robust initial guesses to start
the process, when high-precision computing is needed. As
discussed in "Introduction and preliminaries" section, the
convergence of our iterative methods is local. To resolve this
shortcoming, the best way is to rely on hybrid algorithms, in
which the first item produces a robust initial point and the
second item employs the new iterative methods when high
precision is required. There are some ways in the literature
to find robust starting points, mostly based on interval math-
ematics see, for example, [3]. But herein we take into con-
sideration the programming package Mathematica 10 [23]
which could be efficiently applied on lists for high-precision
computing. In fact using [24], we could build a list of ini-
tial guesses close enough with good accuracy to start the
procedure of our optimal derivative-free fourth-order meth-
ods. The procedure of finding such a robust list is based
on the powerful command of NDSolve for the nonlinear
function f (x) = 1

10
+ cos(2 + x2) + sin(x) on the interval

D = [a, b]. Such a way can be written in the following piece
of Mathematica code by considering an oscillatory function
as the input test function on the domain D = [0., 15.]. See
Algorithm 1. The output of Algorithm 3 is to plot the func-
tion graph f(x).

Thus now, we have an efficient list of initial approxima-
tions for the zeros of a nonlinear once differentiable function
with finitely many zeros in an interval. The number of zeros
and the graph of the function including the positions of the
zeros can be given by the following commands (see Fig. 14);
see Algorithm 4.

For this test, there are 59 zeros in the considered inter-
val which can easily be used as the starting points for our

proposed high-order derivative-free methods. Note that
the output of the vector “initialPoints” contains the initial
approximations. Note that we end this section by mention-
ing that for very oscillatory functions, it is better to first
divide the interval into some smaller subintervals and then
obtain the solutions. The command NDSolve uses Maxi-
mum number of 10,000 steps, if it is needed this could be
changed. In cases when NDSolve fails, this algorithm
might fail too. The output of Algorithm 4 is as follows:
{1.1103225, 2.5611445, 2.9496729,

3.4537697, 3.9993453, 4.1889818,
4.7622341, 4.8587772, 5.3502573,
5.5085282, 5.8682448, 6.0980068,
6.3442691, 6.6342307, 6.7876268,
7.1310609, 7.2020570, 8.3675131,
8.3999413, 8.7079140, 8.7949106,
9.0413573, 9.1668305, 9.3646249,
9.5223085, 9.6781865, 9.8636235,
9.9828725, 10.192138, 10.279661,
10.508430, 10.569895, 10.811671,
10.856029, 11.099569, 11.141751,
11.373401, 11.426999, 11.637691,
11.708314, 11.895029, 11.984045,
12.146536, 12.253911, 12.392804,
12.518074, 12.634217, 12.776841,
12.871042, 13.030597, 13.103445,
13.279866, 13.331413, 13.525843,
13.554222, 14.647052, 14.664168,
14.849621, 14.887657 }

59
6.82717

ClearAll[” ∗ ”]
f [x] := 1

10 + cos[2 + x2] + sin[x]; a = 0.; b = 15.;
Plot[f [x], {x, a, b}, Background → LightBlue, P lotStyle→ {Magenta, Thick},

P lotRange → All, PerformanceGoal → ”Quality”]
rts = Reduce[f [x] == 0, a ≤ x ≤ b, x];

tol=8
initialV alues = Sort[N [x/.{ToRules[rts]}, tol]];

Length[initialValues]
Accuracy[initialValues]

3

12 Mathematical Sciences (2019) 13:1–20

1 3

Although the choice of good initial approximations is
of great importance in the application of iterative meth-
ods, including multipoint methods, this task is very sel-
dom considered in the literature. Recall that Steffensen-like
methods of the second order have been most frequently used
as predictors in the first step of multipoint methods. These
methods are of tangent type, and therefore, they are locally
convergent, which means that a reasonably close initial
approximation to the sought zero should be found. Other-
wise, if the chosen initial approximation is too far from the
sought zero (say, if it is chosen randomly), then the applied
methods, either the ones proposed in this paper or some
others with local convergence developed during the last two
centuries, will probably find some other (often unwanted)
zero or they will diverge.

Therefore, the determination of a reasonably good
approximation x0 that guarantees the convergence of the
sequence of approximations {xk}k∈N to the zero of f is a sig-
nificant task. It is interesting to note that initial approxima-
tions, chosen randomly in a suitable way, give acceptable
results when simultaneous methods for finding all roots of
polynomial equations are applied, e.g., employing Aberth’s
approach [2].

There are many methods (mainly of non-iterative nature)
and strategies for finding sufficiently good initial approxima-
tions. The well-known bisection method and its modifica-
tions belong to the simplest but not always sufficiently effi-
cient techniques. There is a vast literature on this subject so
that we omit details here. We only note that complete root-
finding algorithms often consist of two parts: (1) slowly con-
vergent search algorithm to isolate distinct real or complex

Fig. 16 The graph of the function h with finitely many zeros in an
interval

Fig. 17 The graph of the function f20(x) = sin(5x)ex, f21(x) = 2 with
finitely many zeros in an interval

Table 1 Considered methods without memory

One-step Two-step Three-step Four-step

Abbasbandy (AM) [1] Chun (CM) [7] Bi et al. (BWRM) [6] Geum-Kim (GKM) [19]
Hansen-Patrick (HPM) [22] Dehghan-Hajarian (DHM) [14] Chun-Neta (CNM) [8] Kreetee et al. (KBTM) [30]
Newton (NM) [43] Ezzati-Saleki (ESM) [18] Cordero et al. (CLMTM) [12] Li et al. (LMMWM) [32]
Chebyshev (ChM) [47] Kung–Traub (KTM) [31] Kanwar et al. (KBKM) [27] Sharifi et al. (SSSLM) [52]
Halley (HM) [21] Mahehwari (MM) [39] Matinfar et al. (MAAM) [40] Thukral (TM) [60]
Steffensen (SM) [58] Ren et al. (RWBM) [50] Singh-Jaiswal (SJM) [54] Zheng et al. (ZLHM) [66]
Zheng et al. (ZLHM) [66] Soleymani-Mousavi (SMM) [57] Taher-Khani (TkM) [59] Guo-Qian (GQM) [20]

