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Abstract
The conventional data envelopment analysis suggests each decision-making unit selecting its most desirable weight.

Applying these weights lets the units achieve their maximum performance. But, the performance of different units is

achieved with different sets of weights. So, comparison and ranking of units on a common basis seems such an impossible

challenge. However, the flexibility in choosing weights will make more than one efficient unit to be claimed as an efficient

unit. In order to resolve these shortcomings, this paper proposes a method that only one common set of weights is obtained

through this method. Toward this end, firstly, the efficiency of each unit is calculated, and then, the units are ranked by the

efficiency scores earned from common weights. The weight restriction approach here not only generates positive weights

but also prevents weights dissimilarity. The production of strictly positive weights through the proposed model makes it

possible that no input and output variables are ignored.
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Introduction

Data envelopment analysis (DEA) is a powerful mathe-

matical programming method that measures the relative

performance of units with multiple inputs and outputs. The

conventional DEA models assess the best possible relative

efficiencies of decision-making units (DMUs). In DEA

standard programming, we would like to obtain a measure

of the ratio of summation of all weighted outputs to the

summation of all weighted inputs. The optimal input and

output weights are obtained by solving the mathematical

programming such that the efficiency of underevaluated

unit is maximized. Although the objective function maxi-

mizes efficiency, it is subjected to the constraint that all

efficiency measures must be smaller than or equal to one.

Because of the flexibility in choosing input and output’s

weights, they always have more than one efficient unit. In

order to solve this problem, many researchers proposed

some methods for ranking DMUs. Generally, the ranking

methods are classified into three groups. The first group of

ranking methods is super-efficiency method which was

introduced by Anderson and Peterson [3]. In this method-

ology, the unit under evaluation is deleted from the refer-

ence set. Infeasibility and instability are two fundamental

problems of the super-efficiency method, and due to these

problems; the application of this method has been restric-

ted. The super-efficiency method was expanded by many

researchers. Alternative researches can be found in Amir-

teimoori and Kordrostami [1] and [2], Chen [6], Xue and

Harker [27], Li et al. [11], and Seiford and Zhu [21]. The

second group of ranking method was the cross-efficiency

technique which was first developed by Sexton et al. [22].

There are two stages in cross-efficiency method. First, the

optimal weights of the unit under evaluation with con-

ventional Charnes et al. [5] (CCR) model are obtained.

This stage is called self-evaluation. Then, by applying the

optimal weights of self-evaluation stage, other DMUs will

be evaluated. This stage is called peer evaluation. Then,

cross-efficiencies are obtained by the optimal weights
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selected by all DMUs in the peer evaluation stage. Finally,

the average of the cross-efficiencies of each DMU is called

cross-efficiency score. This ranking method has many

advantages, and it also faces some problems. The main

problem of this method is the possibility of alternative

optimal solutions for weights in the first stage of evaluation

which may cause different cross-efficiency scores. Conse-

quently, different ranking for units will be at hand. This

subject has been developed by many researchers like Doyle

and Green [8], Dimitrov and Sutton [7], Obata and Ishii

[16], Liu and Peng [13], and Liang et al. [12]. The third

group of ranking method is common weights. This method

discusses the weights which are selected for evaluating and

ranking DMUs. As far as we are aware, conventional DEA

models let each DMU choose the most desirable weights in

order to achieve their own maximum performance. This

flexibility in selecting input and output weights often leads

to some problems. Common weights have been suggested

instead of variable weights to decrease the flexibility in

selecting input and output weights. Using common weights

makes it possible to discriminate units on a common basis.

Many approaches have been proposed to achieve a com-

mon set of weights. For example, refer to Roll et al. [20],

Roll and Golany [19], Liu and Peng [13], Kao and Hung

[10], Wang et al. [25] and Hatami-Marbini et al. [9] and

Noura et al. [15] and Ramezani-Tarkhorani et al. [17] and

Ramón et al. [18] and Wu et al. [26].

In this paper, a weight restriction approach has been

proposed to search one common set of weights. This

common set of weights is applied to evaluate the efficiency

of each DMU and then rank the DMUs with these obtained

efficiency scores. The proposed weight restriction approach

generates positive weights and, at the same time, prevents

weights dissimilarity. In addition, it reduces efficiency

scores and number of efficient units. The modern weight

restriction approach is expressed in two different schemes.

Firstly, the input/output weights are conjointly restricted.

Then, this view is extended, and the input/output weights

are restricted individually. Above all, suggested weight

restriction approach does not need initial information on

the input and output weights.

