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Abstract

A numerical scheme has been developed for solving the system of linear Fredholm integro-differential equations subject to
the mixed conditions using Laguerre polynomials. Using collocation method, the system of Fredholm integro-differential
equations has been transformed to the system of linear equations in unknown Laguerre coefficients, which leads to the
solution in terms of Laguerre polynomials. Moreover, the accuracy and applicability of the scheme have been compared
with Tau method and Adomian decomposition method that reveals the proposed scheme to be more efficient.
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Introduction

There are many branches of science, such as control theory
and financial mathematics, which leads to integro-differ-
ential equations (IDEs). In modern mathematics, IDEs
mostly occur in many applied areas including engineering,
physics and biology [1-6]. The resolution of many prob-
lems in physics and engineering leads to differential and
integral equations in bounded or unbounded domains. For
example, problems occur in coastal hydrodynamics and in
meteorology. The integrals appear in many physical con-
texts, containing the product of orthogonal polynomials or
special functions. For example, the wave functions of the
hydrogen as well as 2-, 3- and, in general, n-dimensional
harmonic oscillator encompassing Laguerre polynomials
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and the evaluation of integrals having the product of these
polynomials are essential [7].

In the fields of applied mathematics and scientific
computing, spectral methods [8-10] became popular
among researchers as a robust numerical tool. The
remarkable results are obtained, using the spectral meth-
ods, to solve the problems [11-13] in different fields of
natural sciences. Moreover, system of IDEs found in the
field of science and engineering, such as nano-hydrody-
namics [14], glass-forming process [15], dropwise con-
densation [16], wind ripples in the desert [17], modeling
the competition between tumor cell and the immune system
[18] and examining the noise term phenomenon [19, 20].
Since analytical solutions of such type of problems are hard
to determine, therefore the numerical methods are required.
Many researchers presented numerical methods for system
of IDEs, for instance the Tau method [21], Fibonacci
matrix method [22], Bessel matrix method [23, 24], Ado-
mian decomposition method (ADM) [25], modified
decomposition method [26], Galerkin methods with hybrid
functions [27-30, 38], differential transform method [31]
and the block pulse functions method [32].

The main objective of this paper is to study the concept
of the system of IDEs and manipulate the Laguerre matrix
method for solving the system of linear Fredholm IDEs.

The following system of linear Fredholm IDEs has been
considered
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Matrix relation

The matrix form of Laguerre polynomials L,(s) is as
follows

L"(s) = HS"(s) & L(s) = S(s)H", (4)
where
L(s) = (Lo(s)  Li(s)  La(s) Ly(s) ),

S(s) = (1 s 5

and

S O =hls) + [ D Kyl
k=0 g=1 a g=
p=1,2,....r, 0<a<s<b,
(1)
subject to
(_1)0<0> 0 0
0! 0
56 S0
CIEEG) SR SEG)
S S
"z_;(a;quﬁ (@) + 64 (B)) =ty p=0,1,..n—1,
qik:1,2, 7
@)

where u,(s) is the unknown and py . K, 4(s,1), f,(s) are
the known functions defined in the interval [a, b], the
kernel function K, ,(s, t) can be expanded using Maclaurin
series and also a]';q,

Taking u,(s) to be the approximate solution of Eq. (1) in
terms of truncated Laguerre series yields

bllg 4> Hip are real constants.

N

up(s) = Zocp,n L,(s), p=1,2,...,r, a<s<b, (3)
n=0

where ,, are the unknown Laguerre coefficients, to be

determined for n=0,1,2,...,N, and L,(s) be the
Laguerre polynomial defined by

L,(s) = Z(_k—l')k( 8 k)sk, 0<s<b<oo.

n—

The relation defined in Eq. (3) can be written in matrix
form, as

(ug(s)) =L(s)Aq, q=1,2,...,r,
where
Aq = (aq.,Oa Olg,1y s OCq.N)T-

or from Eq. (4)
(ug(s)) =S(s)H'Aq, q=1,2,...r. (5)