Table 2 Studied methods with
memory

One-step Two-step Three-step

Dzunic (DM) [15] Bassiri et al. (BBAM) [4] Dzunic et al. (DPPM) [17]
Dzunic-Petkovic (DPM) [16] Cordero et al. (CLBTM) [10] Lotfi-Assari (LAM) [33]
Khaksar (KM) [28] Cordero et al. (CLKTM) [11] Lotfi et al. (LMNKSM) [34]
Lui-Zhang (LZM) [38] Kansal et al. (KKBM) [26] Lotfi et al. (LSGAM) [35]
Secant (SecM) [47] Lotfi-Tavakoli (LTM) [37] Lotfi et al. (LSSAKM) [36]
Traub (TrM) [61] Wang et al. (WZQM) [64] Sharifi et al. (SSSM) [51]

13Mathematical Sciences (2019) 13:1–20

1 3

Table 3 The test functions Nonlinear function Root Initial guess

f1(x) = x log(1 + x sin(x)) + e−1+x
2+x cos(x) sin(�x) � = 0 x0 = 0.3

f2(x) = sin(5x)ex − 2 � = 1.36 x0 = 1

f3(x) = 1 +
1

x4
−

1

x
− x2 � = 1 x0 = 1.4

f4(x) = (x − 2)(x10 + x + 2)e−5x � = 2 x0 = 2.3

f5(x) = ex
3−x − cos(x2 − 1) + x3 + 1 � = −1 x0 = −1.3

f6(x) =
−5x2

2
+ x4 + x5 +

1

1+x2
� = 1 x0 = 1.3

f7(x) = log(1 + x2) + e−3x+x
2

sin(x) � = 0 x0 = 0.3

f8(x) = x3 + 4x2 − 10 � = 1.3652 x0 = 1

f9(x) = x log(1 − � + x2) −
1+x2

1+x3
sin(x2) + tan(x2) � =

√
� x0 = 1.7

f10(x) = (−1 + 2i) +
1

x
+ x + sin(x) � = 0.28860 − 0.2422i x0 =

−i

2

f11(x) = (x − 2)(x6 + x3 + 1)e−x
2 � = 2 x0 = 1.8

f12(x) = ex
2−1 sin(x) + cos(2x) − 2 � = 1.44 x0 = 1.1

f13(x) = ex sin(x) + log(x4 − 3x + 1) � = 0 x0 = −0.5

f14(x) = (x − 1)(x10 + x3 + 1) sin(x) � = 1 x0 = 1.5

f15(x) = x2 sin(x2) + ex cos(x) sin(x) − 18 � = 9.98 x0 = 9.6

f16(x) = x4 + sin(
�

x2
) − 5 � = 1.41 x0 = 1

f17(x) = arcsin(x2 − 1) − x∕2 + 1 � = 0.59 x0 = 1

f18(x) =
√
x4 + 8 sin(

�

x2+2
) +

x3

x4+1
−
√
6 +

8

17

� = −2 x0 = −2.3

f19(x) = esin(x) − 1 − x∕5 � = 0 x0 = 0.5

f20(x) = arcsin(ex+2 + 1) + tanh(e−x cos(x)) − sin(�x) � = −3.98 x0 = −4.3

Table 4 Numerical results for the test functions fi(x), i = 1, 2, 3,… , 20 the proposed method (34)

Function |x1 − �| |x2 − �| |x3 − �| |x4 − �| COC EI

f1(x) , �0 = �0 = 0.1 0.189 (−4) 0.152 (−19) 0.478 (−79) 0.222 (−317) 4.0054 2.00135
f2(x) , �0 = �0 = 0.1 0.396 (−2) 0.397 (−2) 0.397 (−2) 397 (−2) 3.9988 1.99970
f3(x) , �0 = �0 = 0.1 0.492 (−3) 0.992 (−13) 0.473 (−51) 0.283 (−204) 3.9984 1.99960
f4(x) , �0 = �0 = 0.1 0.983 (−4) 0.548 (−16) 0.100 (−66) 0.214 (−270) 4.0142 2.00355
f5(x) , �0 = �0 = 0.1 0.906 (−8) 0.117 (−31) 0.160 (−126) 0.981 (−506) 3.9975 1.99937
f6(x) , �0 = �0 = 0.1 0.127 (−5) 0.412 (−22) 0.451 (−88) 0.651 (−352) 4.0000 2.00000
f7(x) , �0 = �0 = 0.1 0.187 (−3) 0.837 (−14) 0.503 (−55) 0.679 (−220) 3.9996 1.99990
f8(x) , �0 = �0 = 0.1 0.301 (−4) 0.301 (−4) 0.301 (−4) .301 (−4) 4.0000 2.00000
f9(x) , �0 = �0 = 0.1 0.129 (−10) 0.544 (−42) 0.221 (−167) 0.665 (−669) 3.9996 1.99990
f10(x) , �0 = �0 = 0.1 0.116 (1) 0.115 (1) 0.115 (1) 0.115 (1) 3.9992 1.99980
f11(x) , �0 = �0 = 0.1 0.194 (−5) 0.293 (−22) 0.861 (−90) 0.534 (−360) 4.0012 2.00300
f12(x) , �0 = �0 = 0.1 0.121 (−1) 0.779 (−2) 0.779 (−2) 0.779 (−2) 3.9998 1.99995
f13(x) , �0 = −0.001, �0 = −0.01 0.142 (−2) 0.112 (−10) 0.530 (−43) 0.361 (−172) 3.9882 1.99705
f14(x) , �0 = −0.001, �0 = −0.01 0.222 (−2) 0.640 (−2) 0.115 (−2) 0.161 (1) 3.9302 1.98247
f15(x) , �0 = �0 = 0.1 0.290 (0) 0.290 (0) 0.290 (0) 0.290 (0) 3.9976 1.99940
f16(x) , �0 = �0 = 0.1 0.421 (−2) 0.421 (−2) 0.421 (−2) 0.421 (−2) 4.0057 2.00142
f17(x) , �0 = �0 = 0.1 0.480 (−2) 0.481 (−2) 0.481 (−2) 0.481 (−2) 3.9983 1.99957
f18(x) , �0 = �0 = 0.1 0.249 (−6) 0.190 (−26) 0.377 (−107) 0.554 (−430) 4.0003 2.00007
f19(x) , �0 = �0 = 0.1 0.405 (−6) 0.154 (−27) 0.231 (−110) 0.377 (−443) 4.0179 2.00447
f20(x) , �0 = �0 = 0.1 0.615 (0) 0.598 (0) 0.598 (0) 0.598 (0) 4.0010 2.00025