The rest of the paper has the following order. The next

section will present the traditional DEA method. ‘‘Weight

restriction approach’’ section represents alternative weight

restriction approach in the DEA literature, measures units’

efficiency, and then ranks DMUs, including two different

weight restriction schemes. ‘‘Numerical examples’’ section

gives two numerical examples, and conclusions are offered

in section ‘‘Conclusions.’’

Preliminaries

Suppose that there is a set of n DMUs, and each DMUj

(j = 1, 2, …, n) generates s different outputs using m

different inputs which are denoted as xij (i = 1, 2, …, m)

and yrj (r = 1, 2, …, s), respectively. For any DMUo

(o = 1, 2, …, n), the efficiency score is computed by the

following model called CCR model.

Max Effo ¼
Ps

r¼1 uryroPm
i¼1 vixio

s:t:
Xs

r¼1

uryrj �
Xm

i¼1

vixij � 0; j ¼ 1; . . .; n;

ur; vi � 0; for all r; i:

ð1Þ

If the optimal value of the objective function for DMUo

is equal to one, then the DMUo is efficient; otherwise, it is

inefficient. The standard CCR model has the unit invariant

property that is organized by Lovell and Pastor [14]. This

property makes it possible to normalize the weights. Thus,

there is a scale of data that causes model (1) to be equiv-

alent to the following model.

Max Effo ¼
Ps

r¼1 uryroPm
i¼1 vixio

s:t:

Xs

r¼1

uryrj �
Xm

i¼1

vixij � 0; j ¼ 1; . . .; n;

0� ur � 1; r ¼ 1; . . .; s

0� vi � 1; i ¼ 1; . . .;m:

ð2Þ

It can easily be shown that models (1) and (2) are

equivalent. It suffices to show this to assume that ur* and

vi* (i = 1, …, m, r = 1, …, s) are optimal solutions to

model (1), and we suppose that / is maximum of ur* and

vi* (i = 1, …, m, r = 1, …, s). Then, we divide the input/

output weights by /. The obtained answer gives a feasible

solution to model (2).

Comparing both models, it is found that the above

models are the same, but the nonnegative variables in

model (1) have been replaced with the bounded variables in

model (2). Model (2) assists in applying a modified CCR

model that prevents dissimilar weights. On the other hand,

model (1) allows each DMU to select the best weights in

order to maximize its performance score. This subject is

faced with some problems. For example, the performance

of different units will be achieved by different set of

weights. So, the comparison and ranking of units will not

be on the same base. Additionally, because of the flexibility

in choosing input and output weights, we always have more

than one efficient unit. This would lead us to the case that

all DMUs cannot be discriminated.
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Weight restriction approach

In this section, our weight restriction approach is handled

in two different schemes. First, we introduced a process

that does not distinguish between the selected input and

output weights. Then, this idea is developed, and the input/

output weights are restricted individually.

Weight restriction approach with restricting
input/output weights conjointly

In order to assess one common set of weight with no dif-

ference in input/output weights, the following model is

proposed. The model allows selecting common weights

through conjointly restricting the input and output weights

with a common bound. What is more, a common bound is

employed for input/output weights. The model is repre-

sented in the following format:

Min

Pn
j¼1 dj

a
ð3Þ

S:t:
Xs

r¼1

uryrj �
Xm

i¼1

vixij þ dj ¼ 0; j ¼ 1; . . .; n ð3� 1Þ

a� vi � 1; i ¼ 1; . . .;m ð3� 2Þ
a� ur � 1; r ¼ 1; . . .; s ð3� 3Þ
ur; vi; a� 0 for all i and r: ð3� 4Þ

As constraint (3-1) shows, the variable dj is denoted as

deviation variable or slack variable for each unit. Also, a
shows lower bound for input and output weights. The

constraints (3-2) and (3-3) force all these multipliers to

vary between two bounds: the lower bound a and the upper

bound 1. The objective function minimizes the summation

of deviation variable, i.e.,
Pn

j¼1 dj, and maximizes a

simultaneously. According to the concept of slack variable

in the DEA literature, the proposed objective function with

decreasing
Pn

j¼1 dj tries to minimize the summation of

deviations of all DMUs and at the same time, with

increasing a, attempts to search a positive lower bound for

common set of weights among all feasible multipliers.