Also, the relation between the matrix S(s) and its first
derivative is

$W(s) = S(s)B, SO(s) =S(s), (6)
where

0 1 0 0

0 0 2 0
B - s

0 0 0 N

0 0 0 0

It follows from Egs. (4) and (6) that
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U (s) =" V(s)B=S(s)(BY, p=0,1,2,....n, ul(s) £i(s)
(7) u?) (s) f(s)
P (g)= | 2 -
u §)= ) f_ )
and thus () :
L?)(s) = S (s)H" = S(s)(B)’H", p=0,1,2,....n ul) (s) r(s)
(8) pri(s)  pia(s) oY, (s)
, Lo : : phi(s)  pha(s) 05 ,(s)
The following recurrence relation is obtained using P(s) — 21 22 2r
Egs. (5), (7) and (8) p(s) = : ,
uf(s) =LY (s)A, P pa() PL(5)
=S (HHTA b
) I I(s) = / K(s, t)u
=S(s)(BYH'A,, p=0,1,2,...,n,q=1,2,...,r. a
(9) K171(S7l) Klyz(s,l) Kl,,(s,t)
K> 1(s,1) K>5(s,1) K>, (s,1)
Hence, the matrices u’”)(s) can be expressed as K(s,t) = _ ,
#)(s) =S(s)(BYHA, p=0,1,2,... 10 : ' '
uf(s) =S(s)(BYHA, p=0.12...n, (10) Ko Kot Koot
where Ii(s)
" (s) A, e
(p) A :
uy (s) 2 :
P)(g) = 2 =
u (S) : Y A I Ir(S)
’4?)) (s) Ar and
S(s) 0 0 b r
- 0 S(s) 0 5) = / D Kyl t)ug(1). (12)
S(s) = . . ) ¢ g=l
6 0 S ) Using truncated Taylor and Laguerre series to approximate
(8)/ rr the kernel K, ,(s, 1) yields
B 0 0
_ 0 B 0 g
B= . and Kpq(s:1) Z) Z
N N
0 0 B rxr P q S t Z Z Lm
HT 0 0 m=0 n=0
_ 0 H' 0 where
H= . .
: 1 3"™K(0,0)
K =—— =0,1,2,..,N
0 0 HT B I R

Method of solution

The matrix form of the system defined in Eq. (1) is as
follows

Z P,( u@)

where

=f(s) +1(s), (11)

p,gq=0,1,2,....r

Equation (13) can be put into the matrix form, as

Kpa(s1) = S()K,S™(1), Kb, = (k). (14)
and
Kpg(s,1) = LKL L™(1), K. = (kl ) (15)

Using Eqgs. (5) and (15) in Eq. (12) to get the matrix form
of the integral part yields

’r @ Springer
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b r
(I,(s)) = / L(s)K) LT (1)S(t)H" A, dt
a 0

= Z / ' L(s)K! L{T)(1)S(1)H" A, (16)

I
~
&
Em\
()
>
<

q=0
such that
b
Q= [ L'(n)S(r)H"d:
b

b pititl _ gititl
S (1)S(r)dr = (my), =
ST s = (). my =
i,j=0,1,2,..,N.

M =

b

Using Eq. (4) in Eq. (16) leads to
(I,(s)) = > _S(s)H'K QA,. (17)
q=0

In order to determine the system of equations in matrix
form, replacing the collocation points defined by

b —
st:a—I—Tat, t=0,1,2,...,N, (18)

in Eq. (11), leads to

S R (s)ul (5)) = £(si) + X(s)
p=0

where

’r @ Springer

e P,,(SN)
f(s0)
f(s1)

f(sw)

I(SN)

Using the collocation points in Eq. (10) yields

u?(s;) =S(s,)BHA, t=0,1,2,...,N, 20)
p=0,1,2,...,r,
which can be written as
U = S(B)’HA,
where
S(s0)
g(S]
S = ] and
S(sw)
S(sr) 0 0
S(e 0 S(s:) 0 t=0,1,2,...,N,
)= : : , T op=0,1,2,...,r.
o0 . S/,