14 Mathematical Sciences (2019) 13:1–20

1 3

interval containing single root and (2) rapidly convergent
iterative method for finding sufficiently close approximation
of the isolated root to the required accuracy. In this paper we
are concentrating on the part (2). Applying computer algebra
systems, a typical statement for solving nonlinear equations
reads FindRoot[equation, {x, x0}] ; see, e.g., Wolfram’s com-
putational software package Mathematica, that is, an initial
approximation x0 is required. In finding good initial approxi-
mations, a great advance was recently achieved by devel-
oping an efficient non-iterative method of significant prac-
tical importance, originally proposed by Yun [65]. Yun’s
method is based on numerical integration briefly referred
to as NIM, where tanh, arctan and signum functions are
involved. The NIM requires neither any knowledge of the
derivative f(x) nor any iterative process. Handling non-path-
ological cases it is not necessary to have a close approxi-
mation to the zero; instead, a real interval (not necessarily
tight) that contains the root (so-called inclusion interval)
is sufficient. For illustration, to find an initial approxima-
tion x0 of the zeros � = −1.4044916, 1.4044916 of the func-
tion h(x) = sin(x)2 − x2 + 1 isolated in the interval [−5, 5],
we employed Yun’s algorithm with the statement taking
m = 250, a = −1, b = 2, and found very good approximation
x0 = 1.40449. The graph of function h is plotted in Fig. 16.

Table 5 Comparison evaluation function and efficiency index of the proposed method with other schemes

Without memory methods EF EFD COC EI With memory methods EF EFD COC EI

AM [1] 1 2 3.000 1.4423 DM [15] 2 0 3.550 1.8841
HPM [22] 1 2 4.000 1.5874 DPM [16] 2 0 3.000 1.7321
NM [43] 1 1 2.000 1.4142 KM [28] 2 0 3.550 1.8841
ChM [29] 1 2 3.000 1.4423 LZM [38] 2 0 3.380 1.8385
HM [21] 1 2 3.000 1.4423 SecM [47] 1 0 1.680 1.6800
CM [7] 2 1 4.000 1.5874 TrM [61] 2 0 2.410 1.5524
ESM [18] 3 0 4.000 1.5874 BBAM [4] 3 0 7.220 1.9328
RWBM [50] 3 0 4.000 1.5874 CLBTM [10] 3 0 7.000 1.9129
SMM [57] 2 1 4.000 1.5874 KKBM [26] 3 0 7.000 1.9129
ZLHM [66] 3 1 4.000 1.5874 LTM [37] 4 0 12.000 1.8612
BWRM [6] 3 1 8.000 1.6818 WZQM [64] 3 0 7.530 1.9601
CNM [8] 3 1 8.000 1.6818 DPPM [17] 4 0 11.000 1.8212
CLMTM [12] 3 1 8.000 1.6818 LAM [33] 4 0 15.500 1.9842
KBKM [27] 4 0 8.000 1.6818 LMNKSM [34] 4 0 12.000 1.8612
MAAM [40] 3 1 8.000 1.6818 LSGAM [35] 4 0 12.000 1.8612
SJM [54] 4 0 8.000 1.6818 LSSAKM [36] 4 0 14.000 1.9343
TM [60] 5 0 16.000 1.7411 SSSM [51] 4 0 12.000 1.8612
KBTM [30] 4 1 16.000 1.7411 LSSAKM [36] 4 0 12.000 1.8612
DHM [14] 3 0 3.000 1.4423 LSGAM [35] 3 0 7.238 1.9344
TkM [59] 3 1 8.000 1.6818 LAM [33] 4 0 15.000 1.9680
GQM [20] 5 0 16.000 1.7411 TLAM (34) 2 0 4.000 2.0000

Table 6 Comparison improvement of convergence order the proposed
method with other schemes

With memory meth-
ods

Number
of steps

Optimal order p Percentage
increase

DM [15] 1 2.000 3.560 78
DPM [16] 1 2.000 3.000 50
KM [28] 1 2.000 3.560 78
LZM [38] 1 2.000 3.380 69
TrM [61] 1 2.000 2.410 20.5
BBAM [4] 2 4.000 7.220 80.5
CLBTM [10] 2 4.000 7.000 75
KKBM [26] 2 4.000 7.000 75
LSGAM [35] 2 4.000 7.238 80.95
WZQM [64] 2 4.000 7.530 88.25
LTM [37] 3 8.000 12.000 50
DPPM [17] 3 8.000 11.000 37.5
LAM [33] 3 8.000 15.500 93.75
LMNKSM [34] 3 8.000 12.000 50
LSGAM [35] 3 8.000 12.000 50
LSSAKM [36] 3 8.000 14.000 75
SSSM [51] 3 8.000 12.000 50
LSSAKM [36] 3 8.000 12.000 50
LAM [33] 3 8.000 15.000 87.5
TLAM (34) 1 2.000 4.000 100

15Mathematical Sciences (2019) 13:1–20

1 3

Table 7 Comparison evaluation function and efficiency index of the proposed method with other schemes for f1, f2, f3 and f4

