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Abstract
We introduce a new wrapped exponential distribution named transmuted wrapped exponential (TWE) distribution, for the 
modeling of circular datasets by using the Transmutation Rank-Map method. This method is employed for the first time for 
a wrapped distribution with this study. The introduced distribution is more flexible than traditional wrapped exponential 
distribution. The paper provides the explicit form of important distributional properties of the introduced distribution such as 
expectation, median, moments, characteristic function, quantile function, hazard rate function and stress-strength reliability. 
Rényi and Shannon entropies are also obtained. The statistical inference problem for the TWE distribution is investigated 
using maximum likelihood, least squares and weighted least squares and comparative numerical study results are presented. 
Furthermore, we present a real dataset analysis.
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Introduction

In statistical meaning, it is known that the performance of a 
statistical analysis depends on the selected model distribu-
tion for a data set. If the selected distribution is an optimal 
model to data, then the obtained statistical inference from 
the dataset is the best. Because of this, a number of research-
ers suggested adding extra parameters to the distributions in 
order to be able to create more flexible distributions. Quad-
ratic rank transmutation map (QRTM) technique is one of 
these methods. Depending on a base distribution, the trans-
muted distribution is obtained as follows.

Suppose that X is a real-valued random variable and also 
G(x) and g(x) are the cumulative distribution function (cdf) 
and the probability density function (pdf) of X, respectively. 
Then

and

are called a transmuted cdf and pdf, respectively, depending 
on base cdf G(x) and pdf g(x) , where Λ is the transmuting 
parameter [18]. So far, it has been shown by the conducted 
studies that the QRTM distributions obtained from the 
base distributions are better models to the dataset than the 
base distributions, because QRTM distributions have more 
parameters and they are more flexible than the base distri-
bution. Khan et al. [10] proposed the Transmuted General-
ized Exponential distribution using the QRTM method, and 
they compared their model with existing lifetime distribu-
tions such as, TGE, exponentiated Weibull (EW), modified 
Weibull (MW), generalized exponential (GE), weighted 
exponential, extended exponential (EE), Weibull (W), and 
Power generalized Weibull (PGW). Kemaloglu and Yilmaz 
[8] presented the Transmuted two-parameter Lindley distri-
bution (TTLD) as a new lifetime distribution. They studied 
some important statistical properties of the TTLD. Aryal 
and Tsokos [2] introduced the transmuted Weibull distri-
bution and studied its mathematical properties. In 2013, 
Merovci applied the QRTM to the exponentiated exponential 
distribution and introduced the transmuted exponentiated 
exponential distribution as a lifetime distribution [13]. We 
refer the interested reader to [3, 4, 9, 14, 16, 17, 20] and 

(1)F(x) = (1 + Λ)G(x) − ΛG(x)2

(2)f (x) = g(x)[(1 + Λ) − 2ΛG(x)], −1 ≤ Λ ≤ 1
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the references therein for more literature information on the 
transmuted families of distributions.

The main goal of this study is to create a more flexible dis-
tribution called transmuted wrapped exponential (TWE) for 
the modeling of circular data based on QRTM method. The 
QRTM technique is employed for the first time for a wrapped 
distribution with this study.

The rest of this paper is organized as follows: In "TWE 
distribution" section, the cdf and pdf of TWE distribution are 
obtained. In addition, some important properties of the TWE 
distribution such as trigonometric moments, characteristic 
function, location, dispersion, median, skewness, kurtosis, 
modality behavior, order statistics, entropy, stress-strength reli-
ability and hazard rate function are studied in that section. The 
statistical inference problem for the TWE distribution accord-
ing to the maximum likelihood (ML), the least squares (LS) 
and the weighted least squares (WLS) method are discussed 
in "Inference" section. A series of simulation experiments for 
comparing the performance of the obtained estimators are per-
formed in "Monte Carlo simulation study" section. We analyze 
a real-life dataset from the literature for illustrative purposes 
in "Application to real data" section. Finally, the last section 
of the paper concludes the study.