Thus, the proposed weight restriction approach generates

positive weights and prevents weight dissimilarity. Nota-

bly, there is no need to have prior information about the

input and output weights for determining the bound in this

proposed approach. The important point is that the pro-

posed model, which restricts the weights jointly, gives

fewer efficient units compared with conventional CCR

model.

As it is clear, because of construction of model’s

objective function, model (3) is nonlinear. Furthermore, the

model can turn into linear programming with the Charnes

and Cooper [4] transformation.

The following theorem proves that the proposed weight

restriction approach is feasible and generates positive

weights.

Theorem 1 Model (3) is feasible and it generates positive

weights in optimality.

Proof Assume that in evaluating DMUo, DMUd is a ref-

erence unit with the CCR model. Thus, in evaluating

DMUd with model (2), we have: ur
d[ 0 and vi

d[ 0

(i = 1, …, m, r = 1, …, s). So, it can be concluded that

udr ; v
d
i ; a ¼ Mini;r udr ; v

d
i

� �
is a feasible solution for evalu-

ating DMUo by model (3) with a[ 0.

Weight restriction approach with restricting
input/output weight individually

The proposed weight restriction approach is now expanded

to a more general case. In this subsection, a linear formu-

lation is also proposed to determine positive optimal

weight for common set of weights among all feasible

multipliers. For this purpose, the input/output weights are

limited individually. The following formulation not only

determines positive common set of weights but also pre-

vents weights dissimilarity, simultaneously. The model is

formatted as:

Min

Pn
j¼1 dj

a
ð4Þ

S:t:
Xs

r¼1

uryrj �
Xm

i¼1

vixij þ dj ¼ 0; j ¼ 1; . . .; n ð4� 1Þ

wI � vi � 1; i ¼ 1; . . .;m ð4� 2Þ
wo � ur � 1; r ¼ 1; . . .; s ð4� 3Þ
wI � a ð4� 4Þ
wo � a ð4� 5Þ
wI ;wo; ur; vi; a� 0; for all r; i: ð4� 6Þ

The variable dj is the deviation variable or slack variable

for each DMU in the constraint (4-1). The constraint (4-2)

forces all input multiples to vary between the bounds wI

and 1 and also forces all output multiples to vary in-be-

tween the bounds wo and 1 in the constraint (4-3). The

constraints (4-4) and (4-5) limit lower bound of input and

output weights to the positive variable a. Similar to the idea

behind model (3), in this model (4), with minimizing
Pn

j¼1 dj and maximizing a in the objective function, one

common set of weights is searched. As it is mentioned

before, the objective function focuses on minimizing the

summation of deviation of all DMUs through
Pn

j¼1 dj, and
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at the same time, with maximizing lower bound of input

and output weights in the fraction’s denominator, the

model operates by decreasing the distance between wI and

wo with the corresponding upper bounds. Above all, the

model looks for the weights with the least dissimilarity.

As it is clear, model (4) is a nonlinear mathematical

programming. The optimal answer to model (4) is obtained

by the following change of variables:

r ¼ 1

a
; u�

r ¼ rur; v�
i ¼ rvi; d�

j ¼ rdj; w�
I

¼ rwI ; w�
0 ¼ rw0

The above transformation leads to the following linear

programming problem:

min
Xn

j¼1

d�
j ð5Þ

s:t:
Xs

r¼1

u�
r yrj �

Xm

i¼1

u�
r xij þ d�

j ¼ 0; j ¼ 1; . . .; n

w�
I � v�

i � r; i ¼ 1; . . .;m

w�
0 � u�

r � r; r ¼ 1; . . .; s

w�
I � 1

w�
0 � 1

w�
I ;w�

0 ; u�
r ; v�

i ; r� 0; 8i; 8r

Model (5) is the linear format of model (4). The fol-

lowing theorem proves that the above-proposed model (4)

is always feasible and generates positive weights.

Theorem 2 Model (4) is feasible, and it generates positive

weights in optimality.

Proof The proof of this theorem is similar to Theorem 1.

Numerical examples

In this section, the proposed weight restriction approach is

compared with Kao and Hung’s [10] models. Kao and

Hung’s [10] suggested three models using different dis-

tance function to produce common weights. Refer to Kao

and Hung paper [10] for more details.

Example 1

In that example, there are 17 forest areas in Taiwan with

four inputs and three outputs from which Taiwan’s forest

areas data are chosen from Kao and Hung [10]. The data

set including four inputs: budget, initial stocking, labor,

and land and three outputs: main product, soil conserva-

tion, and recreation are considered for measuring the effi-

ciency. The input/output data sets are listed in Table 1.

