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Abstract
This paper deals with the estimation of the stress-strength reliability parameter R ¼ PðY\XÞ, when X and Y are inde-

pendent random variables, where X and Y have inverted gamma distribution. The maximum likelihood estimator and the

approximate maximum likelihood estimator of R are obtained. The Bayesian estimation of the reliability parameter has

been also discussed under the assumption of independent gamma prior, squared error loss and Linex error loss functions.

Finally, two real data applications are given for showing the flexibility and potentiality of the inverted gamma distribution.

Keywords Bayes estimator � Maximum likelihood estimator � Inverted exponential distribution � Inverted gamma

distribution � Stress-strength reliability parameter
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Introduction

In statistical literature the gamma distribution has been the

subject of considerable interest, study, and applications for

many years in different areas such as medicine, engineer-

ing, economics and Bayesian analysis. In Bayesian analysis

it is used as the conjugate prior for the variance of a normal

distribution. Although ample information about gamma

distribution is available, little appears to have been done in

the literature to study the distribution of the inverse gamma

(IG). For example, Gelen and Leemis [7] studied the

inverse gamma as a survival distribution. Gelman [8] stu-

did inverse gamma distribution as a prior distributions for

variance parameters in hierarchical models. Llera and

Beckmann [14] introduced five different algorithms based

on method of moments, maximum likelihood and Baysian

to estimate the parameters of inverted gamma distribution.

Abid and Al-Hassany [1] studied maximum likelihood

estimator, moments estimator, percentile estimator, least

square estimator, and weighted least square estimator the

parameters of inverted gamma distribution. The inverted

gamma distribution is a two-parameter family of continu-

ous probability distributions on the positive real line which

belongs to the exponential family and always have a

upside-down bathtub shaped hazard function.

A random variable X is said to have a gamma distri-

bution with parameters að[ 0Þ and bð[ 0Þ, denoted by

X�Gaða; bÞ, if its probability density function (pdf) is

given by

f ðxÞ ¼ ba

CðaÞ xa�1e�bx; x[ 0;

where Cð:Þ is gamma function. If Y ¼ 1=X, then the pdf of

Y is given by

f ðyÞ ¼ ba

CðaÞ y�a�1e�b=y; y[ 0: ð1Þ

A random variable Y with pdf (1) is said to have an

Inverted gamma distribution with shape parameter að[ 0Þ
and scale parameter bð[ 0Þ, denoted by Y � IGða; bÞ. The
cumulative distribution function (cdf) of Y are given as:

FXðxÞ ¼
c a; b

x

� �

CðaÞ ¼ I a;
b
x

� �
; x� 0; a[ 0; b[ 0; ð2Þ
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where cð:; :Þ and I(., .) are lower incomplete gamma

function and regularized incomplete gamma function

respectively. If a ¼ 1 the distribution of Y is named

inverted exponential distribution and denoted by

Y � IEDðbÞ. Thus the pdf and cumulative distribution

function (cdf) of Y are given as:

f ðyÞ ¼ by�2e�b=y; y[ 0; b[ 0; ð3Þ

FðyÞ ¼ e�b=y; y[ 0; b[ 0: ð4Þ

Let X and Y are the independent random variables. Then

the stress-strength reliability R is calculated as:

R ¼ PðX[ YÞ

¼
Z þ1

0

Z x

0

f ðx; yÞdydx

¼
Z þ1

0

Z x

0

fYðyÞdy
� �

fXðxÞdx

¼
Z þ1

0

FYðxÞfXðxÞdx:

The estimation of stress-strength parameter plays an

important role in the reliability analysis. For example, if

X is the strength of a system which is subjected to stress Y ,

then the parameter R measures the system performance

which is frequently used in the context of mechanical

reliability of a system.

It seems that Birnbaum and McCarty [5] was the first

paper with R in its title. They obtained a non-parametric

upper confidence bound for R. There are several works on

the inference procedures for R based on complete and

incomplete data from X and Y samples. We refer the

readers to Kotz et al. [11] and references therein for some

applications of R. This book collects and digests theoretical

and practical results on the theory and applications of the

stress–strength relationships in industrial and economic

systems up to 2003. Kundu and Raqab [12] considered the

estimation of the stress-strength parameter R, when X and

Y are independent and both are three parameter Weibull

distributions.