Substituting the collocation points in Eq. (17) leads to

(I(s)) = _S(s)H'K, QA,, 1=0,1,2,..,N,
q=0

p=0,1,2...r.
(21)

Similarly, substituting the collocation points into the
matrix I(s) of Eq. (11) and using Eq. (21) yields

I(s,) = S(s)HKQA, t=0,1,2,...,.N, p=0,1,2,...,r,
(22)

where
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I (Sz>
IZ(S[)
I(Sf) = . )
I(s;)
S(s,) 0 0
- 0 S(s,) 0
S(ST) = . )
0 0 S(Sl) rxr
HT 0 0
_ 0 H' 0
H= s
0 0 HT
K, K Ki,
Ky Ky K,
Kl - . )
K, K, K.,
Q 0 - 0 A
o 0 Q R 0 A,
Q= and A =
0o 0 .. Q A,

Thus, using Eq. (22) in I defined in Eq. (19) gives

I(S() )

I(s1) o
1=| | =SHKQA. (23)

I(sn)

Hence, from Eq. (19) the fundamental matrix equation of
the system defined in Eq. (1), using Egs. (20) and (23), is
obtained as under

S P,S(BY'H - SHK,Q|A = F. (24)
p=0

r(N+1) x r(N+1) and r(N 4 1) x 1 are the dimensions
of the respective matrices P,, S, (B)”, H, K;, Q and
A, F. Moreover, Eq. (24) is written in more instructive

form, as
WA =F, or (W;F), (25)

where

W = (W) = > _P,SB)H-SHKQ, m,n=12,..,r(N+1).

The conditions defined in Eq. (2) can be expressed in the
following matrix form

=
—

4} 1 (@) + Ll ()] = s

q=0
n—1 @ @
[azz,q”; (a) + bﬁ,quzq (b)} = s
q=0
n—1
@) + B 0)] = iy
q=0
or
n—1
[at? (@) + Bt (B)] =
q=0
n—1
a2 (@) + b (6] = o
q=0
n—1
[a;urq)(a) + b;uf‘”(b)} =1,
q=0
where
:up,() a[(;,q
Hpi alfyq
Hp = coag= :
Fpn=1/ w1 By nxl
bhg
By
bZ = : o p=12,..r
b’;71 4/ nxl
or briefly
n—1
[ (@) + b (b)] = 1, (26)
q=0
where

’r @ Springer
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a('I 0
0 a?,
ag = ] ,
O [l; rxr
1
bq 0 151
0 bf] 0 J
by = and u=
0 0 . b; rxr e/

Putting the values of 49 (a) and 4?9 (b) from Eq. (10) into
Eq. (26) yields

—_

n—

[a,S(a) + b,S(b)| (B)"HA = p. (27)

g=0
or briefly
VA = por (V;p), (28)
where

n—1
V=> laS(a)+b,S(b)](B)H

g=0

Thus, Eq. (28) is the matrix form of the conditions defined
in Eq. (2). Replacing the augmented matrix in Eq. (28) with
the augmented matrix in Eq. (25) yields

WA =F. (29)
By replacing the nr-rows of the matrix W, the augmented

matrix of the above system can be obtained as under
[23, 33-36]

It is not necessary to replace the last rows of W. For
instance, if the matrix W is singular, then the rows that are
linearly dependent (or have same factors) or all zeros are

replaced. If rank W=rank (W;F)=r(N+1), then
A = (W) 'F. Thus, u,(s) can be approximated by Eq. (3).
However, if |W| =0, then a particular solution may be
found; otherwise, the solution will not be possible.