Without memory methods EF Iter COC EI With memory methods EF Iter COC EI

f1(x) = x log(1 + x sin(x)) + e−1+x
2+x cos(x) sin(�x), � = 0, x0 = 0.3

AM 3 5 3.0000 1.44225 KM, �0 = �0 = 0.1 2 3 3.5252 1.87755
NM 2 7 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.4282 1.55827
HM 3 5 3.0000 1.44225 DPM 2 4 3.0000 1.73205
ChM 3 4 3.0000 1.44225 SecM, x1 = 0.6 2 15 1.6181 1.61808
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.5681 1.88894
RWBM, �0 = 1 3 4 4.0000 1.58740 WM, �0 = 1 3 5 4.2361 1.61803
MM 3 5 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 3 7.5214 1.95929
CNM, �0 = �0 = A0 = 1 4 3 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.000 1.93434
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 4 8.0000 1.68179 DPPM, �0 = −0.1 4 3 1.0000 1.00000
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = −1, �0 = 0.1, �0 = 5 4 3 15.5250 1.98499
SSSLM,method 6 5 3 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 4.0054 2.00135
f2(x) = sin(5x)ex − 2, � = 1.36, x0 = 1

AM 3 1000 1.0000 1.00000 KM, �0 = �0 = 0.1 2 3 3.5149 1.87451
NM 2 15 2.0000 1.41421 TrM, �0 = 0.1 2 5 0.0000 0.00000
HM 3 7 3.0000 1.44225 DPM 2 4 0.0000 0.00000
ChM 3 3 3.0000 1.44225 SecM, x1 = 1.2 2 17 1.6181 1.61808
SMM 3 4 0.0000 0.00000 DM, �0 = p0 = 0.1 3 4 1.0205 1.00679
RWBM, �0 = 1 3 4 0.0000 0.00000 WM, �0 = 0.1 3 5 4.2361 1.61803
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 5 7.4405 1.95224
CNM, �0 = �0 = A0 = 1 4 6 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 6 13.8020 1.92746
CLMTM,H1,G1 4 4 0.0000 0.00000 LSGAM, a0 = 1, �0 = 0.01 4 4 12.0000 1.86121
LSSSM 4 In div div DPPM, �0 = −0.1 4 3 1.0000 1.00000
GKM 5 3 0.000 0.00000 LAM, �0 = 0.01, p0 = −1, �0 = 0.1, �0 = 5 4 5 15.9080 1.99712
SSSLM,method 6 5 3 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 3.9988 1.99970

f3(x) = 1 +
1

x4
−

1

x
− x2, � = 1, x0 = 1.4

AM 3 6 3.0000 1.44225 KM, �0 = �0 = 0.1 2 3 3.5862 1.89373
NM 2 5 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.4062 1.55120
HM 3 5 3.0000 1.44225 DPM 2 4 3.0000 1.73205
ChM 3 5 3.0000 1.44225 SecM, x1 = 1.5 2 16 1.6181 1.61808
SMM 3 3 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.5592 1.88658
RWBM, �0 = 1 3 4 4.0000 1.58740 WM, �0 = 1 3 5 4.2361 1.61804
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 3 7.4973 1.95720
CNM, �0 = �0 = A0 = 1 4 3 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.0000 1.93434
CLMTM,H1,G1 4 3 8.0000 168179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 3 8.0000 1.68179 DPPM, �0 = −0.1 4 3 10.0000 1.77828
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5120 1.98457
SSSLM,method 6 5 3 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 3.9984 1.99960
f4(x) = (x − 2)(x10 + x + 2)e−5x, � = 2, x0 = 2.3

AM 3 1500 3.0000 1.44225 KM, �0 = �0 = 0.1 2 3 3.4123 1.84724
NM 2 5 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.4681 1.57100
HM 3 4 3.0000 1.44225 DPM 2 5 3.0000 1.73205
ChM 3 5 3.0000 1.44225 SecM, x1 = 1.8 2 17 1.6181 1.61808
SMM 3 3 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.5877 1.89412
RWBM, �0 = 1 3 4 4.0000 1.58740 WM, �0 = 1 3 6 4.2361 1.61803
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 3 7.5395 1.96086
CNM, �0 = �0 = A0 = 1 4 5 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.0000 1.93434
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121

16 Mathematical Sciences (2019) 13:1–20

1 3

x0 = 0.5 ∗ (a+ b+ Sign[f [a]] ∗NIntegrate[tanh[m ∗ f [x]], {x, a, b}])

note that the computational accuracy strongly depends on
the structures of the iterative methods, the sought zero and
the test functions as well as good initial approximations. In
general, in Tables 4, 5, 6, 7, 8 and 9 we have examined
some methods with different kinds of convergence order. It
is observed that these methods support their theoretical
aspects. The last column of tables show computational effi-
ciency index defined by EI = COC1∕n, where n number of
function evaluations per iteration. The numerical results
show that proposed method is very useful to find an accept-
able approximation of the exact solution of nonlinear equa-
tions, specially when the function is non-differentiable. In
fact, we have contributed further to the development of the
theory of iteration processes and propose a new accurate and
efficient higher-order derivative-free method for solving non-
linear equations numerically. In other words, the efficiency
index of the proposed family with memory is EI = 41∕2 = 2,
which is much better than optimal one until six-point opti-
mal methods without memory having efficiency indexes
EI = 21∕2 ≃ 1.414, EI = 41∕3 ≃ 1.587, EI = 81∕4 ≃ 1.681,

Table 7 (continued)

Without memory methods EF Iter COC EI With memory methods EF Iter COC EI

LSSSM 4 4 8.0000 1.68179 DPPM, �0 = −0.1 4 3 1.0000 1.00000
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5130 1.98460
SSSLM,method 6 5 4 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 4.0142 2.00355

Remark 9 By changing a, b, and m, different values are
obtained for this description: if a = −1, b = 2, and m = 6
the output of the algorithm is 1.40143. If a = −2, b = 0,
and m = 16 the output of the algorithm is −1.40408. If
a = −2, b = 0, and m = 16000, the output of the algorithm
is −1.40457 and so on.

4
Using the command FindRoot and assigning the function

to the two functions, then draw both functions in a concat-
enated graph.

The command WorkingPrecision specifies the accuracy
of the operation. For example, if we want to find the root
of equation f2(x) = sin(5x)ex − 2, we rewrite it like this
f20(x) = sin(5x)ex, f21(x) = 2. Then, first, by plotting the
function in interval [−2, 2] and then using the code given
below, in the package Mathematica, the approximate value
of the root can be determined.