TWE distribution

The wrapping method is a well-known approach to obtain 
a circular distribution based on a distribution family. The 
wrapped distributions play quite an important role in the mod-
eling of circular data. Jammalamadaka and Kozubowski [5] 
introduced the wrapped exponential (WE) distribution with 
following pdf and cdf,

(3)fXw
(�) =

�e−��

1 − e−2��

and

respectively, where 𝜆 > 0 and � ∈ [0, 2�) . The main motiva-
tion of this study is to obtain a more flexible circular distri-
bution than WE to the optimal modeling of circular data. 
Therefore, by using formulas (3) and (4) in QRTM method, 
we obtain cdf and pdf of a TWE distributed random vari-
able Θ as

and

respectively, where and through the paper c = e−2�� − 1 , 
𝜆 > 0 , |Λ| ≤ 1 and � ∈ [0, 2�) . From now on, a random vari-
able Θ distributed the TWE with parameters � and Λ will be 
indicated as Θ ∼ TWE(�,Λ) . Figure 1 illustrates the some 
of the possible shapes of the pdf of a TWE distribution for 
different values of the parameters � and Λ.

As it can be seen from Fig. 1, the TWE distribution is a 
unimodal distribution. When Λ > 0 , the mode of the dis-
tribution is zero; otherwise, it differs from zero for some 
values of the � , see "Modality Behavior" section. We can 
say that the distribution has got often the negative skew-
ness (we say anticlockwise skewness). The parameter � 
plays an important role in the mean and variance of the 
TWE distribution as a heritage of its task in the exponen-
tial distribution.

(4)FXw
(�) =

1 − e−��

1 − e−2��
,

(5)FΘ(�) =

(
e−�� − 1

)(
c + Λ

(
1 + c − e−��

))
c2

(6)fΘ(�) =
2�Λe−��

(
e−�� − 1

)
c2

−
�e−��(Λ + 1)

c
,
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Fig. 1  Pdf of transmuted wrapped exponential distribution for different values of � and Λ
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Characteristic function

The characteristic function of TWE(�,Λ) distribution is

However, since a circular random variable is periodic, Θ and 
Θ + 2� have the same distribution, and p must be restricted 
to the integer values [12].

Trigonometric moments

The value of the characteristic function of the circular ran-
dom variable Θ ∼ TWE(�,Λ) at an integer p is called the pth 
trigonometric moment. One can also write pth trigonometric 
moments in terms of �p and �p

where �p is pth cosine moment defined as �p = E(cos pΘ) 
and �p is pth sine moment defined as �p = E(sin pΘ) . Hence, 
the pth cosine moment of TWE(�,Λ) distribution is

and pth sine moment is

where p = 0,± 1,± 2,….

Location, dispersion and median

The pth trigonometric moment of TWE(�,Λ) can be expressed 
in �p = �pe

i�p where �p = atan

(
�p�

−1
p

)
 and �p =

√
�2
p
+ �2

p
 . 

�p has a special meaning for p = 1 . The �1 and the �1 are called 
angular concentration and mean direction, respectively. Here 
atan(.) is quadrant inverse tangent function and defined as

(7)�Θ(p) = �p = E(eipΘ)

(8)

=
�(� + ip)(2Λ + c + cΛ)

[
(c + 1)e2i�p − 1

]

c2
(
�2 + p2

)

−
2�Λ(2� + ip)

[
(c + 1)2e2i�p − 1

]

c2
(
4�2 + p2

)

�p = �Θ(p) = �p + i�p, p = 0,± 1,± 2,… .

(9)�p =
�2
(
4c�2 − 6p2Λ + cp2 − 3cp2Λ

)

c
(
4�2 + p2

)(
�2 + p2

)

(10)

�p =
�p

(
4�2Λ + 4c�2 − 2Λp2 + cp2 + 2c�2Λ − cp2Λ

)

c
(
4�2 + p2

)(
�2 + p2

) ,

atan(y∕x) =

⎧
⎪⎪⎨⎪⎪⎩

tan−1 (x∕y), y > 0, x ≥ 0

𝜋∕2, y = 0, x > 0

tan−1 (x∕y) + 𝜋, y < 0

tan−1 (x∕y) + 2𝜋, y ≥ 0, x < 0

undefined, y = 0, x = 0

.

