
ORIGINAL RESEARCH

A numerical approach for a nonhomogeneous differential equation
with variable delays

Mustafa Özel1 • Mehmet Tarakçı2 • Mehmet Sezer3

Received: 13 December 2017 / Accepted: 26 May 2018 / Published online: 5 June 2018
� The Author(s) 2018

Abstract
In this study, we consider a linear nonhomogeneous differential equation with variable coefficients and variable delays and

present a novel matrix-collocation method based on Morgan–Voyce polynomials to obtain the approximate solutions under

the initial conditions. The method reduces the equation with variable delays to a matrix equation with unknown Morgan–

Voyce coefficients. Thereby, the solution is obtained in terms of Morgan–Voyce polynomials. In addition, two test

problems together with error analysis are performed to illustrate the accuracy and applicability of the method; the obtained

results are scrutinized and interpreted by means of tables and figures.

Keywords Morgan–Voyce polynomials � Matrix method � Collocation method � Delay differential equation �
Variable delay

Introduction

In this paper, we consider nonhomogeneous differential

equation with variable delays in the form [3, 5, 10, 12,

23, 30, 37, 38].

y0 tð Þ ¼ PoðtÞ þ P1ðtÞyðtÞ þ
Xm

j¼2

PjðtÞy t � sjðtÞ
� �

ð1Þ

under the initial condition yðaÞ ¼ k, where the coefficients

PjðtÞ and the delays sj are continuous functions on the

interval 0� a� j� b and the delays are nonnegative,

sj tð Þ� 0 for t� a.

Delay differential equations of the type 1 arise in a

variety of applications including control systems, electro-

dynamics, mixing liquids, neutron transportation, popula-

tion models, physiological processes and conditions

including production of blood cells [1, 14, 23, 25,

27, 28, 34, 37].

In the case of bounded delays, many authors using

standard techniques [3, 10, 20, 27, 34, 37] have studied the

asymptotic behavior of solutions, the asymptotic stability

in equations and the existence of positive periodic solutions

of delay equations. However, most of the mentioned type

delay equations have not analytical and numerical solu-

tions; therefore, numerical methods are required to obtain

approximate solutions. For this purpose, by means of the

matrix method based on collocation points which have

been given by Sezer and coworkers [2, 6, 16, 17, 21,

26, 29, 36], we develop a novel matrix technique to find the

approximate solution of Eq. 1 under the initial condition

yðaÞ ¼ k in the truncated Morgan–Voyce series form

y tð Þ ffi yN tð Þ ¼
XN

n¼0

ynbnðtÞ; a� t� b ð2Þ

where yn; n ¼ 0; 1; . . .;N are coefficients to be determined;

bn; n ¼ 0; 1; . . .;N are the first kind Morgan–Voyce poly-

nomials defined by [11, 32, 33]

bn tð Þ ¼
Xn

j¼0

nþ j

n� j

� �
t j; n 2 N; a� t� b ð3Þ
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Here, the set of polynomials bn tð Þf g has the following

properties [11, 15, 19, 32]

1. The polynomials bn tð Þ defined by 3 are recursively

given by the relation

bn tð Þ ¼ t þ 2ð Þbn�1 tð Þ � bn�2 tð Þ; n� 2

with bo tð Þ ¼ 1 and bn tð Þ ¼ t þ 1.

2. The polynomials y ¼ bn tð Þ; n ¼ 0; 1; . . . are solutions

of the differential equation

t t þ 4ð Þy00 þ 2 t þ 1ð Þy0 � n nþ 1ð Þy ¼ 0:

3. The first four Morgan–Voyce polynomials of the first

kind are obtained from 3 as

bo tð Þ ¼ 1; b1 tð Þ ¼ t þ 1; b2 tð Þ ¼ t2 þ 3t þ 1;

b3 tð Þ ¼ t3 þ 5t2 þ 6t þ 1; . . .