Error analysis

Since Eq. (3) approximates the system defined in Eq. (1),
therefore substituting u,(s) by u,n(s), p=1,2,...,r in
Eq. (1), the resulting equation must be satisfied approxi-
mately, i.e., for s =s; € [a, b], i =0,1,2,...

i Zr: Ph (52 () = (1)

k=0 g=1
b r
—/ ZKpAq(si,t)upN(t)dt ~0,p=1,2,..,r
(31)

and E,(s;) < 107%, where k; is a nonnegative integer. If

EP(S,') =

max 107% = 107% (k positive integer) is prescribed, then
the truncation limit N is increased till the difference E,,(s;)
at each of the points becomes smaller than the prescribed
107*%[23, 36, 37]. For max 10~% #* 10*, the error can be
estimated by the following function

Wi w2 W1r(N+1) ; fi(s0)
; :
Wr.1 Wr2 Wrr(N+1) ; ﬁ(So)
; :
- - Wr(N—n+1),1 Wr(N—n+1),2 Wr(N—n+1),r(N+1) ; fr(SN—n)
W;F) = . 30
(W; F) V1,1 V12 V9r(N+1) ; Hio (30)
;
Vil Vr2 Vrr(N+1) ; Hypn—1
;
Var,1 Var2 Var,r(N+1) ) Ky n—1

’r @ Springer
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() = 33"k (1 () — ()

k=0 q=1

b r
- / D Ky (s, D)ug(1)dt 22 0,
a q=1

The error will be decreasing, if E,y(s) — 0, for suffi-
ciently large N.

Numerical examples

Following examples have been considered to examine the
reliability and efficiency of the proposed technique.

Example 1 Consider the system of Fredholm IDEs, as

1
WP (s) + ul (s) = 35 + f_g +8-— / 25t{uy (1) — 3uz (1) }dt
0

W (s) + 1 (s) = 215 + ‘g‘ _ /0 3(25 + ) {un (1) — 2ua(1) o,

0<s<1,
(32)
subject to the following mixed conditions
ui(0) +14"(0) = 1, (1) + (1) = 10, (33)

w(0) +u(0) =1, w(1)+uV(1)=7.

The analytical solutions are
u(s) = s> +2s — 1.

u(s) =3s>+1 and

p=12...r.

solutions  uy3(s) =35>+ 1 and uy3(s) =s° +25—1
which are exactly the same as the analytical one. Table 1
shows the numerical results obtained by the proposed
technique and their comparison with Tau method [21],
whereas Figs. 1 and 2 depict the absolute errors e; 3 and
ey3 at N = 3 for Example 1.

Example 2 Consider the system of Fredholm IDEs, as

u(l2> (s) = §+ /Ol{%ul(t) -l—%uz(t)}dt

5 2 (g2 2
uy(s):és—ﬁ—k/o {gul(t)—guz(t)}dt, 0<s<1,

(34)
subject to the following initial conditions
1 1
w(0) =0, uw(0) =3, w0 =0 1) ©0)=-5.
(35)

The analytical solution is u;(s) = % +$and uy(s) = 5° — 3.

Solving the system of equations for N = 3 by following

the procedure stated above yields the approximate solu-

tions u 3(s) = % + 5 and up3(s) = s — 5 which are exactly

the same as the analytical one. Numerical results obtained
by the proposed technique are shown in Table 2, while the
comparison of the maximum absolute errors of the pro-
posed technique with Adomian decomposition method [25]
is le(ur3)]lo =0, lle(u23)lloc =0 and
||6(M1,6)||Oo =0.2 x 10_6, He(uzﬁ)

|l = 0, respectively.

Solving the system of equations for N = 3 by following Example 3 Consider the system of Fredholm IDEs, as

the procedure stated above yields the approximate

Table 1 Numerical results for Example 1

s Exact Proposed Absolute errors Absolute errors
ui (s) u 3(s) e13(s) Tau method [21]

0 1 1 0 3 x 1071

0.2 1.12 1.12 0 2 x 107

0.4 1.48 1.48 0 1 x 107"

0.6 2.08 2.08 0 2 x 107

0.8 2.92 2.92 0 1 x 107

1.0 4 4 0 1 x 107

K Exact Proposed Absolute errors Absolute errors
u(s) ur3(s) ex3(s) Tau method [21]