Among some works about stress-strength reliability

based on records, Baklizi [2, 4] studied point and interval

estimation of the stress-strength reliability using record

data in the one and two parameter exponential distribu-

tions. Baklizi [3] considered the likelihood and Bayesian

estimation of stress-strength reliability using lower record

values from the generalized exponential distribution.

Also in the literature the estimation of R in the case of

Weibull, exponential, Inverted exponential, Generalized

Lindley, generalized exponential and many other distribu-

tions has been obtained. Some of the recent work on the

stress-strength model can be seen in [13, 16–18]. Recently

Singh et al. [19] consider the estimation of the parameter

R when X and Y are independent inverted exponential

random variables.

In this paper we let X� IGða1; b1Þ and Y � IGða2; b2Þ,
also X and Y are the independent random variables. Then,

the parameter R is calculated as:

R ¼
Z þ1

0

c a2;
b2
x

� �

Cða2Þ
� ba11
Cða1Þ

� x�a1�1e
�b1
x dx

¼ ba11
Cða1ÞCða2Þ

Z þ1

0

c a2;
b2
x

� �
x�a1�1e

�b1
x dx:

ð5Þ

From the above, we observed that parameter R is the

function of parameters a1, a2, b1 and b2. Therefore, for
maximum likelihood estimate (MLE) of R, we need to

obtain the MLEs of a1, a2, b1 and b2. In especial case let

a2 ¼ 1 then X� IGða1; b1Þ and Y � IEDðb2Þ, also X and Y

are the independent random variables. So the parameter R

(denoted R1) is calculated as;

R1 ¼
ba11

Cða1Þ

Z þ1

0

x�a1�1 expð�ðb1 þ b2Þ=xÞdx

¼ b1
b1 þ b2

� �a1

:

ð6Þ

Maximum likelihood estimation for a and b

Let x1; x2; � � � ; xn are independent observation from

IGða; bÞ. Then, the log-likelihood function of a, b is given

by

ln Lða; bÞ ¼ ‘ða; bÞ ¼ na ln b� n lnCðaÞ

� ðaþ 1Þ
Xn
i¼1

ln xi � b
Xn
i¼1

1

xi
:

ð7Þ

Differentiating (7) with respect to a and b and equating the

derivative to zero, we get the following normal equations

olða; bÞ
oa

¼ n ln b� nwðaÞ �
Xn
i¼1

ln xi ¼ 0; ð8Þ

olða; bÞ
ob

¼ na
b
�
Xn
i¼1

1

xi
¼ 0; ð9Þ

where wðaÞ ¼ o
oa lnCðaÞ ¼

C0ðaÞ
CðaÞ is digamma function which

can be approximate by [9]

wðaÞ� lnðaÞ � 1

2a
� 1

12a2
þ 1

120a4
� 1

252a6
þ ::: ð10Þ

From Eq. (9) we have b ¼ naPn

i¼1

1
xi

. By replacing it in (8), we

obtain
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lnðaÞ � wðaÞ ¼ 1

n

Xn
i�1

ln xi þ ln
Xn
i�1

1

xi

 !
� lnðnÞ:

By approximating wðaÞ � lnðaÞ � 1
2a from (10), we obtain

ba � 2

n

Xn
i¼1

ln xi þ 2 ln
Xn
i¼1

1

xi

 !
� 2 ln n

" #�1

; bb ¼ nbaPn
i¼1

1
xi

:

ð11Þ

From equation (10) if we consider wðaÞ � ln a� 1
2a � 1

12a2

another approximate of a is obtained, as follows

ba �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
4 1

n

Pn

i¼1
ln xiþln

Pn

i¼1

1
xi

� �
�ln n

� �

3

s

4 1
n

Pn
i¼1 ln xi þ ln

Pn
i¼1

1
xi

� �
� ln n

� � :

Maximum likelihood estimation for R

The main aim of this section is to derived the mle of R and

R1 in (5) and (6).