Fundamental matrix relations

In this section, we compose the matrix relations of Eq. 1

and its solution Eq. 2. For this aim, we first write the

matrix form of the finite Morgan–Voyce series Eq. 2 as

y tð Þ ffi yN tð Þ ¼ b tð ÞY ð4Þ

so that

b tð Þ ¼ bo tð Þ; b1 tð Þ; . . .; bN tð Þ½ �
Y ¼ yo; y1; . . .; yN½ �T ;

then, by using the Morgan–Voyce polynomials Eq. 3, we

obtain the matrix form b tð Þ as follows

b tð Þ ¼ X tð ÞM ð5Þ

where

X tð Þ ¼ 1; t; t2; . . .; tN
� �

and

M ¼

0

0

� �
1

1

� �
2

2

� �
� � �

N

N

� �

0
2

0

� �
3

1

� �
� � �

N þ 1

N � 1

� �

0 0
4

0

� �
� � �

N þ 2

N � 2

� �

..

. ..
. ..

. ..
.

0 0 0 � � �
2N

0

� �

2
66666666666666664

3
77777777777777775

Besides, the relation between the matrix and its derivative

X0 tð Þ can be written in the form [13, 18, 22, 24]

X0 tð Þ ¼ X tð ÞT ð6Þ

where

T ¼

0 1 0 . . . 0

0 0 2 . . . 0

..

. ..
. ..

. ..
.

0 0 0 . . . N

0 0 0 . . . 0

2
6666664

3
7777775
:

Then, by means of the matrix relations Eqs. 4, 5, and 6, we

obtain

y tð Þ ffi yNðtÞ ¼ b tð ÞY
¼ X tð ÞMY

ð7Þ

and

y
0
tð Þ ffi y

0

NðtÞ ¼ X
0
tð ÞMY

¼ X tð ÞTMY
ð8Þ

By putting t ! t � sj tð Þ in Eq. 7, we gain the recurrence

relation [13, 18, 22, 24]

y t � sjðtÞ
� �

ffi yNðtÞ ¼ X t � sjðtÞ
� �

MY

¼ X tð ÞL �sjðtÞ
� �

MY
ð9Þ

so that

L sj tð Þ
� �

¼

0

0

� �
�sj tð Þ
� �0 1

0

� �
�sj tð Þ
� �1 2

0

� �
�sj tð Þ
� �2 � � �

N

0

� �
�sj tð Þ
� �N

0
1

1

� �
�sj tð Þ
� �0 2

1

� �
�sj tð Þ
� �1 � � �

N

1

� �
�sj tð Þ
� �N�1

0 0
2

2

� �
�sj tð Þ
� �0 � � �

N

2

� �
�sj tð Þ
� �N�2

..

. ..
. ..

. ..
.

0 0 0 � � �
N

N

� �
�sj tð Þ
� �0

2
66666666666666664

3
77777777777777775
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Note that the matrix X t � sjðtÞ
� �

can be written as

X t � sjðtÞ
� �

¼ X tð ÞL �sjðtÞ
� �

By substituting the relations Eqs. 7, 8, and 9 into Eq. 1, we

have the matrix equation

X tð ÞT � P1 tð ÞX tð Þ �
Xm

j¼2

Pj tð ÞX tð ÞL �sj tð Þ
� �

" #
MY

¼ Po tð Þ ð10Þ

and by placing the collocation points defined by

ti ¼ aþ b� a

N
i; i ¼ 0; 1; . . .;N:

in Eq. 10, the compact form of the obtained matrix equa-

tions system

XT � P1X �
Xm

j¼2

Pj tð Þ �X�L �sj
� �

" #
MY ¼ Po ð11Þ

where

X ¼

X toð Þ
X t1ð Þ
..
.

X tNð Þ

2
66664

3
77775
¼

1 to t2o � � � tNo

1 t1 t21 � � � tN1

..

. ..
. ..

. ..
.

1 tN t2N � � � tNN

2
66664

3
77775
;

Po ¼

PoðtoÞ
Poðt1Þ

..

.