Mean direction of TWE(�,Λ) distribution is

The mean direction vector gives information about the mean 
of the distribution as an analogy of the mean in the linear 
models. The length of this vector is a measure of disper-
sion around the mean and corresponds to the usual standard 
deviation or variance in linear models. The angular concen-
tration for TWE(�,Λ) distribution is

For a circular model, the circular variance is calculated as 
V = 1 − �1 . Hence, using the (12), the circular variance of 
TWE(�,Λ) distribution is obtained as

Also, the circular standard deviation calculated as 
� =

√
−2 ln �1 and calculated for TWE(�,Λ) distribution as

The quantile function of TWE(�,Λ) can be easily obtained 
from the solution of equation F(�) − u = 0 with respect to 
� as

where u ∈ (0, 1) .  Then the median direction of 
a circular distr ibution is a value M  such that 
∫ M

0
fΘ(�)d� = ∫ 2�

M
fΘ(�)d� = 0.5 . The median of TWE(�,Λ) 

distribution is obtained from equation M = Q(0.5) as

Modality behavior

TWE(�,Λ) is a unimodal distribution for Λ ≠ 0 . The critical 
value of its pdf (6) can be immediately calculated as

(11)�1 = atan

(
c − 2Λ + 4�2Λ + 4c�2 − cΛ + 2c�2Λ

�
(
4c�2 − 6Λ + c − 3cΛ

)
)
.

(12)�1 =

√
�2(2Λ − c + cΛ)2 + 4c2�4

c2
(
4�2 + 1

)(
�2 + 1

) .

(13)V = 1 −

√
�2(2Λ − c + cΛ)2 + 4c2�4

c2
(
4�2 + 1

)(
�2 + 1

) .

� =

[
− ln

(
�2(2Λ − c + cΛ)2 + 4c2�4

c2
(
4�2 + 1

)(
�2 + 1

)
)] 1

2

.

(14)

Q(u) = −
1

�
ln

�
2Λ + c − c

√
2Λ + Λ2 − 4Λu + 1 + cΛ

2Λ

�
,

(15)M = −
1

�
ln

⎡⎢⎢⎢⎣

c
�
Λ + 1 −

√
Λ2 + 1

�

2Λ
+ 1

⎤⎥⎥⎥⎦
.

�0 = −
1

�
ln

(
2Λ + c + Λc

4Λ

)
∈ [0, 2�).
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On the other hand, for

the parameter Λ must be negative. Thus, the mode of 
TWE(�,Λ) , say �T , is

when c

3c+2
< Λ <

c

(2−c)
 and 0 otherwise.

Skewness and kurtosis

For a circular model, the pth central cosine and sine moments 
are�̄�p = E

[
cos p

(
𝜃 − 𝜇1

)]
 and 𝛽p = E

[
sin p

(
𝜃 − 𝜇1

)]
 , respec-

tively [12]. As a measure of asymmetry, skewness coeffi-
cient is calculated by �1 = 𝛽2V

−3∕2 for a circular distribution. 
Hence, the skewness coefficient of TWE(�,Λ) is obtained as

K u r t o s i s  o f  a  c i r c u l a r  d i s t r i b u t i o n  i s 
�2 =

(
�̄�2 − 𝜌4

1

)(
1 − 𝜌1

)−2 . Therefore, kurtosis coefficient 
of TWE(�,Λ) is obtained as

f ��
Θ

(
𝜃0
)
=

𝜆3(2Λ + c + Λc)2

4Λc2
< 0

�T = −
1

�
ln

(
2Λ + c + Λc

4Λ

)

(16)

�1 = −V−3∕2

[
�
(
� sin 2�1 − 2 cos 2�1

)
(2Λ + c + cΛ)

c
(
�2 + 4

)

−
�Λ(c + 2)

(
cos 2�1 − � sin 2�1

)

c
(
�2 + 1

)
]
.

(17)

�2 = V−2

[
�2(2Λ + 2c + Λc) + 2c(1 − Λ) − 4Λ

c
(
�4 + 5�2 + 4

) � sin
(
2�1

)

+
c�
(
1 + �2 − 3Λ

)
− 6�Λ

c
(
�4 + 5�2 + 4

) � cos
(
2�1

)

−

[
(2Λ − c + Λc)2 + 4�4c2

]2

c4
(
4�2 + 1

)2(
�2 + 1

)2
]
.

Figure 2 represents the contour plots of circular variance 
(V) , skewness 

(
�1
)
 and kurtosis 

(
�2
)
 of TWE distribution.