Below is the program output and its graph in Fig. 17.

Conclusion

In this work, we developed a new kind of with memory
methods for solving nonlinear equations. Convergence anal-
ysis proves that these new derivative-free methods preserve
their order of convergence. To this end, based on Newton’s
interpolatory polynomial of different degrees. One should

��������[�̂����[��] == �, �, �, ���������������− > ��]

{�− > �.���}

EI = 161∕5 ≃ 1.741, EI = 321∕6 ≃ 1.781, EI = 641∕7 ≃ 1.814 ,
respectively. Also, which are better than the other methods
given in [1, 4–20], [22, 25–30, 32–41], [44–64, 66]. A
comparison between the without memory, with memory
and adaptive methods in terms of the maximum efficiency
index alongside the number of steps per cycle are given in
Fig 5. All algorithms are implemented using symbolic Math
of MATHEMATICA [23]. Adaptive method with memory
has minimum evaluation function, and not evaluation deriva-
tive, hence competes with methods existent with and without
memory.

17Mathematical Sciences (2019) 13:1–20

1 3

Table 8 Comparison evaluation function and efficiency index of the proposed method with other schemes for f5, f6, f7 and f8

Without memory methods EF Iter COC EI With memory methods EF Iter COC EI

f5(x) = ex
3−x − cos(x2 − 1) + x3 + 1, � = −1, x0 = −1.3

AM 3 5 3.0000 1.44225 KM, �0 = �0 = 0.1 2 5 3.5610 1.88706
NM 2 5 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.4520 1.56549
HM 3 4 3.0000 1.44225 DPM 2 4 3.0000 1.73205
ChM 3 4 3.0000 1.44225 SecM, x1 = −1.6 2 18 1.6181 1.61808
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.5674 1.88876
RWBM, �0 = 1 3 4 4.0000 1.58740 WM, �0 = 1 3 5 4.2361 1.61803
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 3 7.5223 1.95937
CNM, �0 = �0 = A0 = 1 4 3 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.000 1.93434
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 3 8.0000 1.68179 DPPM, �0 = −0.1 4 4 1.0000 1.00000
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5100 1.98451
SSSLM,method 6 5 3 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 4.0000 2.00000

f6(x) =
−5x2

2
+ x4 + x5 +

1

1+x2
, � = 1, x0 = 1.3

AM 3 6 3.0000 1.44225 KM, �0 = �0 = 0.1 2 5 3.5609 1.88703
NM 2 7 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.2545 1.50151
HM 3 5 3.0000 1.44225 DPM 2 4 3.0000 1.73205
ChM 3 5 3.0000 1.44225 SecM, x1 = 0.8 2 16 1.61825 1.61825
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.4986 1.87045
RWBM, �0 = 1 3 4 4.0000 1.58740 WM, �0 = 1 3 6 4.23606 1.61803
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 3 7.5090 1.95822
CNM, �0 = �0 = A0 = 1 4 5 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.0000 1.93434
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 3 8.0000 1.68179 DPPM, �0 = −0.1 4 3 10.0000 1.77828
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5190 1.9848
SSSLM,method 6 5 4 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 4.0000 2.00000

f7(x) = log(1 + x2) + e−3x+x
2

sin(x), � = 0, x0 = 0.3

AM 3 6 3.0000 1.44225 KM, �0 = �0 = 0.1 2 5 3.5622 1.88738
NM 2 5 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.3980 1.54855
HM 3 5 3.0000 1.44225 DPM 2 4 3.0000 1.73205
ChM 3 5 3.0000 1.44225 SecM, x1 = 0.5 2 16 1.61803 1.61803
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.5659 1.88836
RWBM, �0 = 1 3 4 4.0000 1.58740 WM, �0 = 1 3 5 4.2361 1.61808
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 3 7.5122 1.95849
CNM, �0 = �0 = A0 = 1 4 3 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.0000 1.93434
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 4 8.0000 1.68179 DPPM, �0 = −0.1 4 4 10.0000 1.77828
GKM 5 2 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5110 1.98454
SSSLM,method 6 5 3 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 3.9996 1.99990
f8(x) = x3 + 4x2 − 10, � = 1.3652, x0 = 1

AM 3 4 3.0000 1.44225 KM, �0 = �0 = 0.1 2 5 3.7320 1.93184
NM 2 5 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.4693 1.57140
HM 3 4 3.0000 1.44225 DPM 2 4 3.0000 1.73205
ChM 3 4 3.0000 1.44225 SecM, x1 = 1.1 2 18 1.61803 1.61803
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.7320 1.93184
RWBM, �0 = 1 3 6 4.0000 1.58740 WM, �0 = 1 3 5 4.2361 1.61804
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 4 9.0000 2.08008
CNM, �0 = �0 = A0 = 1 4 3 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 4 15.0000 1.96799
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121

18 Mathematical Sciences (2019) 13:1–20

1 3

Table 8 (continued)

Without memory methods EF Iter COC EI With memory methods EF Iter COC EI

LSSSM 4 4 8.0000 1.68179 DPPM, �0 = −0.1 4 4 10.0000 1.77828
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 16.0000 2.00000
SSSLM,method 6 5 3 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 4.0000 2.00000

Table 9 Comparison evaluation function and efficiency index of the proposed method with other schemes for f9, f10, f11 and f12