PoðtNÞ

2

66664

3

77775
; �L �sj

� �
¼

L �sj toð Þ
� �

L �sj t1ð Þ
� �

..

.

L �sj tNð Þ
� �

2

666664

3

777775

Po ¼ diag PjðtoÞ;Pjðt1Þ; . . .;PjðtNÞ
� �

; j ¼ 1; 2; . . .;m

�X ¼ diag XðtoÞ;Xðt1Þ; . . .;XðtNÞ½ �;

Morgan–Voyce matrix method

The fundamental matrix Eq. 11 of Eq. 1 can be expressed

in the form

WY ¼ Po , W ; Po½ � ð12Þ

where

W ¼ wpq

� �
¼ XT � P1X �

Xm

j¼2

Pj tð Þ �X�L �sj
� �

" #
M

p; q ¼ 0; 1; . . .;N:

By using the relation Eq. 7, we obtain the corresponding

matrix form to the initial condition yðaÞ ¼ k as

UY ¼ k , U; Y½ � ð13Þ

such that

U ¼ XðaÞM ¼ u00; u01; . . .; u0N½ �

Consequently, in order to get the approximate solution of

Eq. 1 subject to yðaÞ ¼ k, we replace the row matrix in

Eq. 13 by the last row(or any row) of the augmented matrix

in Eq. 12; then, we obtain the result matrix

~W ; ~Po

� �
, ~WY ¼ ~Po ð14Þ

If rank ~W ¼ rank ~W ; ~Po

� �
¼ N þ 1, then we can write,

Y ¼ ~W
� ��1 ~Po. Thus the matrix, Y (thereby the Morgan–

Voyce coefficients yo; y1; . . .; yN) is uniquely determined;

thus Eq. 1 has a unique solution.

Error analysis

In this section, an error analysis will be presented for the

Morgan–Voyce polynomial solution in Eq. 16 with the

residual error function [4, 8, 9, 13, 21, 22, 28, 31, 36].

In addition, we will improve the Morgan–Voyce poly-

nomial solution yN tð Þ with the aid of the residual error

function.

Firstly, we consider the operator Eq. 1, under the initial

condition yðaÞ ¼ k,

L y tð Þ½ � ¼ gðtÞ

L yðtÞ½ � ¼ y0 tð Þ � PoðtÞ � P1ðtÞyðtÞ �
Xm

j¼2

PjðtÞy t � sjðtÞ
� �

:

ð15Þ

Here, yNðtÞ is the approximate solution of the problem and

satisfies the problem

L½yNðtÞ� ¼ gðtÞ þ RNðtÞ; a� t� b;

yNðtÞ ¼ k:

�
ð16Þ

Also, the residual function of the Morgan–Voyce polyno-

mial approximation yN tð Þis defined as

RNðtÞ ¼ L½yNðtÞ� � gðtÞ: ð17Þ

If we know the exact solution y tð Þ, then the error function

is calculated as the difference between the approximate and

the exact solutions defined by

eN tð Þ ¼ y tð Þ � yN tð Þ: ð18Þ

By using the Eqs. 15, 16, 17 and 18, we get the error

problem

L½eNðtÞ� ¼ L½yðtÞ� � L½yNðtÞ� ¼ �RNðtÞ:
eN að Þ ¼ 0:

ð19Þ
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By solving the error problem in Eq. 19 with the method

presented in Sect. 3, we get the approximation eN;MðtÞ to

eNðtÞ as follows

eN;MðtÞ ¼
XM

n¼0

a�nbnðtÞ; ðM�NÞ:

Consequently, by means of the polynomials yNðtÞ and

eN;MðtÞ, ðM�NÞ, we obtain the corrected Morgan–Voyce

polynomial solution yN;MðtÞ ¼ yNðtÞ þ eN;MðtÞ. Here,

eNðtÞ ¼ yðtÞ � yNðtÞ, EN;MðtÞ ¼ eNðtÞ � eN;MðtÞ ¼
yðtÞ � yN;MðtÞ and eN;MðtÞ denote the error function, the

corrected error function and the estimated error function,

respectively.