In general, for a constant value of Λ , it can be seen 
from Fig. 2 that when the � increases, the circular variance 
decreases. However, this is not true for some negative values 
of Λ . Similarly, for a constant value of � , when Λ increases, 
the circular variance decreases. As in the circular variance, 
the skewness decreases when � increases. On the other hand, 
when � increases Kurtosis increases.

Order statistics

Let Θ1,Θ2,… ,Θn be a random sample from TWE(�,Λ) dis-
tribution and let Θ(1) …Θ(n) , 

(
Θ(1) < ⋯ < Θ(n)

)
 , denote the 

order statistic for this sample. Then, the pdf of the random 
variable Θ(i) , i = 1, 2,… , n is obtained as

where, � = Λ + c − Λe−�� + Λc . The first order and nth 
order statistics can be immediately calculated from (18) as

and

respectively.

Rényi and Shannon entropy

The entropy is a measure of variation or uncertainty of a ran-
dom variable. In this section, we investigate the Shannon and 

(18)

fΘ(i)
(�) =

n!

(i − 1)!(n − i)!
F(�)i−1f (�)(1 − F(�))n−i

=
�n!e−��� i−1(Λc − 2�)

(
e−�� − 1

)i−1
c2n(i − 1)!(n − i)!

(
c2 + � − �e−��

)n−i
,

fΘ(1)
(�) =

�ne−��(Λc − 2�)

c2n

(
c2 + � − �e−��

)n−1
,

fΘ(n)
(�) =

�ne−��(Λc − 2�)

c2n
�n−1

(
e−�� − 1

)n−1
,

V
0.11628

0.2027

0.2027

0.28912

0.28912

0.37554
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0.46196
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Rényi entropy, which are two most popular entropies, for TWE 
distribution. The Rényi entropy of a circular random variable 
with pdf f (�) is defined as

for 𝜉 > 0 and � ≠ 1 . Thus, Rényi entropy of TWE(�,Λ) dis-
tribution is obtained as

where 2F1 denotes the hypergeometric function, see [1]. The 
Shannon entropy is the special case of the Rényi entropy 
when � → 1 and it is defined as SE� = E

[
− ln f (�)

]
 , see [11] 

for definition of Shannon entropy. Immediately, Shannon 
entropy of TWE(�,Λ) distribution is obtained as

Stress‑strength reliability

Suppose Y represents the ‘stress’ and X represents the 
‘strength’ to sustain the stress, then the stress-strength reli-
ability is denoted by R = P(Y < X) . Let X ∼ TWE

(
�x,Λx

)
 

and Y ∼ TWE
(
�y,Λy

)
 . Stress-strength reliability P(Y < X) is

where cx = e−2��x − 1 and cy = e−2��y − 1 . If �x = �y = �

RE�(�) =
1

1 − �
ln∫

2�

0

f �(�)d�,

RE�(�) =
2�−1

�(1 − �)�

[
2F1

(
−2�,−�;1 − 2�;

Λc + c + 2Λ

2Λ

)(
c2

�Λ

)−�

−

(
c2e4��

�Λ

)−�

2F1

(
−2�,−�;1 − 2�;

e2��(Λc + c + 2Λ)

2Λ

)]
,

SE� =
1

4
(
e2�� − 1

)2
Λ

[(
e2��(Λ − 1) + Λ + 1

)2
ln

(
1 − Λ)

Λ + 1

)

+ 2e2��Λ

(
−e2��(Λ − 3) − 2

(
e2�� − Λ − 1

)
ln

(
e2���(Λ + 1)

e2�� − 1

)
− 3(Λ + 1)

)

− 2Λ

(
−3e2��(Λ − 1) + 2

(
e2��(Λ − 1) + 1

)
ln

(
−
�(Λ − 1)

e2�� − 1

)
− Λ − 3

)]
.