0 -1 -1 0 3.1 x 1071

0.2 —0.592 —0.592 0 27 x 107

0.4 —0.136 —0.136 555112 x 107" 24 x 10714

0.6 0.416 0.416 1.11022 x 10716 23 x 1071

0.8 1.112 1.112 0 20 x 1071

1.0 2 2 0 2.0 x 1071

’r @ Springer
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1.0 7 ul(O) =0, uz(O) =0. (37)
The analytical solution is u;(s) = s> and ua(s) = s.
05 | Solving the system of equations for N = 2 by following
— the procedure stated above yields the approximate solu-
tions u1,(s) =s? and uyo(s) =s which are exactly the
same as the analytical one. Numerical results obtained by
— 012 — Ol 2 — Ol p — 018 ‘ 1} 0 the proposed technique are shown in Table 3, while the
' ' comparison of the maximum absolute errors of the pro-
posed technique with Adomian decomposition method [25]
sl s llewa)l =0 Je(w)lo=0  and
||€(I/t112())||0O =0.18 x 1076, ||e(1/t2_20)||0O =0.123 x 1075,
respectively.
Z10 I Example 4 Consider the system of Fredholm IDEs, as
375> 320s
Fig. 1 Absolute errors e 3(s) for N =3 ”52) (s) —su<21>(s) +2su;(s) = 253 —?‘FW‘F
1
Lax107 —|—/ {s%tuy (1) — stPuy(¢) }dt — 2su<11> (s)+ u(zz) (8) +ua(s)
: 1 0
[ 109 !
12X107° | P | —/ {stuy () + st?uy (1) }dt,
30 0
1L.X107' | 0<s<I,
(38)
8.x107"" |
subject to the following boundary conditions
-17 |
6.X10 w(0)=3, w()=2, w0)=1, wl)=1. (39
ax10"7} The analytical solution is u(s) =s>—2s+3 and
ur(s) = — s> +s+ 1.
2.x107"7
Solving the system of equations for N = 2 by following
TR R L T A ) Y - the procedure stated above yields the approximate solu-
0.2 0.4 0.6 0.8 1.0 . s O,
tions wujo(s) =s—2s+3 and wupa(s) =—s"+s+1
Fig. 2 Absolute errors e;3(s) for N = 3 which are exactly the same as the analytical one. Numer-
ical results obtained by the proposed technique are shown
in Table 4.
5 1
(1) N N N .
up(s) = E} + / {5 u () + g”z(t)}dt Example 5 Consider the system of Fredholm IDEs, as
; ' (36)
(s = ¢ + / (i (1) — w(1)}dt, 0<5<1,
0
subject to the following initial conditions
Table 2 Numerical results for Exact Proposed Absolute errors Exact Proposed Absolute errors
Example 2
ui (s) u 3(s) e13(s) u(s) uz3(5) e23(s)
0 0 0 0 0 0 0
0.2 0.086667 0.086667 0 — 0.092 — 0.092 0
0.4 0.213333 0.213333 0 — 0.136 — 0.136 0
0.6 0.38 0.38 0 — 0.084 — 0.084 0
0.8 0.586667 0.586667 0 0.112 0.112 0
1.0 0.833333 0.833333 0 0.5 0.5 0

ﬁ @ Springer
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Table 3 Numerical results for

Example 3 s Exact Proposed Absolute errors Exact Proposed Absolute errors
ui (s) ui2(s) e12(s) uy(s) ur2(5) e22(s)

0 0 0 0 0 0 0

0.2 0.04 0.04 0 0.2 0.2 0

0.4 0.16 0.16 0 0.4 0.4 0

0.6 0.36 0.36 0 0.6 0.6 0

0.8 0.64 0.64 0 0.8 0.8 0

1.0 1 1 0 1 1 0
Eil:;;eliumencal results for s Exact Proposed Proposed errors Exact Proposed Proposed errors

u (s) ui 2(s) e12(s) u(s) uz5(s) e22()

0 3 3 0 1 1 0

0.2 2.64 2.64 0 1.16 1.16 0

0.4 2.36 2.36 4.44089 x 10716 1.24 1.24 0

0.6 2.16 2.16 0 1.24 1.24 0

0.8 2.04 2.04 0 1.16 1.16 0

1.0 2 2 0 1 1 0
Eil:‘I;psleI\SIumerlcal results for s Exact Proposed Proposed Proposed

u(s) u; 3(s) uy 4(s) uy5(s)