If the exact solution of Eq. 1 can not been known, then

the absolute errors eNðtiÞj j ¼ yðtiÞ � yNðtiÞj j, (a� ti � b)

are not computed. However, the absolute errors

eNðtiÞj j ¼ yðtiÞ � yNðtiÞj j, (a� ti � b) can be estimated by

using the absolute error function eN;MðtÞ
		 		.

Numerical examples

Example 1 Consider the differential equation with vari-

able delay t2 þ 1

y0ðtÞ ¼3t � t2 þ t2yðtÞ � yðt � t2Þ þ tyðt � t2 � 1Þ
0� t� 1

ð20Þ

subject to the initial condition yð0Þ ¼ �1. The exact

solution of this equation is yðtÞ ¼ t � 1. First of all, let us

determine the collocation points by the formula ti ¼ aþ
b�a
N

i; i ¼ 0; 1; . . .;N for a ¼ 0, b ¼ 1, and m ¼ 3;N ¼ 2.

Therefore the collocation points are obtained as

to ¼ 0; t1 ¼ 1
2
; t2 ¼ 1. By Eq. 11, the fundamental matrix

equation of this problem is written as

XT � P1X �
X3

j¼2

Pj tð Þ �X�L �sj
� �

" #
MY ¼ Po

where

Po ¼
0
5

4
2

2

664

3

775; P1 ¼
0 0 0

0
1

4
0

0 0 1

2

64

3

75; P2 ¼
�1 0 0

0 �1 0

0 0 �1

2

64

3

75; P3 ¼
0 0 0

0
1

2
0

0 0 1

2

64

3

75

X tð Þ ¼ 1 t t2
� �

T ¼
0 1 0

0 0 2

0 0 0

2
64

3
75; M ¼

1 1 1

0 1 3

0 0 1

2
64

3
75; X ¼

X 0ð Þ

X
1

2

� �

X 1ð Þ

2
6664

3
7775 ¼

1 0 0

1
1

2

1

4
1 1 1

2
64

3
75

�X ¼

X 0ð Þ 0 0

0 X
1

2

� �
0

0 0 X 1ð Þ

2

6664

3

7775 ¼
1 0 0 0 0 0 0 0 0

0 0 0 1
1

2

1

4
0 0 0

0 0 0 0 0 0 1 1 1

2

64

3

75

�L �s2ðtiÞð Þ ¼

1 0 0

0 1 0

0 0 1

1 �1

4

1

16

0 1 �1

2
0 0 1

1 �1 1

0 1 �2

0 0 1

2

6666666666666666664

3

7777777777777777775

; �L �s3ðtiÞð Þ ¼

1 �1 1

0 1 �2

0 0 1

1 �5

4

25

16

0 1 �5

2
0 0 1

1 �2 4

0 1 �4

0 0 1

2

6666666666666666664

3

7777777777777777775

:
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The augmented matrix of the fundamental matrix equation

is computed as
W ;Po½ � ¼

1 2 4

0:25 1:75 5:46875

�1 0 2

0

1:25

�1

							

2

64

3

75

Table 1 Numerical results of

the exact, approximate and

corrected solutions of

Example 2 for some N values

t N ¼ 3;M ¼ 4 N ¼ 4;M ¼ 5 N ¼ 12;M ¼ 13

Exact Appr. Corrected Appr. Corrected Appr. Corrected

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

0.1 1.22140 1.39581 1.20219 1.20219 1.22571 1.22140 1.22140

0.2 1.49182 1.75739 1.46663 1.46663 1.49689 1.49182 1.49182

0.3 1.82212 2.11993 1.79678 1.79678 1.82697 1.82212 1.82212

0.4 2.22554 2.51864 2.20151 2.20151 2.23024 2.22554 2.22554

0.5 2.71828 2.98872 2.69510 2.69510 2.72299 2.71828 2.71828

0.6 3.32012 3.56539 3.29724 3.29724 3.32478 3.32012 3.32012

0.7 4.05520 4.28383 4.03301 4.03301 4.05954 4.05520 4.05520

0.8 4.95303 5.17927 4.93292 4.93292 4.95683 4.95303 4.95303

0.9 6.04965 6.28689 6.03286 6.03286 6.05299 6.04965 6.04965

1 7.38906 7.64191 7.37414 7.37414 7.39236 7.38906 7.38906

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y(
t)