R = P(Y < X) = ∫ P(Y < X � X = x)fX(x)dx = ∫ fX(x)FY (x)dx

=
1

c2
x
c2
y

�
Λye

−2𝜋
�
𝜆x+2𝜆y

�� e2𝜋𝜆xΛx

𝜆y
−

�
cx + 2

�
Λx + cx

𝜆x + 2𝜆y

�

− 4𝜋Λx

�
cy
�
Λy + 1

�
+ Λy

�
+

Λy

�
cx
�
Λx + 1

�
𝜆y − 𝜆xΛx

�

𝜆y
�
𝜆x + 2𝜆y

�

+
2Λxe

−2𝜋𝜆y
�
e
2𝜋𝜆y − 1

���
cy + 2

�
Λy + cy

�

𝜆x

+
e−2𝜋𝜆x

�
e2𝜋𝜆x − 1

���
cx + 2

�
Λx + cx

��
cy
�
Λy + 1

�
+ Λy

�
𝜆x

−

��
cx + 2

�
Λx + cx

���
cy + 2

�
Λy + cy

�
e
−2𝜋

�
𝜆x+𝜆y

��
e
2𝜋

�
𝜆x+𝜆y

�
+ 1

�

𝜆x + 𝜆y

⎤⎥⎥⎥⎦
,

R =
Λ
x

6
�
e2�� − 1

�4
⎡⎢⎢⎢⎣

− 6e4��
�
Λ
y
+ 2

�
− 2e2��

�
Λ
y
+ 3

�
+ e8��

�
24�� + 5Λ

y
− 15

�
+ Λ

y
+ 3

− 2e6��
�
3(4�� − 5) + (12�� − 1)Λ

y

�

⎤⎥⎥⎥⎦
+

�
Λ
y
+ 3

�
6

.

Hazard rate function

The hazard rate function hr of Θ ∼ TWE(�,Λ) random vari-
able is

where 𝜃 ∈ [0, 2𝜋), 𝜆 > 0 , |Λ| ≤ 1 and c = e−2�� − 1 . Critical 
point of the hr(�) is

The hazard rate function has bathtub shape when Λ is in 
the interval

Here, considering that the smallest value of c is −1 , hr(�) 
appears to be a bathtub in the positive Λ values providing the 
above condition. We present Fig. 3 which plots the hazard 
rate functions of the TWE(5.48, 0.25) and WE(5.48) distri-
butions for illustrative purposes.

Inference

In this section, we consider the statistical inference prob-
lem for TWE(�,Λ) . To estimate the unknown parameters 
of TWE(�,Λ) , we employ the ML, LS and WLS estimation 
methods commonly used in the literature.

Maximum likelihood estimation

Let Θ1,Θ2,… ,Θn be a random sample from TWE(�,Λ) dis-
tribution. From (6), the logarithmic likelihood function for 
the random variables Θi, i = 1, 2,… , n can be immediately 
written as

If the first derivatives of (19) with respect to parameters � 
and 

Λ
 are taken and equalized them to zero, then we have 

the following normal equations

hr(�) =
f (�)

1 − F(�)

=
�e−��

(
2Λ + c − 2Λe−�� + Λc

)
(
Λ + c − Λe−��

)(
e−�� − c − 1

) ,

�h =
1

�
ln

�√
−c2(c + 1)(Λ − 1)2Λ(c + Λ) + 2(c + 1)Λ(c + Λ)

(c + 1)(c + Λ)((c + 2)Λ + c)

�
.

�
1

2

�
−c −

√
c2 − 4(c + 1)

�
,
1

2

�
−c +

√
c2 − 4(c + 1)

��
.

(19)

L
(
�,Λ; �1, �2,… , �

n

)
=

n∑
i=1

ln � −

n∑
i=1

ln
(
1 − e−2��

)

+

n∑
i=1

ln

(
Λ −

2Λ
(
e−��i − 1

)

e−2�� − 1
+ 1

)
−

n∑
i=1

��
i
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and

where c = e−2�� − 1 . Hence, the ML estimates of the param-
eters � and Λ , say �̂�ML and Λ̂ML , respectively, can numeri-
cally be obtained from the collective solution of (20) and 
(21).

Least squares estimation

To obtain the least squares estimates of the TWE(�,Λ) 
distribution, let us consider the ordered random sample 
𝜃(1) < ⋯ < 𝜃(n) from this distribution. Then, the LS estimates 
of the unknown parameters of the TWE(�,Λ) distribution, 
say �̂�LS , and Λ̂LS , are obtained by minimizing

with respect to � and Λ , respectively. Where j

n+1
 is the expec-

tation of the empirical distribution function of the ordered 
data, see Swain et al. [19]. It is known that the LS estimates 
are biassed. A well-known modification of LS method is the 
WLS, which has a lower bias than the ordinary LS. The 
WLS estimates of the parameters of the TWE(�,Λ) distribu-
tion are obtained by minimizing

(20)

�L

��
=

n

�
+

2n�e−2��

c
+

n∑
i=1

2Λ�ie
−��i

c
−

4Λ�(C+1)e−��i

c2

c(Λ + 1) −
(
2Λ

(
e−��i − 1

)) −

n∑
i=1

�i = 0

(21)
�L

�Λ
=

n∑
i=1

c −
(
2e−��i − 2

)

c(Λ + 1) −
(
2Λ

(
e−��i − 1

)) = 0

n∑
j=1

((
1 − e−��(j)

)(
c + Λ

(
1 + c − e−�(j)�

))
c2

−
j

n + 1

)2

,

with respect to � and Λ.