In order to shed a light on strength of the proposed

model, the proposed weight restriction model (4) and

mentioned Kao and Hung [10] approach are applied on

data from Table 1. The results are recorded in Table 2.

The last row in Table 2 depicts the results of our pro-

posed method (model 4), and the rest of the rows shows

three different results obtained from Kao and Hung [10]

method. Table 3 shows the efficiency scores of data set

from Table 1. The efficiency scores are calculated by CCR

model, Kao and Hung [10] models, and the weight

restriction approach proposed in this paper, respectively.

The notation Effnew is drawn for the proposed common set

of weights approach.

As mentioned before, Table 3 shows the efficiency score

of 17 DMUs calculated by five models. The second column

of Table 3 gives the CCR efficiency scores. It is clear that

there are nine efficient DMUs. However, it is difficult to

put rank for efficient units. Additionally, each unit has been

evaluated by its own weights. In order to resolve these

problems, Kao and Hung [10] suggested three common

weight DEA models. These three models are used to cal-

culate the efficiency of these 17 DMUs. The results are

recorded in the third, fourth, and fifth columns of Table 3.

The efficiency scores of the weight restriction approach

proposed in this paper are shown in the last column of

Table 3. It is clear that the number of efficient units is

dropped from nine to three in the proposed method.

Another strength of the proposed approach turns back to

efficiency scores. It is clear that the proposed model (4)

gives the least efficiency scores compared with other

Table 1 Data set

DMU x1 x2 x3 x4 y1 y2 y3

1 51.6 11.2 49.2 33.2 40.4 14.8 3166.7

2 85.7 123.9 55.1 108.4 43.5 173.5 6.4

3 66.6 104.1 257 13.6 139.7 115.9 0

4 27.8 107.6 14 146.4 25.4 131.7 0

5 51.2 117.5 32 84.5 46.2 144.9 0

6 36.0 193.3 59.5 8.2 46.8 190.8 822.9

7 25.8 105.8 9.5 227.2 19.4 120 0

8 123 82.4 87.3 98.8 43.3 125.8 404.6

9 61.9 99.7 33 86.3 45.4 79.6 1252.6

10 80.3 104.6 53.3 79 27.2 132.4 42.6

11 205.9 183.4 144.1 59.6 14 196.2 16.1

12 82.0 104.9 46.5 127.2 44.8 108.5 0

13 202.2 187.7 149.3 93.6 44.9 184.7 0

14 67.5 82.8 44.3 60.8 26 85 23.9

15 72.6 132.7 44.6 173.4 5.5 135.6 24.1

16 84.8 104.2 159.1 171.1 11.5 110.2 49

17 71.7 88.1 69.1 123.1 44.8 74.5 6.1
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methods. As the last row of Table 3 records, the average of

efficiency in model (4) is 0.724, while the average effi-

ciency is recorded as 0.910 in CCR model and 0.818 in

Kao and Hung [10] first model with P = 1. For the rest of

the two models of Kao and Hung [10] with P = 2 and

P = !, the average efficiency score is drawn as 0.818 and

0.788, respectively. The results show that the average of

efficiency scores in our approach is less than that in other

models. Therefore, our weight restriction approach along

with a common set of weights not only produces the strictly

positive weights but also prevents dissimilar weights. In

comparison with Kao and Hung approach [10], our weight

restriction approach, models (3) and (4), has another

strength, that is, there is no need to calculate the CCR

efficiency score. This clue makes the proposed method

more applicable than the existing Kao and Hung [10]

method.
Example 2

This example includes 12 flexible manufacturing systems

which are shown in Table 4. These data are chosen from

Table 2 Results of comparison

Model Budget Initial stocking Labor Land Main product Soil conservation Recreation

P = 1 1.097540 2.645978 0.000100 0.000100 0.608528 2.274926 0.008799

P = 2 1.227655 2.523662 0.000100 0.150043 0.153914 2.368929 0.012841

P = ! 0.062274 1.629378 0.838507 0.329658 0.830676 1.455490 0.005851

Model (4) 0.478000 0.703234 0.920025 0.110012 0.020782 1.00000 0.020782

Table 3 Efficiency scores and

the associated ranking (in

parentheses) calculated by CCR

ratio model and different

methods of common weights

DMUs CCR P = 1 P = 2 P = ! Effnew

1 1(1) 1(1) 1(1) 1(1) 0.9998(4)

2 1(1) 1(1) 1(1) 1(1) 0.9175(6)