t

9

Exact

Approximation

Corrected

Fig. 1 Exact, approximate and

corrected solutions of

Example 2 for N ¼ 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y(
t)

t

1

2

3

4

5

6

7

8

9

Exact

Approximation

Corrected

Fig. 2 Exact, approximate and

corrected solutions of

Example 2 for N ¼ 4
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and the augmented matrix for initial condition is obtained

as

U; k½ � ¼ 1 1 1 j � 1½ �:

By using the procedure in Sect. 3, we obtain the approxi-

mate solution as

y2ðtÞ ¼ t � 1

which is the exact solution.

Example 2 Consider the differential equation with vari-

able delay t2

2y0ðtÞ � tyðtÞ þ te2t
2

yðt � t2Þ ¼ 4e2t; 0� t� 1

subject to the initial condition yð0Þ ¼ 1. The exact solution

of this equation is yðtÞ ¼ e2t. The fundamental matrix

equation is

XT � P1X � P2
�X�L �s2 tið Þð Þ½ �MY ¼ Po:

Table 2 Comparison of the

absolute errors and corrected

absolute errors of Example 2

t N ¼ 3;M ¼ 4 N ¼ 4;M ¼ 5 N ¼ 12;M ¼ 13

Appr. Corrected Appr. Corrected Appr. Corrected

0 7.99361e-15 6.21725e-15 3.10862e-15 1.02141e-14 2.02061e-14 4.97380e-14

0.1 1.74411e-01 1.92085e-02 1.92085e-02 4.30490e-03 5.60576e-11 2.89457e-12

0.2 2.65564e-01 2.51946e-02 2.51946e-02 5.06186e-03 5.52192e-11 2.88503e-12

0.3 2.97810e-01 2.53429e-02 2.53429e-02 4.85123e-03 5.51801e-11 2.87947e-12

0.4 2.93098e-01 2.40357e-02 2.40357e-02 4.69433e-03 5.49143e-11 2.87148e-12

0.5 2.70441e-01 2.31845e-02 2.31845e-02 4.71136e-03 5.42593e-11 2.86038e-12

0.6 2.45269e-01 2.28805e-02 2.28805e-02 4.66159e-03 5.29470e-11 2.80753e-12

0.7 2.28632e-01 2.21878e-02 2.21878e-02 4.33963e-03 5.04476e-11 2.68496e-12

0.8 2.26233e-01 2.01130e-02 2.01130e-02 3.79602e-03 4.58762e-11 2.45759e-12

0.9 2.37243e-01 1.67888e-02 1.67888e-02 3.34318e-03 3.76135e-11 2.08455e-12

1.0 2.52855e-01 1.49208e-02 1.49208e-02 3.29924e-03 2.63132e-11 1.53477e-12

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)t(e

t

Absolute Error

Corrected Absolute Error

Fig. 3 Comparison of the

absolute error with the corrected

absolute error for N ¼ 3

0

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)t(e

t

Absolute Error

Corrected Absolute Error0.04

0.03

0.02

0.01

Fig. 4 Comparison of the

absolute error with the corrected

absolute error for N ¼ 4
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After the collocation points substituted into this matrix

equation, we solve the system and we obtain the solutions

in the form 4 of Example 2 for N ¼ 3; 4; 12 in the interval

0; 1½ � Table 1.

Now, we will give the exact, approximation, and cor-

rected solutions of Example 2 for N ¼ 3; 4 in Figs. 1 and

2, respectively.

The absolute and corrected errors of Example 2 in

Table 2 are compared for N ¼ 3; 4 in Figs. 3 and 4,

respectively.