Without memory methods EF Iter COC EI With memory methods EF Iter COC EI

f9(x) = x log(1 − � + x2) −
1+x2

1+x3
sin(x2) + tan(x2), � =

√
�, x0 = 1.7

AM 3 5 3.0000 1.44225 KM, �0 = �0 = 0.1 2 5 3.5614 1.88717
NM 2 5 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.4452 1.56637
HM 3 4 3.0000 1.44225 DPM 2 4 3.0000 1.73205
ChM 3 4 3.0000 1.44225 SecM, x1 = 1.5 2 16 1.61803 1.61803
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.5698 1.88939
RWBM, �0 = 1 3 6 4.0000 1.58740 WM, �0 = 1 3 6 4.2361 1.61803
MM 3 3 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 4 7.5321 1.96022
CNM, �0 = �0 = A0 = 1 4 3 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.0000 1.93434
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 3 8.0000 1.68179 DPPM,�0 = −0.1 4 3 10.0000 1.77828
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5140 1.98464
SSSLM,method 6 5 3 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 3.9996 1.99990

f10(x) = (−1 + 2i) +
1

x
+ x + sin(x), � = 0.28860 − 0.2422i, x0 =

−i

2

AM 3 5 3.0000 1.44225 KM, �0 = �0 = 0.1 2 5 3.5594 1.88664
NM 2 6 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.5471 1.59596
HM 3 4 3.0000 1.44225 DPM 2 5 3.0000 1.73205
ChM 3 4 3.0000 1.44225 SecM, x1 = −i 2 21 1.61803 1.61803
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.6273 1.90455
RWBM, �0 = 1 3 5 4.0000 1.58740 WM, �0 = 1 3 5 4.2361 1.61803
MM 3 4 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 4 7.3943 1.94819
CNM, �0 = �0 = A0 = 1 4 3 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.0020 1.93441
CLMTM,H1,G1 4 3 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 3 8.0000 1.68179 DPPM, �0 = −0.1 4 3 10.0000 1.77828
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5090 1.98448
SSSLM,method 6 5 8 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 3.9992 1.99980

f11(x) = (x − 2)(x6 + x3 + 1)e−x
2, � = 2, x0 = 1.8

AM 3 8 3.0000 1.44225 KM, �0 = �0 = 0.1 2 5 3.5616 1.88722
NM 2 7 2.0000 1.41421 TrM, �0 = 0.1 2 4 2.4323 1.55958
HM 3 5 3.0000 1.44225 DPM 2 5 3.0000 1.73205
ChM 3 25 1.0000 1.00000 SecM, x1 = 2.2 2 18 1.61803 1.61803
SMM 3 4 4.0000 1.58740 DM, �0 = p0 = 0.1 3 4 3.5639 1.88783
RWBM, �0 = 1 3 5 4.0000 1.58740 WM, �0 = 1 3 5 4.2361 1.61803
MM 3 6 4.0000 1.58740 WZQM, �0 = �0 = �0 = 0.1 3 4 7.5314 1.96016
CNM, �0 = �0 = A0 = 1 4 7 8.0000 1.68179 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 3 14.0000 1.93434
CLMTM,H1,G1 4 8 8.0000 1.68179 LSGAM, a0 = 1, �0 = 0.01 4 3 12.0000 1.86121
LSSSM 4 4 8.0000 1.68179 DPPM, �0 = −0.1 4 4 1.0000 1.00000
GKM 5 3 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5140 1.98464
SSSLM,method 6 5 4 16.0000 1.74110 TLAM, �0 = �0 = 0.1 2 5 4.0000 2.00000

19Mathematical Sciences (2019) 13:1–20

1 3

Acknowledgements We would like to deeply thank the editor, Profes-
sor Maleknejad, as well as the respected referees’ for their valuable
comments. This work was supported by the Islamic Azad Univer-
sity, Hamedan Branch and Central Tehran Branch.

Compliance with ethical standards

Conflicts of interest The authors declare that there is no conflict of
interests regarding the publication of this paper.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecom-
mons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

 1. Abbasbandy, S.: Modified homotopy perturbation method for non-
linear equations and comparison with Adomian decomposition
method. Appl. Math. Comput. 172, 431–438 (2006)

 2. Aberth, O.: Iteration methods for finding all zeros of a polynomial
simultaneously. Math. Comput. 27, 339–344 (1973)

 3. Alefeld, G.: Verified numerical computation for nonlinear equa-
tions. Jpn. J. Ind. Appl. Math. 26(2–3), 297–315 (2009)

 4. Bassiri, P., Bakhtiari, P., Abbasbandy, S.: A new iterative with
memory class for solving nonlinear equations. Int. J. Ind. Math.
8(3), 225–229 (2016)

 5. Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: Stable high-
order iterative methods for solving nonlinear models. Appl. Math.
Comput. 303, 70–88 (2017)

 6. Bi, W., Wu, Q., Ren, H.: A new family of eighth-order iterative
methods for solving nonlinear equations. Appl. Math. Comput.
214, 236–245 (2009)

 7. Chun, C.: Some fourth-order iterative methods for solving non-
linear equations. Appl. Math. Comput. 195, 454–459 (2008)

 8. Chun, C., Neta, B.: An analysis of a new family of eighth-order
optimal methods. Appl. Math. Comput. 245, 86–107 (2014)

 9. Cordero, A., Hueso, J.L., Martinez, E., Torregrosa, J.R.: Generat-
ing optimal derivative free iterative methods for nonlinear equa-
tions by using polynomial interpolation. Math. Comput. Model.
57, 1950–1956 (2013)

 10. Cordero, A., Lotfi, T., Bakhtiari, P., Torregrosa, J.R.: An efficient
two-parametric family with memory for nonlinear equations.
Numer. Algorithms 68(2), 323–335 (2014)

 11. Cordero, A., Lotfi, T., Khoshandi, A., Torregrosa, J.R.: An effi-
cient Steffensen-like iterative method with memory. Bull. Math.
Soc. Sci. Math. Roum Tome 58(1), 49–58 (2015)

 12. Cordero, A., Lotfi, T., Mahdiani, K., Torregrosa, J.R.: Two opti-
mal general classes of iterative methods with eighth-order. Acta
Appl. Math. 134(1), 61–74 (2014)

 13. Cordero, A., Lotfi, T., Torregrosa, J.R., Assari, P., Mahdiani, K.:
Some new bi-accelerator two-point methods for solving nonlinear
equations. Comput. Appl. Math. 35, 251–267 (2016)

 14. Dehghan, M., Hajarian, M.: Some derivative free quadratic and
cubic convergence iterative formulas for solving nonlinear equa-
tions. Comput. Appl. Math. 29(1), 19–30 (2010)

