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Abstract
In image processing, edge detection and image enhancement can make use of fractional differentiation operators, espe-

cially the Grünwald–Letnikov derivative. In this paper, we present a modified Grünwald–Letnikov derivative to enhance

more and detect better the edges of an image. Our proposed fractional derivative is very flexible and can be easily

performed. We present some examples to justify our suggested approach.
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Introduction

The fractional differential equation has a long history of

more than 300 years. Many mathematicians such as Euler,

Laplace, Abel, Liouville, Riemann, Grünwald, Letnikov

and Riez have worked in this field of mathematics. In 1974,

first conference on fractional calculus and its application

was held [1]. In Podlubny [2] wrote a book that provides

the basic theory of fractional differentiation, equations and

methods of their solution. Models based on partial differ-

ential equations and calculus of variations are also gener-

alized for fractional derivatives. For instance, fractional-

order partial differential equation-based formulation are

applicable for multi-scale nonlocal contrast enhancement

with texture preserving [3] and iterative learning control

with high-order internal models [4]. In image processing,

fractional calculus is exploited in image denoising using

the diffusion equation [5–8] and in image segmentation

with active contours using the fractional derivative within

energy functional [9]. Mathieu et al. [10] applied the

fractional differentiation for edge detection. Also, they

discussed on the texture enhancement of multi-scale frac-

tional mask.

Zhang et al. [11] have proposed fractional differential

mask based on the definition of Riemann–Liouville. For

fractional order of 1 to 2, they enhanced the texture and

edges in multi-scale by controlling the fractional order. For

denoising an image, Pu et. al applied fractional calculus

based on the definition of Riemann–Liouville [12]. Also,

Gao et al. in [13] applied an improved fractional differ-

ential operator based on a piecewise quaternion for image

enhancement. Furthermore, in [14], the generalized frac-

tional image denoising algorithm based on Srivastava–owa

fractional differential operator is introduced for image

denoising. The Grünwald–Letnikov derivative is also used

for image enhancement in [15, 16]. In Gao et al. [17] by

development of the real fractional derivative and its

applications in the signal processing extended the quater-

nion fractional differential (QFD) based on Grünwald–

Letnikov and applied it to edge detection of color image.

He et al. in [18] proposed a model based on the Grünwald–

Letnikov fractional differential operator that improves

denoising operator mask. The total coefficient of this mask

is not equal to zero, which means that its response value is

not zero in flat areas of the image. The total coefficient of

& A. Tavakoli

a.tavakoli@umz.ac.ir

H. Jalalinejad

hoda.jalali@iauk.ac.ir

F. Zarmehi

f.zarmehi@mail.vru.ac.ir

1 Department of Mathematics, Kerman Branch, Islamic Azad

University, Kerman, Iran

2 Mathematics Department, University of Mazandaran,

Babolsar, Iran

3 Mathematics Department, Vali-e-Asr University of

Rafsanjan, P. O. Box 518, Rafsanjan, Iran

123

Mathematical Sciences (2018) 12:205–210
https://doi.org/10.1007/s40096-018-0260-6(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s40096-018-0260-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40096-018-0260-6&amp;domain=pdf
https://doi.org/10.1007/s40096-018-0260-6


this mask is not equal to zero, which means that its

response value is not zero in flat areas of the image. In

2017, Jalab et al. proposed a new contrast enhancement

technique for medical images based on image entropy.

Their method enhances edges accurately while preserving

smooth textures [19]. We aim to redefine the Grünwald–

Letnikov derivative, in order to better show the rate of

changes of the derivative in image processing. In this

paper, we highlight the defects of Grünwald–Letnikov

derivative in image processing and based on them, we

present a new definition of Grünwald–Letnikov derivative

that is very flexible.

Preliminaries

In this section, we introduce some basic concepts which are

essential to our discussions in the next sections. Let us now

recall that the nth-order derivative of function f is defined

by:

f ðnÞðxÞ ¼ dnf

dxn
¼ lim

h!0

1

hn

Xn

r¼0

ð�1Þr n

r

� �
f ðx� rhÞ:

Accordingly, the Grünwald–Letnikov fractional derivative

for one variable function f is defined as follows [2]:

Da
G�Lf ðxÞ ¼ lim

h!0

1

ha

Xx�a
h½ �

r¼0

ð�1Þr a
r

� �
f ðx� rhÞ;

where

a
r

� �
¼ Cðaþ 1Þ

Cðr þ 1ÞCða� r þ 1Þ ;

and C is the gamma function.