Example 3 Consider the delay differential equation having

variable delays ln t þ 1ð Þ and t2

Table 3 Numerical results of

the exact, approximate and

corrected solutions of

Example 3 for some N values

t N ¼ 3;M ¼ 4 N ¼ 4;M ¼ 5 N ¼ 12;M ¼ 13

Exact Appr. Corrected Appr. Corrected Appr. Corrected

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

0.1 0.90484 0.90675 0.90500 0.90500 0.90485 0.90484 0.90484

0.2 0.81873 0.82159 0.81894 0.81894 0.81874 0.81873 0.81873

0.3 0.74082 0.74401 0.74103 0.74103 0.74083 0.74082 0.74082

0.4 0.67032 0.67350 0.67052 0.67052 0.67033 0.67032 0.67032

0.5 0.60653 0.60956 0.60672 0.60672 0.60654 0.60653 0.60653

0.6 0.54881 0.55168 0.54900 0.54900 0.54882 0.54881 0.54881

0.7 0.49659 0.49936 0.49677 0.49677 0.49660 0.49659 0.49659

0.8 0.44933 0.45209 0.44950 0.44950 0.44934 0.44933 0.44933

0.9 0.40657 0.40937 0.40673 0.40673 0.40658 0.40657 0.40657

1 0.36788 0.37069 0.36803 0.36803 0.36789 0.36788 0.36788

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y(
t)

t

0.3

Exact

Approximation

Corrected

Fig. 5 Exact, approximate and

corrected solutions of

Example 3 for N ¼ 3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y(
t)

t

0.3

Exact

Approximation

Corrected

Fig. 6 Exact, approximate and

corrected solutions of

Example 3 for N ¼ 4
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y0ðtÞ ¼ t2 þ t � 1
� �

e�t � ty t � ln t þ 1ð Þð Þ � e�t2y t � t2
� �

þ yðtÞ; 0� t� 1

subject to the initial condition yð0Þ ¼ 1. The exact solution

of this equation is yðtÞ ¼ e�t. The fundamental matrix

equation is

XT � P1X � P2
�X�L �s2 tið Þð Þ � P3

�X�L �s3 tið Þð Þ½ �MY ¼ Po:

After the collocation points substituted into this matrix

equation, we can solve the system and we obtain the

Table 4 Comparison of the

absolute errors and corrected

absolute errors of Example 3

t N ¼ 3;M ¼ 4 N ¼ 4;M ¼ 5 N ¼ 12;M ¼ 13

Appr. Corrected Appr. Corrected Appr. Corrected

0 0 0 2.22045e-16 2.22045e-16 4.44089e-16 4.44089e-16

0.1 1.91653e-03 1.57584e-04 1.57584e-04 1.15985e-05 1.16573e-13 2.98650e-14

0.2 2.86131e-03 2.06131e-04 2.06131e-04 1.35662e-05 1.13909e-13 2.95319e-14

0.3 3.19084e-03 2.07981e-04 2.07981e-04 1.30496e-05 1.12577e-13 2.89768e-14

0.4 3.17959e-03 1.97746e-04 1.97746e-04 1.25881e-05 1.09690e-13 2.83107e-14

0.5 3.02786e-03 1.90112e-04 1.90112e-04 1.24366e-05 1.05804e-13 2.74225e-14

0.6 2.86876e-03 1.86905e-04 1.86905e-04 1.21434e-05 1.01363e-13 2.64233e-14

0.7 2.77470e-03 1.83479e-04 1.83479e-04 1.14580e-05 9.62008e-14 2.50355e-14

0.8 2.76306e-03 1.74494e-04 1.74494e-04 1.06297e-05 9.02611e-14 2.35367e-14

0.9 2.80153e-03 1.59153e-04 1.59153e-04 1.01563e-05 8.32667e-14 2.20934e-14

1 2.81276e-03 1.45931e-04 1.45931e-04 1.00352e-05 7.82152e-14 1.96509e-14
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Fig. 7 Comparison of the