Monte Carlo simulation study

In this section, we perform some Monte Carlo simulation 
studies for illustrating and comparing estimation perfor-
mances of the ML, LS and the WLS estimators obtained in 
the previous section. In Monte Carlo simulations, we use the 
values of the parameters � = 0.5, 1.5 and Λ = − 0.75, 0.75 . 
For the different sample of sizes n = 30, 50, 100 and 1000, 
the obtained Bias and mean squared error (MSE) values 
based on the 1000 times replicated simulations are displayed 
in Table 1.

As can be clearly seen from Table 1, when the sample 
size increases, for all values of the parameters, both Bias and 
MSE values decreases. This shows that the estimates are pre-
cise and accurate and hence consistent and unbiased. This is 
an expected result for the ML estimators, since ML estima-
tors are asymptotically unbiased estimators. The simulation 
results also show that the other estimators have the same 
characteristics. Besides, by Table 1, we can say that the ML 
estimators outperform both the LS and the WLS estimators 
with smaller MSE values.

Application to real data

In this section, to illustrate the modeling behavior of the TWE 
distribution on a real-life dataset , we analyze the turtle dataset, 
which is a popular circular dataset. This dataset contains the 
orientations of 76 turtles laying their eggs [6]. We obtain the 
maximum likelihood estimation of the parameters � and Λ by 
using the “mle” subroutine in the package ‘stats4’ (version 
3.4.3) of R. Note that when applying the mle subroutine, the 
parameter ranges should be selected as wide as possible to 
avoid local maxima. We also refer the advanced readers to 
an R package ‘wrapped’, introduced by Nadarajah and Zhang 
[15], for further computation in wrapped distributions.

For the turtle dataset, the ML estimation of the parameters 
and the corresponding mean direction and the resultant length 
are obtained as given in Table 2, when the dataset is modeled 
by the TWE distribution.

This dataset was recently used by Joshi and Jose [7] as an 
application of the wrapped Lindley () distribution. In order 
to make a comparison, maximized log likelihood values (L), 
Akaike information criterion (AIC), Kolmogorov–Smirnov 
with p values (KS) and Watson’s U2 (W2) statistics values for 
the TWE, WE and  distributions are given in Table 3.

n∑
j=1

(n + 1)2(n + 2)

j(n − j + 1)

[(
1 − e−��(j)

)(
c + Λ

(
1 + c − e−�(j)�

))
c2

−
j

n + 1

]2
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Plots of the fitted densities are shown in Fig. 4. Left panel 
of this figure represents the circular data plot, rose diagram 
and fitted pdf of the TWE, WE and  distributions. The 
dashed arrow points out the sample mean resultant vec-
tor with values m1 = 1.12 (∼ 64.2◦) and resultant length 
r1 = 0.4971 , and the solid arrow points out the mean direc-
tion vector and the resultant length of the fitted TWE distri-
bution, which their values are given in Table 2.

According to Table 3, the TWE distribution has the 
smallest negative log-likelihood value, AIC and Watson 
statistics than the others. Thus, we can clearly say that the 
TWE distribution gives better fit than  distribution and 
WE distribution. Furthermore, according to the results of the 
KS test given in Table 3, the goodness of fit of the  dis-
tribution cannot be accepted at a significance level of 0.05.