Now let x1; x2; . . .; xn and y1; y2; . . .; ym are two inde-

pendent observations from IGaða1; b1Þ and IGaða2; b2Þ,
respectively. Then, the log-likelihood function of a1, a2 ,

b1 and b2 is given by

‘ða1; b1; a2; b2Þ ¼ ln Lða1; b1; a2; b2Þ
¼ na1 lnb1 � n lnCða1Þ

� ða1 þ 1Þ
Xn
i¼1

ln xi � b1
Xn
i¼1

1

xi

þ ma2 ln b2 � m lnCða2Þ

� ða2 þ 1Þ
Xm
j¼1

ln yj � b2
Xm
j¼1

1

yj
:

ð12Þ

Differentiating (12) with respect to a1, a2, b1 and b2 get the
following normal equations

o‘

oa1
¼ n ln b1 � nwða1Þ �

Xn
i¼1

ln xi ¼ 0;

o‘

ob1
¼ na1

b1
�
Xn
i¼1

1

xi
¼ 0;

o‘

oa2
¼ m ln b2 � mwða2Þ �

Xm
j¼1

ln yj ¼ 0;

o‘

ob2
¼ ma2

b2
�
Xm
j¼1

1

yj
¼ 0:

Similar to previous section the MLE of a1, a2, b1 and b2
are given by

cb1 ¼ n ba1Pn
i¼1

1
xi

; cb2 ¼ m ba2Pn
i¼1

1
yi

;

ba1 � 2

n

Xn
i¼1

ln xi þ 2 ln
Xn
i¼1

1

xi

 !
� 2 ln n

" #�1

;

ba2 � 2

m

Xn
j¼1

ln yj þ 2 ln
Xm
j¼1

1

yj

 !
� 2 lnm

" #�1

:

Hence, using the invariance properties of MLEs, the MLE

of the parameters R and R1 are given by

bR ¼
cb1 ba1

Cð ba1ÞCð ba2Þ
Z þ1

0

c ba2 ;
cb2
x

 !
x�ba1�1e

�bb1
x dx; ð13Þ

and

cR1 ¼
cb1

cb1 þcb2

 !ba1
: ð14Þ

Bayes estimation

In this section, we have developed the Bayesian estimation

procedure for the estimation of parameter R from inverted

gamma and inverted exponential distributions assuming

independent gamma priors for the unknown model

parameters. Let X1; :::;Xn � IGða; b1Þ and

Y1; :::; Ym � IGð1; b2Þ ¼ IEDðb2Þ, where the two samples

are independent. Also let a is known, b1 �Gaða; bÞ and

b2 �Gaðc; dÞ where a, b, c and d are known. Since b1 and
b2 are independent, then the joint prior distribution of b1
and b2 is given by

pðb1; b2Þ ¼
badc

CðbÞCðbÞ b
a�1
1 bc�1

2 expð�bb1 � db2Þ

_ ba�1
1 bc�1

2 exp �bb1 � db2ð Þ:

Therefore, the joint posterior distribution of b1 and b2
given data is given by
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pðb1; b2jx; yÞ / Lðx; yjb1; b2Þ � pðb1; b2Þ

/
Yn
i¼1

ba1
CðaÞ x

�a�1
i e

�b1
xi �

Ym
j¼1

b2
y2j

e
�b2
yj � pðb1; b2Þ

/bnaþa�1
1 bmþc�1

2 e�b1ðs1þbÞ�b2ðs2þdÞ

/Gaðnaþ a; s1 þ bÞ � Gaðmþ c; s2 þ dÞ:

where s1 ¼
Pn

i¼1
1
xi
and s2 ¼

Pm
j¼1

1
yj
. Therefore, the pos-

terior distribution of b1 and b2 are

b1j xs Gaðnaþ a; s1 þ bÞ; b2jys Gaðmþ c; s2 þ dÞ:

ð15Þ

Lemma 4.1 Let X and Y are independent random vari-

ables where X�Gaða1; b2Þ and Y �Gaða2; b2Þ. Then the

pdf of W ¼ X
XþY

is given by

fWðwÞ ¼
ba11 b

a2
2

Bða1; a2Þ
� wa1�1ð1� wÞa2�1

b1wþ b2ð1� wÞ½ 	a1þa2
; 0\w\1;

ð16Þ

where B(., .) is beta function.