absolute error with the corrected

absolute error for N ¼ 3

0

1

2

3
x 10 -4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e(
t)

t

Absolute Error

Corrected Absolute Error

Fig. 8 Comparison of the

absolute error with the corrected

absolute error for N ¼ 4
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Table 5 Numerical results of

the Exact, Present and HTL

solutions of Example 4 for N ¼
6 value

t Exact Present Abs. error HTL Abs. error

0.0 1.0000000 1.0000000 5.55112e-15 1.000000067 6.70000e-08

0.2 0.8187308 0.8187339 3.10453e-06 0.807836989 1.08938e-02

0.4 0.6703200 0.6703221 2.03288e-06 0.649394632 2.09254e-02

0.6 0.5488116 0.5488127 1.09160e-06 0.529079726 1.97319e-02

0.8 0.4493290 0.4493294 4.48652e-07 0.436772222 1.25567e-02

1.0 0.3678794 0.3678793 1.14014e-07 0.361610346 6.26909e-03

1.2 0.3011942 0.3011936 5.72331e-07 0.298780813 2.41340e-03

1.4 0.2465970 0.2465960 9.17880e-07 0.249314192 2.71723e-03

1.6 0.2018965 0.2018953 1.22873e-06 0.212885438 1.09889e-02

1.8 0.1652989 0.1652975 1.43489e-06 0.173619567 8.32068e-03

2.0 0.1353353 0.1353338 1.44145e-06 0.078902496 5.64328e-02
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Fig. 9 Comparison of the exact,

present and HTL solutions of

Example 4 for N ¼ 6 value
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1; 2; . . .; 100 for Examples 2, 3
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solutions in the form 4 of Example 3 for N ¼ 3; 4; 12 in

the interval 0; 1½ � Table 3.

All exact, approximation, and corrected solutions of

Example 3 for N ¼ 3; 4 are given in Fig. 5 and 6, respec-

tively. The absolute and corrected errors of Example 3 in

Table 4 are compared for N ¼ 3; 4 in Figs. 7 and 8,

respectively.

Example 4 Consider the following delay differential

equation [7] having variable delay ln t2 þ 1ð Þ
y0ðtÞ ¼ t2 þ 1

� �
e�t � y t � ln t2 þ 1

� �� �
� yðtÞ; 0� t� 2

subject to the initial condition yð0Þ ¼ 1. The exact solution

of this equation is yðtÞ ¼ e�t.

Similarly, we can solve this problem by present method

and we obtain the solutions in the form 4 of Example 4 for

N ¼ 6 in the interval 0; 2½ �. Then, we also compare the

present solutions and Hybrid Taylor-Lucas Method [7]

(HTL) solutions in Table 5. The present method has been

shown to be suitable as graphically for nonhomogeneous

differential equation with variable delays in Fig. 9.

In order to better define the solution space of the prob-

lems of Examples 2, 3 and 4 described above, the N value

has been scanned up 1 to 100. The root-mean-square error

(RMSE) value of the solution obtained for each N value is

calculated and shown in Fig. 10. When N[ 12, the RMSE

values of the solutions of both problems are oscillated

between 10�10 and 10�16. The reason of these oscillations

is the truncation errors in the calculations.

Conclusion

A new approach using the Morgan–Voyce polynomials to

solve numerically the first-order nonhomogeneous differ-

ential equations with variable delays is presented in this

study. An error analysis technique based on residual

function is also developed our problems. If the exact

solution of the problem is not known, by using this tech-

nique it is possible to estimate the error function and also to

reduce the error due to the residual function. It is seen that,

the accuracy improves, when N is increased. To compute

our solutions and error functions, we have written a code in

Matlab and calculated all computations by means of this

code.

Consequently, the present method has been shown to be

convenient, reliable and effective for solving the first-order

nonhomogeneous differential equation with variable

delays.
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Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted
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link to the Creative Commons license, and indicate if changes were

made.
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