 15. Dzunic, J.: On efficient two-parameter methods for solving non-
linear equations. Numer. Algorithms 63, 549–569 (2013)

 16. Dzunic, J., Petkovic, M.S.: A cubically convergent Steffensen-like
method for solving nonlinear equations. Appl. Math. Lett. 25,
1881–1886 (2012)

 17. Dzunic, J., Petkovic, M.S., Petkovic, L.D.: Three-point methods
with and without memory for solving nonlinear equations. Appl.
Math. Comput. 218, 4917–4927 (2012)

 18. Ezzati, R., Saleki, F.: On the construction of new iterative methods
with fourth-order convergence by combining previous methods.
Int. Math. Forum. 6(27), 1319–1326 (2011)

 19. Geum, Y.H., Kim, Y.I.: A biparametric family optimally conver-
gent sixteenth-order multipoint methods with their fourth-step
weighting function as a sum of a rational and a generic two-vari-
able function. J. Comput. Appl. Math. 235, 3178–3188 (2011)

 20. Guo, Q.W., Qian, Y.H.: New efficient optimal derivative-free
method for solving nonlinear equations. Int. J. Math. Comput.
Sci. 1(3), 102–110 (2015)

 21. Halley, E.: A new, exact and easy method of finding the roots
of equations generally and that without any previous reduction.
Philos. Trans. R. Soc. Lond. 18, 136–148 (1694)

 22. Hansen, E., Patrick, M.: A family of root finding methods. Numer.
Math. 27, 257–269 (1977)

Table 9 (continued)

Without memory methods EF Iter COC EI With memory methods EF Iter COC EI

f12(x) = ex
2−1 sin(x) + cos(2x) − 2, � = 1.44, x0 = 1.1

AM 3 11 1.0000 1.00000 KM, �0 = �0 = 0.1 2 5 3.5659 1.88836
NM 2 9 2.0000 1.41421 TrM, �0 = 0.1 2 4 1.0357 1.01769
HM 3 5 3.0000 1.44225 DPM 2 5 3.0001 1.73208
ChM 3 7 3.0000 1.44225 SecM, x1 = 1.6 2 18 1.61803 1.61803
SMM 3 14 1.0000 1.00000 WZQM, �0 = �0 = �0 = 0.1 3 4 7.5424 1.96112
RWBM, �0 = 1 3 5 0.0000 0.0000 WM, �0 = 1 3 19 4.2361 1.61803
MM 4 5 1.0000 1.00000 DM, �0 = p0 = 0.1 3 In div div
CNM, �0 = �0 = A0 = 1 4 30 1.0000 1.00000 LSSAKM, �0 = p0 = �0 = 1, �0 = 0.01 4 4 0.0000 0.00000
CLMTM,H1,G1 4 5 div div LSGAM, a0 = 1, �0 = 0.01 4 In div div
LSSSM 4 In div div DPPM, �0 = −0.1 4 4 9.9999 1.77827
GKM, �0 = �0 = 1 5 4 16.0000 1.74110 LAM, �0 = 0.01, p0 = �0 = �0 = 0.1 4 3 15.5009 1.98422
SSSLM,method 6 5 18 1.0000 1.00000 TLAM, �0 = �0 = 0.1 2 5 4.0000 2.00000

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

20 Mathematical Sciences (2019) 13:1–20

1 3

 23. Hazrat, R.: Mathematica a Problem-Centered Approach. Springer,
London (2010)

 24. http://www.mathe matic a.stack excha nge.com/quest ions/5663/
about -multi -root-searc h-inmat hemat ica-for-trans cende ntal-equat
ions?lq=1

 25. Jarratt, P.: Some fourth order multipoint methods for solving equa-
tions. Math. Comput. 20, 434–437 (1966)

 26. Kansal, M., Kanwar, V., Bhatia, S.: Efficient derivative-free vari-
ants of Hansen–Patrick’s family with memory for solving nonlin-
ear equations. Numer. Algorithms 73, 1017–1036 (2016)

 27. Kanwar, V., Bala, R., Kansal, M.: Some new weighted eighth-
order variants of Steffensen-King’s type family for solving non-
linear equations and its dynamics. SeMa J. 74(1), 75–90 (2016)

 28. Khaksar Haghani, F.: A modified Steffensen’s method with mem-
ory for nonlinear equations. Int. J. Math. Mod. Comput. 5(1),
41–48 (2015)

 29. Kou, J., Li, Y.: The improvements of Chebyshev–Halley methods
with fifth-order convergence. Appl. Math. Comput. 188, 143–147
(2007)

 30. Kreetee, D., Babajee, R., Thukral, R.: On a 4-point sixteenth-order
King family of iterative methods for solving nonlinear equations.
Int. J. Math. Sci. 2012, 1–13 (2012)

 31. Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint
iteration. J. Assoc. Comput. Mach. 21(4), 643–651 (1974)

 32. Li, X., Mu, C., Ma, J., Wang, C.: Sixteenth-order method for non-
linear equations. Appl. Math. Comput. 215, 3754–3758 (2010)

 33. Lotfi, T., Assari, P.: New three-and four-parametric iterative with
memory methods with efficiency index near 2. Appl. Math. Com-
put. 270, 1004–1010 (2015)

 34. Lotfi, T., Mahdiani, K., Noori, Z., Khaksar Haghani, F., Shateyi,
S.: On a new three-step class of methods and its acceleration for
nonlinear equations. Sci. World J. 2014, 1–9 (2014)

 35. Lotfi, T., Soleymani, F., Ghorbanzadeh, M., Assari, P.: On the con-
struction of some tri-parametric iterative methods with memory.
Numer. Algorithms 70(4), 835–845 (2015)

 36. Lotfi, T., Soleymani, F., Shateyi, S., Assari, P., Khaksar Haghani,
F.: New mono- and biaccelerator iterative methods with memory
for nonlinear equations. Abstr. Appl. Anal. 14, 1–8 (2014)

 37. Lotfi, T., Tavakoli, E.: On a new efficient Steffensen-like iterative
class by applying a suitable self-accelerator parameter. Sci. World
J. 2014, 1–9 (2014)