If b1 ¼ b2 ¼ b then W �Betaða1; a2Þ. Now let W has

the pdf in (16), it is easy to prove that the distribution of

U ¼ Wa is

fUðuÞ ¼
ba11 b

a2
2

aBða1; a2Þ
� u

a1
a�1ð1� u

1
aÞa2�1

b1u
1
a þ b2ð1� u

1
aÞ

	 
a1þa2
; 0\u\1:

ð17Þ

According to (15) and (17) the posterior density of R is

given by

pðrjx; yÞ ¼ ðs1 þ bÞaþnaðs2 þ dÞcþm

aBðaþ na; cþ mÞ

� r
aþna
a �1ð1� r

1
aÞcþm�1

ðs1 þ bÞr1a þ ðs2 þ dÞð1� r
1
aÞ

	 
aþcþmþna ;

0\r\1:

ð18Þ

To obtain the Bayes estimator of R, we consider the

squared error loss function (SELF) and Linex loss function

(LLF) as follows

Lðh; bhÞ ¼ ðh� bhÞ2; Lðh; bhÞ ¼ edðh�
bhÞ � dðh� bhÞ � 1;

where d is loss parameter. Under SELF, the Bayes esti-

mator of R is mean of the posterior distribution of R, which

is given in following equation.

bRB ¼E pðrjx; yÞ½ 	 ¼
Z 1

0

rpðrjx; yÞdr

¼
Z 1

0

ðs1 þ bÞaþnaðs2 þ dÞcþm

aBðaþ na; cþ mÞ

� r
aþna
a ð1� r

1
aÞcþm�1

ðs1 þ bÞr1a þ ðs2 þ dÞð1� r
1
aÞ

	 
aþcþmþ na dr

ð19Þ

Under LLF the Bayes estimator of R is

bRBL ¼�1

d
lnE½expð�dRÞ	

¼ � 1

d
ln

Z 1

0

e�drpðrjx; yÞdr

¼� 1

d
ln

Z 1

0

e�dr ðs1 þ bÞaþnaðs2 þ dÞcþm

aBðaþ na; cþ mÞ

� r
aþna
a �1ð1� r

1
aÞcþm�1

ðs1 þ bÞr1a þ ðs2 þ dÞð1� r
1
aÞ

	 
aþcþmþna dr

ð20Þ

The analytical solution of the above equations is not pos-

sible. Therefore, we may propose the use of any approxi-

mation technique to solve such integrals. Here, we suggest

the use of Gauss quadrature method of approximation or

Lindley approximation.

Applications

In this section we use two real data set to show that the IGa

distribution can be a better model than other ones. The first

data set shows active repair times (hours) For an airborne

communication transceiver (n = 40) which are initially

proposed by Jorgensen [10].

DataðXÞ : 0:5; 0:6; 0:6; 0:7; 0:7; 0:7; 0:8; 0:8; 1; 1; 1; 1; 1:1;
1:3; 1:5; 1:5; 1:5; 1:5; 2; 2; 2:2; 2:5; 2:7; 3; 3; 3:3; 4; 4;

4:5; 4:7; 5; 5:4; 5:4; 7; 7:5; 8:8; 9; 10:2; 22; 24:5

we use this real data set to show that the inverse gamma

distribution (IGa) can be a better model than the inverted

exponential distribution (IED), generalized inverted expo-

nential distribution (GIED), inverse Rayleigh distribution

(IRD) and log-normal distribution (LN) distributions. To

compare the models, we used Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC). Table 1

lists the MLEs of the parameters from the fitted models and

the values of the AIC and BIC. Based on the values of

these statistics, we conclude that the IGa distribution is

better than others models. The plots of the empirical and

theoretical cumulative distribution function for the five

distributions and P–P plot for IGa distribution are given in
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Fig. 1. This figure again shows that the IGa distribution

gives a good fit for these data.