Usually, an image can be defined as a two-dimensional

function f(x, y) where x and y are spatial coordinates. The

value of f(x, y) is called the color intensity of image at

point (x, y). In the field of image processing, the Grün-

wald–Letnikov derivative in two dimensions in the x-di-

rection can be defined as follows [15, 20]:

Da
G�Lfxðx; yÞ ¼ f ðx; yÞ � af ðx� 1; yÞ þ aða� 1Þ

2
f ðx� 2; yÞ:

ð1Þ

Similarly, the Grünwald–Letnikov derivative is defined in

y-direction. Hence, the Grünwald–Letnikov fractional

derivative can be defined by

Da
G�Lf ðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDa

G�Lfxðx; yÞÞ
2 þ ðDa

G�Lfyðx; yÞÞ
2

q
; ð2Þ

or

Da
G�Lf ðx; yÞ � jDa

G�Lfxðx; yÞj þ jDa
G�Lfyðx; yÞj: ð3Þ

The similarities and the differences of regular derivative

and Grünwald–Letnikov fractional derivative can be sum-

marized as follows:

1. For the region of an image I whose color intensities are

the same, the gradient of I is zero inside of the

region(not on the edge points), but it is nonzero for

Grünwald–Letnikov derivative. Furthermore, the more

the intensity is closer to white (255), the larger the

Grünwald–Letnikov derivative.

2. In edge pixels that gradient is positive (negative), the

Grünwald–Letnikov derivative is also positive (nega-

tive). However, the (absolute) value of Grünwald–

Letnikov derivative is usually larger than that of

regular gradient.

By presenting some examples, we show that the definition

of Grünwald–Letnikov derivative will arise some disor-

derliness in the application of derivative in image pro-

cessing. In the following examples for simplicity, we

consider 0\a� 1 and study the Grünwald–Letnikov

derivative in x-direction.

Example 1 Let f ðx� 1; yÞ ¼ f ðx� 2; yÞ ¼ f ðx; yÞ ¼ 250.

By (1) we get

Da
G�Lfxðx; yÞ ¼ 250 � a250 þ aða� 1Þ

2
250

¼ ð1 � aÞð2 � aÞ125;

that implies

0\Da
G�Lfxðx; yÞ\250:

In the special case a ¼ 1=2, we have Da
G�Lfxðx; yÞ ¼ 93:75.

Example 2 Let f ðx� 2; yÞ ¼ f ðx� 1; yÞ ¼ f ðx; yÞ ¼ 1.

We have

Da
G�Lfxðx; yÞ ¼ 1 � 1aþ aða� 1Þ

2
¼ ð1 � aÞð2 � aÞ=2:

Again, for 0\a� 1, we have

0�Da
G�Lfxðx; yÞ\1:

In Examples 1 and 2, the value of f(x, y) is constant in

the x-neighborhood of f(x, y), hence, we expect no change

or a few change of (fractional) derivative of f in x-direc-

tion. However, we see the value of Da
G�Lfxðx; yÞ severely

depends on the intensity of f rather than the difference of

f and their x-neighborhoods.

Example 3 Let f ðx� 2; yÞ ¼ f ðx� 1; yÞ ¼ 1 and

f ðx; yÞ ¼ 250. By computing the Grünwald–Letnikov

derivative, we obtain
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Da
G�Lfxðx; yÞ ¼ 250 � aþ aða� 1Þ

2
¼ 250 � að3 � aÞ=2:

For 0\a� 1, we have

249�Da
G�Lfxðx; yÞ\250;

and for a ¼ 1=2, we have Da
G�Lfxðx; yÞ ¼ 249:3750.