 38. Lui, Z., Zhang, H.: Steffensen-type method of super third-order
convergence for solving nonlinear equations. J. Appl. Math. Phys.
2, 581–586 (2014)

 39. Maheshwari, A.K.: A fourth order iterative method for solving
nonlinear equations. Appl. Math. Comput. 211, 383–391 (2009)

 40. Matinfar, M., Aminzadeh, M., Asadpour, S.: A new three-step
iterative method for solving nonlinear equations. J. Math. Ext.
6(1), 29–39 (2012)

 41. Neta, B.: A sixth order family of methods for nonlinear equations.
Int. J. Comput. Math. 7, 157–161 (1979)

 42. Ortega, J.M., Rheinboldt, W.C.: Iterative Solutions of Nonlinear
Equations in Several Variables. Academic Press, New York (1970)

 43. Ostrowski, A.M.: Solution of Equations and Systems of Equations.
Academic press, New York (1960)

 44. Petkovic, M.S.: On a general class of multipoint root-finding
methods of high computational efficiency. SIAM J. Numer. Anal.
47(6), 4402–4414 (2010)

 45. Petkovic, M.S., Dzunic, J., Neta, B.: Interpolatory multipoint
methods with memory for solving nonlinear equations. Appl.
Math. Comput. 218, 2533–2541 (2011)

 46. Petkovic, M.S., Dzunic, J., Petkovic, L.D.: A family of two-point
with memory for solving nonlinear equations. Appl. Anal. Dis-
crete Math. 5, 298–317 (2011)

 47. Petkovic, M.S., Neta, B., Petkovic, L.D., Dzunic, J.: Multipoint
Methods for Solving Nonlinear Equations. Elsevier, Amsterdam
(2013)

 48. Petkovic, M.S., Ilic, S., Dzunic, J.: Derivative free two-point meth-
ods with and without memory for solving nonlinear equations.
Appl. Math. Comput. 217, 1887–1895 (2010)

 49. Petkovic, M.S., Sharma, J.R.: On some efficient derivative-free
method with memory for solving system nonlinear equations.
Numer. Algorithms 71, 457–474 (2016)

 50. Ren, H., Wu, Q., Bi, W.: A class of two-step Steffensen type meth-
ods with fourth-order convergence. Appl. Math. Comput. 209,
206–210 (2009)

 51. Sharifi, S., Siegmund, S., Salimi, M.: Solving nonlinear equations
by a derivative-free form of the King’s family with memory. Cal-
colo 53(2), 201–215 (2015)

 52. Sharifi, S., Salimi, M., Siegmund, S., Lotfi, T.: A new class of
optimal four-point methods with convergence order 16 for solving
nonlinear equations. Math. Comput. Simul. 119(c), 69–90 (2016)

 53. Sharma, J.R., Guha, R.K., Gupta, P.: Some efficient derivative
free methods with memory for solving nonlinear equations. Appl.
Math. Comput. 219(2), 699–707 (2012)

 54. Singh, A., Jaiswal, J.P.: A class of optimal eighth-order Stef-
fensen-type iterative methods for solving nonlinear equations and
their basins of attraction. Appl. Math. Inf. Sci. 10(1), 251–257
(2016)

 55. Soleymani, F.: Some optimal iterative methods and their with
memory variants. J. Egypt. Math. Soc. 2013, 1–9 (2013)

 56. Soleymani, F., Lotfi, T., Tavakoli, E., Khaksar Haghani, F.: Sev-
eral iterative methods with memory using self-accelerators. Appl.
Math. Comput. 254, 452–458 (2015)

 57. Soleymani, F., Mousavi, B.S.: On novel classes of iterative meth-
ods for solving nonlinear equations. Zh. Vychisl. Mat. Mat. Fiz.
52(2), 214–221 (2012)

 58. Steffensen, J.F.: Remarks on iteration. Scand. Aktuarietidskr 16,
64–72 (1933)

 59. Taher-Khani, S.: A note on the paper “A new general eighth-order
family of iterative methods for solving nonlinear equations”.
Math. Sci. 8(123), 1–3 (2014)

 60. Thukral, R.: New sixteenth-order derivative-free methods for
solving nonlinear equations. Am. J. Comput. Appl. Math. 2(3),
112–118 (2012)

 61. Traub, J.F.: Iterative Methods for the Solution of Equations. Pren-
tice Hall, New York (1964)

 62. Ullah, M.Z., Kosari, S., Soleymani, F., Khaksar Haghani, F., Al-
Fhaid, A.S.: A super-fast tri-parametric iterative method with
memory. Appl. Math. Comput. 289, 486–491 (2016)

 63. Wang, X.: An Ostrowski-type method with memory using a novel
self-accelerating parameter. J. Comput. Appl. Math. 330, 1–18
(2017)

 64. Wang, X., Zhang, T., Qin, Y.: Efficient two-step derivative-free
iterative methods with memory and their dynamics. Int. J. Com-
put. Math. 93(8), 1–27 (2015)

 65. Yun, B.I.: Iterative methods for solving nonlinear equations with
finitely any roots in an interval. J. Comput. Appl. Math. 236,
3308–3318 (2012)

 66. Zheng, Q., Li, J., Huang, F.: An optimal Steffensen-type fam-
ily for solving nonlinear equations. Appl. Math. Comput. 217,
9592–9597 (2011)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://www.mathematica.stackexchange.com/questions/5663/about-multi-root-search-inmathematica-for-transcendental-equations?lq=1
http://www.mathematica.stackexchange.com/questions/5663/about-multi-root-search-inmathematica-for-transcendental-equations?lq=1
http://www.mathematica.stackexchange.com/questions/5663/about-multi-root-search-inmathematica-for-transcendental-equations?lq=1

	A new family of adaptive methods with memory for solving nonlinear equations
	Abstract
	Introduction and preliminaries
	A family of two-parameter iterative methods
	Recursive adaptive method with memory
	Numerical examples
	Algorithms to find an initial approximation

	Conclusion
	Acknowledgements
	References