In second example we consider data sets, from two

groups of patients suffering from head and neck cancer

disease which are initially proposed by [6]. The data are

corresponded to the survival times of 51 patients in one

group were treated using radiotherapy (X), whereas the 45

patients belonging to other group were treated using a

combined radiotherapy and chemotherapy (Y). The data

sets given as follows

Table 1 The MLEs of

parameters for example 1
MODEL ESTIMATE - LOGL AIC BIC

Data(X)

IED 1.5474 90.4865 182.9731 184.662

IRD 1.442907 99.553 201.0668 202.7556

GIED (1.879739, 1.372121) 89.488723 182.9774 186.3552

LN (0.9992885, 0.8493806) 90.718530 185.4731 188.8148

IGa (2.094800, 1.353725) 89.450123 182.9002 186.278

Fig. 1 Empirical and theoretical

CDFs and P–P plot for example

1

Table 2 The MLEs of parameters for example 2

MODEL ESTIMATE - LOGL AIC BIC

Data(X)

IED 59.12593 385.6871 773.3742 775.4376

GIED (0.7771, 49.2410) 384.5908 773.1815 777.3024

IGa (0.761, 44.997) 384.104 773.4439 777.5648

Data(Y)

IED 75.37942 284.5311 571.0622 572.8689

GIED (1.1799, 83.900) 284.215 572.4309 576.0443

IGa (1.1373, 85.7317) 284.304 572.5671 576.1805

DataðXÞ : 6:53; 7; 10:42; 14:48; 16:10; 22:70; 34; 41:55; 42; 45:28; 49:40; 53:62; 63; 83; 84; 91; 108; 112; 129; 133; 133;
139; 140; 140; 146; 149; 154; 157; 160; 160; 165; 173; 176; 218; 225; 241; 248; 273; 277; 297; 405; 417; 420;

440; 523; 583; 594; 1101; 1146; 1417:

DataðYÞ : 12:20; 23:56; 23:74; 25:87; 31:98; 37; 41:35; 47:38; 55:46; 58:36; 63:47; 68:46; 74:48; 78:26; 81:43; 84; 92; 94;
110; 112; 119; 127; 130; 133; 140; 146; 155; 159; 173; 179; 194; 195; 209; 249; 281; 319; 339; 432; 469; 519; 633; 725;

817; 1776:
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Recently Singh et al. [19] is modelled this data using

inverted exponential distribution(IED), inverse Rayleigh

distribution (IRD) and generalized inverted exponential

distribution (GIED). Also Makkar et al. [15] is modelled

the data using log-normal distribution (LN) and considered

Bayesian survival analysis.

In this paper we consider IED, GIED and IGa distribu-

tions for above data. Table 2 shows the MLEs of the

parameters from the fitted models and the values of the

AIC and BIC. Based on the values of these statistics, we

conclude that the IGa distribution, sometimes is better than

and sometimes is as good as others models. In Fig. 2 the

plots of the empirical and theoretical cumulative distribu-

tion function for the three distributions and P–P plot for

IGa distribution are given. These figures illustrate again

that the IGa distribution has a good fit for data. We obtain

the MLE estimates of ðai; biÞ; i ¼ 1; 2 as, (0.761, 44.997)

and (1.1373, 85.7317) for data X and Y, respectively.

Therefore, the MLE of R and R1 using (13) and (14)

become bR ¼ 0:482 and bR1 ¼ 0:444.

According to Table 2 let X1; :::;Xn � IGða; b1Þ and

Y1; :::; Ym � IGð1; b2Þ ¼ IEDðb2Þ, where the two samples

are independent and a is known. Also let b1 �Gað2; 2Þ and
b2 �Gað2; 2Þ, then the Bayes estimates of R using (19) and

(20 )become bRB ¼ 0:5544, bRBL ¼ 0:5550ðd ¼ 0:5Þ and

bRBL ¼ 0:5539ðd ¼ �0:5Þ.
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