Example 4 Let f ðx� 2; yÞ ¼ f ðx� 1; yÞ ¼ 250 and

f ðx; yÞ ¼ 1. We get

Da
G�Lfxðx; yÞ ¼ 1 � 250aþ aða� 1Þ250

2
¼ 1 � 125að3 � aÞ;

that for 0\a� 1 we have

�249�Da
G�Lfxðx; yÞ\1:

For a ¼ 1=2, we have Da
G�Lfxðx; yÞ ¼ �155:2500.

In Examples 3 and 4, we observe that the difference of

f(x, y) and its x-neighborhoods are the same; however, the

Grünwald–Letnikov derivatives of f(x, y) in x-direction are

very different. The above examples show that Grünwald–

Letnikov derivative is sensitive to the intensity of the pixels

rather than the difference of the intensities.

According to these examples, the definition of Grün-

wald–Letnikov derivative should be modified in order to

better represent the rate of changes of the derivative.

Modified Grünwald–Letnikov derivative

In this section, we express a modified definition of Grün-

wald–Letnikov derivative. To this end, we first take

Mðx; yÞ ¼ 1

sn
minff ðx; yÞ; f ðx� 1; yÞ; f ðx� 2; yÞg;

where s� 255 is an integer number and 0� n� 1 is a real

number. The equation of the line passing through of two

points (0, M(x, y)) and (s, 0) is

Yðx; yÞ ¼ Mðx; yÞ s� Xðx; yÞ
s

� �
:

By substituting

Xðx; yÞ ¼ jf ðx; yÞ � af ðx� 1; yÞ þ aða� 1Þ
2

f ðx� 2; yÞj;

in the above equation, the value of Y(x, y) is obtained.

Now, we define the modified Grünwald–Letnikov deriva-

tive in x-direction as follows:

mD
a
G�Lfxðx; yÞ ¼

f ðx; yÞ � af ðx� 1; yÞ þ aða� 1Þ
2

f ðx� 2; yÞ
Yðx; yÞ þ 1

:

ð4Þ

In Eq. 4, the value 1 is added to Y(x, y) to avoid of van-

ishing the denominator. The coefficient 1
Yðx;yÞþ1

is thought

of as modifier parameters of Grünwald–Letnikov deriva-

tive. Moreover, it is important to note that for 0\n� 1,

lim
s!1

Yðx; yÞ ¼ 0:

This yields the following lemma;

Lemma 1 The modified Grünwald–Letnikov derivative

defined by (4) will be the same Grünwald–Letnikov as

defined by (1), if s ! þ1.

By (4), we get

mD
a
G�Lfxðx; yÞ ¼

snþ1A

hðs� jAjÞ þ snþ1
; ð5Þ

where h ¼ minff ðx; yÞ; f ðx� 1; yÞ; f ðx� 2; yÞg and

A ¼ Da
G�Lfxðx; yÞ.

Furthermore, by (5), it is seen that if s ¼ jAj; then the

regular and modified Grünwald–Letnikov derivatives will

be the same. By considering the parameters s and n, we

have two degree of freedom. In fact, the modified Grün-

wald–Letnikov derivative generally has a behavior

between the regular derivative and Grünwald–Letnikov

fractional derivative. Analogously, one can define the

modified Grünwald–Letnikov derivative in y-direction.

Hence, the modified Grünwald–Letnikov fractional

derivative can be defined by

mD
a
G�Lf ðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmDa

G�Lfxðx; yÞÞ
2 þ ðmDa

G�Lfyðx; yÞÞ
2

q
;

ð6Þ

or

mD
a
G�Lf ðx; yÞ � jmDa

G�Lfxðx; yÞj þ jmDa
G�Lfyðx; yÞj: ð7Þ

Now, we compute the modified Grünwald–Letnikov

derivative for the preceding examples. By (5), for Example

1, we have

0� mD
a
G�Lfxðx; yÞ\

250snþ1

250ðs� 250Þ þ snþ1
;

in which 0\a� 1. The special case a ¼ 1=2; s ¼ 255 and

n ¼ 1 yields mD
a
G�Lfxðx; yÞ ¼ 57:8725. For Example 2,

0� mD
a
G�Lfxðx; yÞ\

snþ1

ðs� 1Þ þ snþ1
\1;

in which 0\a� 1. For Example 3,

0\
snþ1

ðs� 249Þ þ snþ1
� mD

a
G�Lfxðx; yÞ\

snþ1

ðs� 250Þ þ snþ1
\1;

in which 0\a� 1. Finally, for Example (4), we have
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�249snþ1