0 0 —1.9984 x 1071 —1.33227 x 1071 2.3892 x 10713

0.2 0.198669 0.19869 0.198517 0.198669

04 0.389418 0.389516 0.388638 0.389419

0.6 0.564642 0.564618 0.563349 0.564646

0.8 0.717356 0.716132 0.717141 0.717369

1.0 0.841471 0.836195 0.846011 0.841529

s Exact Proposed Proposed Proposed

uy(s) uz3() uz.4(5) uy5(s)

0 1 1 1 1

0.2 0.980067 0.980214 0.978639 0.980066

0.4 0.921061 0.921711 0.917059 0.92106

0.6 0.825336 0.825775 0.83689 0.825337

0.8 0.696707 0.693689 0.783602 0.696719

1.0 0.540302 0.526737 0.8265 0.540404
Table 6 Maximum absolute errors for Example 5 u(12> (s) —s ug])(s) —u(s) = (s — 2) sin(s)

1

N > N > + / {scos(t)u (1) — ssin(t)uy () dt
eIN 5.27579 x 1073 4.53959 x 1073 5.80152 x 1073 0
ey 135651 x 1072 2.86198 x 107! 1.01691 x 10~ — 25l (5) + u5”) (5) + ua(s) = —2scos(s) (40)

1
+/ {sin(s) cos(#)u; () — sin(s) sin(¢)uy(¢) }dt,
0

0<s<1,

subject to the following initial conditions

w
’r @ Springer
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0.8F

—- ulzsin( )
0.6 bou,

N uyy,
04

A U s
0.2
P Y P P P Y |
0.2 0.4 0.6 0.8 1.0

Fig. 3 Comparison of u;(s) and u; y for N = 3,4,5
1.04

+u2:cos( )
0.8

0w,

0.6 1

Oy
04r A U5
021

AR (SN TR T SN (NN TR TR TR (NN TR SN SN (N S S S|

0.2 0.4 0.6 0.8 1.0

Fig. 4 Comparison of u,(s) and up y for N = 3,4,5

w(0)=0, u"0) =1, w0)=1, u"0)=0.
(41)

The analytical solution is  u(s) =sin(s) and

uy(s) = cos(s).
Solving the system of equations for N = 3,4,5 by fol-

lowing the procedure stated above, yields the approximate
solutions:

up3(s) = —1.9984 x 1071 + 15 — 8.88178 x 1071652
—0.1638055,

up3(s) = 1-3.33067 x 10~ '%s — 0.55> + 0.0267372s%,
and

up4(s) = —1.33227 x 1071 + s — 1.33227 x 101452
—0.19321453 + 0.03922485*,

Y4
ﬁ @ Springer

U 4(s) = 1 +8.52651 x 10~ "5 — 0.55> — 0.294265s°
+0.620765s*,
also

ur5(s) =2.3892 x 10713 + 15 + 4.01457 x 107137
—0.166728s> + 0.000337574s*
40.007919265°,

up5(s) = 1. — 8.08242 x 10~135 — 0.55> — 0.00030213s>
40.0431559s* — 0.00244974s°.

Numerical results are summarized in Tables 5, while 6
shows the maximum absolute errors for Example 5.
Comparison of exact and proposed solutions is shown in
Figs. 3 and 4 for N = 3,4 and 5, respectively.

Conclusion

In this paper, Laguerre operational matrix approach has been
manipulated to solve the system of linear Fredholm IDEs. The
scheme converted the system of IDEs, using Laguerre oper-
ational matrices, to a matrix equation that can be solved by
any suitable method. Comparison of the results with other
methods such as Tau method [21] and Adomian decomposi-
tion method (ADM) [25] reveals that the Laguerre approach
has more accuracy. In addition, to get the best approximating
solution of the system, the truncation limit N must be chosen
large enough. It is also to be mentioned that the method is
efficient to determine the solution in closed form, as well.
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