Conclusion

In this article, we have introduced a new transmuted wrapped 
distribution named TWE distribution, for modeling the circu-
lar data. To the best of our knowledge, the transmutation of a 

circular distribution is a new attempt to obtain more flexible 
circular distribution. In the paper, the pdf and the cdf of the 
introduced distribution are derived and their behaviors are 
illustrated. Rényi and Shannon entropies of the distribution 
are obtained in an open form. Furthermore, explicit forms of 
the basic characteristics of the introduced distribution such 
as mean, trigonometric moments, characteristic function, 

Table 1  Bias and MSE of 
parameter estimations for 
different values of sample of 
sizes n and parameter � , when 
Λ = − 0.75.and 0.75

Method n Λ = − 0.75 Λ = 0.75

�̂� Λ̂ �̂� Λ̂

Bias MSE Bias MSE Bias MSE Bias MSE

� = 0.5 ML 30 0.1204 0.0235 0.2770 0.1357 0.1385 0.0303 0.2390 0.0664
50 0.0910 0.0145 0.2150 0.0834 0.1208 0.0222 0.2259 0.0611

100 0.0621 0.0064 0.1511 0.0401 0.1073 0.0169 0.2120 0.0577
1000 0.0193 0.0006 0.0475 0.0035 0.0646 0.0079 0.1294 0.0311

WLS 30 0.1436 0.0362 0.3621 0.2653 0.1953 0.0761 0.3504 0.2056
50 0.1157 0.0283 0.2991 0.2188 0.1602 0.0472 0.2950 0.1405

100 0.0914 0.0231 0.2474 0.1981 0.1272 0.0250 0.2403 0.0801
1000 0.0217 0.0016 0.0564 0.0130 0.0722 0.0095 0.1426 0.0364

LS 30 0.1329 0.0284 0.3291 0.1906 0.3201 0.1718 0.5798 0.5220
50 0.0983 0.0166 0.2472 0.1165 0.3015 0.1579 0.5014 0.3966

100 0.0662 0.0076 0.1729 0.0549 0.2502 0.0977 0.4650 0.3229
1000 0.0165 0.0005 0.0343 0.0032 0.1703 0.0538 0.3290 0.2001

� = 1.5 ML 30 0.2251 0.0862 0.2433 0.1127 0.3415 0.1929 0.2337 0.0643
50 0.1733 0.0493 0.1903 0.0682 0.3088 0.1474 0.2268 0.0639

100 0.1178 0.0223 0.1304 0.0266 0.2654 0.1097 0.2089 0.0585
1000 0.0385 0.0023 0.0431 0.0029 0.1632 0.0440 0.1357 0.0293

WLS 30 0.2586 0.1177 0.2996 0.2118 0.4908 0.5281 0.3477 0.2213
50 0.1948 0.0689 0.2265 0.1238 0.4366 0.3930 0.3202 0.1739

100 0.1276 0.0277 0.1437 0.0401 0.3306 0.1847 0.2588 0.0991
1000 0.0398 0.0025 0.0459 0.0034 0.1888 0.0546 0.1530 0.0343

LS 30 0.2547 0.1047 0.2859 0.1587 0.7485 1.0383 0.5199 0.4485
50 0.1942 0.0616 0.2226 0.0901 0.6971 0.8684 0.5079 0.4217

100 0.1378 0.0305 0.1566 0.0409 0.5153 0.4557 0.4128 0.2737
1000 0.0370 0.0025 0.0408 0.0034 0.4361 0.2897 0.3325 0.1615

Table 2  ML estimates for turtle data

�̂ Λ̂ Mean direction Res. length

0.7475 − 0.9513 1.49 (∼ 85.1)° 0.4978

Table 3  Summary of fits for turtle data

Model −L AIC KS (p) W
2

TWE 117.95 239.89 0.13 (0.12) 0.25
WE 120.65 245.29 0.13 (0.13) 0.33
 119.71 241.42 0.17 (0.02) 0.34
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quantile function and others are obtained. To estimate the 
unknown parameters of the introduced distribution, the max-
imum likelihood, the least squares and the weighted least 
squares estimators are obtained. By a conducted Monte Carlo 
simulation study, the efficiencies of these estimators are com-
paratively illustrated. The results of the Monte Carlo simula-
tion show that when the sample size increases, both Bias and 
MSE values decrease for all estimation methods. Finally, we 
apply the introduced distribution to a real-life dataset named 
turtles dataset. Using the log-likelihood, AIC and Watson’s 
statistic criteria, the modeling performance of the introduced 
distribution is compared with wrapped exponential distri-
bution and wrapped Lindley distribution. According to the 
obtained results, we can say that the TWE distribution is a 
better model to the turtle data than WE and  distributions.
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