ðs� 249Þ þ snþ1
� mD

a
G�Lfxðx; yÞ\

snþ1

ðs� 1Þ þ snþ1
\1;

in which 0\a� 1. The special case a ¼ 1=2; s ¼ 255 and

n ¼ 1 yields

mD
a
G�Lfxðx; yÞ ¼ �155:01;

that is approximately equal to the value of usual Grün-

wald–Letnikov derivative.

We observe that the multiplier 1
Yðx;yÞþ1

in the modified

Grünwald–Letnikov derivative moderates the value of the

derivative.

Numerical examples

In this section, we aim to demonstrate that the modified

Grünwald–Letnikov fractional derivative can be efficiently

applied for edge detection and image enhancement. We,

moreover, present a comparison between the modified and

original Grünwald–Letnikov derivatives for two prototype

image.

Example 5 (Edge detection). Consider Fig. 1a as an

original image. Figure 1b shows its Grünwald–Letnikov

derivative defined by (3) and Fig. 1c shows its modified

Grünwald–Letnikov derivative defined by (7). In both

Fig. 1b, c, we put a ¼ 0:5. Also, for modified Grünwald–

Letnikov derivative, s ¼ 255 and n ¼ 0:5 is selected. As it

is seen the modified Grünwald–Letnikov derivative shows

only the edges of the main figure while Grünwald–Let-

nikov derivative shows the whole of figure with low

intensity. Based on Lemma 1, as s tends to infinity, the

Grünwald–Letnikov derivative and its modified will be the

same.

Example 6 (Image enhancement). Figure 2 shows a gray-

scale image of an infant. Figures 3 and 4 show the

enhanced images of Fig. 2 by Grünwald–Letnikov deriva-

tive and modified Grünwald–Letnikov derivative with a ¼
0:2; 0:4; 0:6 and a ¼ 0:8, respectively. We considered s ¼
255 and n ¼ 0:5 for enhancing by modified Grünwald–

Letnikov derivative. As it is seen, the modified Grünwald–

Fig. 1 a Is an original image; b shows its Grünwald–Letnikov

derivative and c shows the modified Grünwald–Letnikov derivative

Fig. 2 The original image of an infant

Fig. 3 The Grünwald–Letnikov derivative of Fig. 2 with different

values of a
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Letnikov derivative gives a better quality in comparison

with the usual Grünwald–Letnikov derivative.

Example 7 Figure 5a shows an original image of Lena,

and Fig. 5b shows a regular derivative of it. It is computed

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðou
ox
Þ2 þ ðou

oy
Þ2

q
where u is the image of Lena. Figures 6

and 7 show the effect of Grünwald–Letnikov derivative

and its modified for a ¼ 0:2; 0:4; 0:6 and a ¼ 0:8, respec-

tively. For modified G� L derivative, we considered s ¼
255 and n ¼ 0:5. It is clear that the modified G� L

derivatives tends to regular G� L derivatives, as s tends to

infinity.

Conclusion

In order to better show the rate of change of derivative in

image processing, we need to redefine the Grünwald–Let-

nikov fractional derivative. We highlight the defects of the

Fig. 4 The modified Grünwald–Letnikov derivative of Fig. 2 with

different values of a

Fig. 5 a original image of ‘‘Lena’’ and it’s regular derivative

Fig. 6 The Grünwald–Letnikov derivative of image ‘‘Lena’’ with

different values of a

Fig. 7 The modified Grünwald–Letnikov derivative of image ‘‘Lena’’

with different values of a
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Grünwald–Letnikov derivative in image processing, next,

we present a new definition of Grünwald–Letnikov frac-

tional derivative that is very flexible. The proposed modi-

fied Grünwald–Letnikov can be efficiently employed in

different areas of image processing such as image

enhancement, edge detection and medical diagnostic.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.
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