3 1(1) 1(1) 0.998(3) 0.723(11) 0.3463(17)

4 1(1) 1(1) 0.992(4) 0.898(4) 1(1)

5 1(1) 0.974(5) 0.986(5) 1(1) 1(1)

6 1(1) 0.852(9) 0.912(6) 0.869(7) 0.988(5)

7 1(1) 0.924(6) 0.884(7) 0.743(9) 1(1)

8 1(1) 0.895(7) 0.870(9) 0.893(5) 0.6497(10)

9 1(1) 0.661(14) 0.669(14) 0.723(12) 0.723(8)

10 0.940(10) 0.872(8) 0.876(8) 0.876(6) 0.7891(7)

11 0.934(11) 0.639(15) 0.651(15) 0.657(13) 0.5370(13)

12 0.829(12) 0.745(10) 0.728(10) 0.759(8) 0.6445(11)

13 0.799(13) 0.622(17) 0.626(16) 0.645(14) 0.4933(14)

14 0.773(14) 0.714(12) 0.714(12) 0.740(10) 0.6232(12)

15 0.762(15) 0.724(11) 0.721(11) 0.641(15) 0.7209(9)

16 0.743(16) 0.699(13) 0.681(13) 0.466(17) 0.3994(16)

17 0.687(17) 0.631(16) 0.606(17) 0.590(16) 0.4357(15)

Average 0.910 0.821 0.818 0.788 0.7224

Table 4 Data set for twelve flexible manufacturing systems

FMS x1 x2 y1 y2 y3 y4

1 17.02 5 42 45.3 14.2 30.1

2 16.46 4.5 39 40.1 13 29.8

3 11.76 6 26 39.6 13.8 24.5

4 10.52 4 22 36 11.3 25

5 9.50 3.8 21 34.2 12 20.4

6 4.79 5.4 10 20.1 5 16.5

7 6.21 6.2 14 26.5 7 19.7

8 11.12 6 25 35.9 9 24.7

9 3.67 8 4 17.4 0.1 18.1

10 8.93 7 16 34.3 6.5 20.6

11 17.74 7.1 43 45.6 14 31.1

12 14.85 6.2 27 38.7 13.8 25.4
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Shang and Sueyoshi [23]. The data set includes two inputs:

annual operating and depreciation costs, and the floor space

requirements of each specific system, and four outputs: the

improvement qualitative benefits, work in process, average

number of tardy jobs, and average yield.

As before, Kao and Hung [10] and proposed method are

performed on this data set. The results are recorded in

Table 5. The results of Table 5 show that the third output

weight in Kao and Hung models is always zero, while the

weight of proposed model for all outputs is strictly positive.

(The results of Kao and Hung [10] models are taken from

the Sun et al. [24]).

Regarding Table 6, efficiency scores of data set from

Table 4 are recorded. The efficiency scores are calculated

by CCR model, the compromise solution approach by Kao

and Hung [10], and the weight restriction approach pro-

posed in this paper, respectively. The notation Effnew is

drawn for the proposed common set of weights approach.

It can be seen that proposed restriction approach reduced

the number of DEA-efficient DMUs from seven in CCR

model to one. So, the proposed weight restriction approach

gives fewer efficient units compared with the others mod-

els. Regarding the average of efficiencies, reported in the

last row of Table 6, the proposed method attains the least

value. The average score of efficiency is 0.973 in CCR;

0.931, 0.922 and 0.909 in Kao and Hung model for P = 1,

P = 2, and P = !, respectively; and 0.881 in our weight

restriction approach. The results imply that the average of

efficiency scores in our approach is less than that in other

models. Thus, the proposed weight restriction approach not

only leads to strictly positive weights but also prevents

dissimilar weights.

Conclusions

This paper proposed alternative weight restriction approach

to generate a common set of weights for all DMUs.

Besides, this common set of weights looks suitable for a

fair ranking of DMUs. Our proposed model not only gen-

erates strictly positive weights but also prevents weights

dissimilarity. The production of strictly positive weights by

the proposed model makes it possible that no input and

output variables are ignored. Furthermore, it reduces the

number of efficient units and gives less efficiency score.

However, there is no need for initial information on the

input and outputs weights in this approach. Admittedly, the

proposed method can be extended to other standard DEA

models with appropriate modifications. Equally, the pro-

posed weight restriction approach may suffer from exis-

tence of alternative optimal solution for common set of

weights, which can be investigated in future works.
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