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Abstract

By the Riccati transformation technique, we study some new oscillatory properties for the second-order dynamic equation
on an arbitrary time scale T. We also establish the Kamenev-type and Philos-type oscillation criteria. At the end, we give

examples which illustrate our main results.
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Introduction

In [25], Kubyshkin and Moryakova considered a second-
order differential-difference equation of delay type

(1) + Ai(t) + x(1) + K(x(t — b)) + W(i(t — h)) =0,
(1.1)

where the real constants A,s > 0, and the functions
K, W: R — R defined by K(x(t)) = kyx(t) + kax?(1). ..

oy and - W(x(1)) = wix(t) + wax*(1). . ... Vki, w; € R,
respectively. The authors have investigated the oscillatory
solution of Eq. (1.1). Such Eq. (1.1) occur in the modeling
of electronic devices. In this paper, we modify and extend
this work by considering the Eq. (1.1) on the arbitrary time
scales T,

Y1) + a()y® (1) + y(r) + K(y(r — h))

(1.2)
+fOWGA(t—h)) =0 VreT,
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where the functions a : T — R,f : R — R, and time scale
T satisfies t —h<tandt —h € TVt € T, for some posi-
tive real constant 4. One can easily see that for some 2 > 0,
Eq. (1.1) can be achieved by taking T =R, a(t) =A >0
and f(x) = xVx € R in Eq. (1.2). Equation (1.2) is very
general in nature and techniques from time scale calculus
to analyze it. Equation (1.2) covers not only differential
equations (i.e., T = R) and difference equations (i.e., T =
Z) but covers more general time scales hZ = {hn :n € Z}

for h>0,T= {J[k(a+b),k(a+b)+a] for a,b>0,
kez

and T= {J{m+1:neN}UZ, etc. Throughout this

meZ
paper, we obtain the sufficient conditions of oscillation for
the dynamic equation (1.2). To the best of our knowledge,
no work has been done regarding the oscillatory behavior
of (1.2) so far.

Following Stefan’s landmark [22], a rapidly expanding
body of literature has sought to unify, extend, and gener-
alize ideas from discrete, quantum and continuous calculus
to an arbitrary time scale calculus. A time scale is an
arbitrary non-empty closed subset of the real numbers
which have the topology that inherits from the real num-
bers with the standard topology. It has applications in
electrical engineering, quantum mechanics, population
dynamic and economics etc [3, 11]. In particular, a time
scale g7 U{0},¢q > 1 is used in quantum physics, see in
[6, 7]. Many authors have worked on various aspects of
new theory, see in [2, 6, 7, 14, 17, 19, 20, 21, 34] and the
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references therein. These literatures summarize and orga-
nize much of time scale calculus.

Stefan’s theory has attracted the attention of many
researchers on oscillation of second-order linear and nonlin-
ear dynamic equation on time scales. In recent years, many
researchers have focused on oscillation and nonoscillation
criteria of second-order ordinary dynamic equations on time
scales. Several authors have studied the oscillation criteria by
employing the Riccati transformation technique as well as
established the Kamenev-type and Philos-type oscillation
criteria. For more details on such criteria, we refer the reader
to the papers [1, 12, 13, 15, 20, 28, 30-33] and reference
therein. To establish the oscillation criteria, in [24], Kamenev
considered a second-order differential equation

(p(1) (1)) + q(1)x(1) = 0 (1.3)

and investigated the following sufficient conditions of
oscillations,

1 t
limsup—n/ (t —s)"q(s)ds = oo, for n> 1.

r—oo " Jo

(1.4)

Several authors (e.g., Sun [31], Philos [27]) have extended
the Kamenev’s oscillation criteria to more general criteria
by taking the kernal function (¢ — s)" as the general class of
functions H(t, s), which satisfies some assumptions given
below follow:

The Kernal function H: D = {(¢,s) : t(p<s<t} —» R
defined as continuous function such that

H(t,1) =0 for o<t ,H(t,s) >0
OH (1, s
for tg <s<t and a(s’ 5) <0 onD,

where aHa(”X)
A

is continuous on D. Furthermore, define a
continuous function 4 : D — R such that

OH(t,s)
Os

= —h(t,s)\/H(t,s), for all (z,5) € D.

In [27], Philos obtain the following sufficient conditions,

imsup o | l (H(r, qls) — LI s>)

for(o>0 and p(r)=1.

(1.5)

ds = o0,

From the conditions (1.4) and (1.5), we conclude that the
Philos-type is more general to Kamenev-type criteria. A
discrete version of differential equation (1.3)

A(r,Axy) + puXns1 =0 (1.6)

has been discussed by Chen and Erbe [9], for oscillation and
non-oscillation. To harmonize the differential equation (1.3)
and difference equation (1.6), in [12], Del and Kong, and in
[16], Erbe, et al. have considered a following self-adjoint
second-order scalar dynamic equation on time scale T

’r @ Springer

4. [F(t,u)| = p(0)ul’,

(p(x ()" + q(1)x(a(1)) = 0, (1.7)

and established the oscillation criteria. The problem (1.7) is
not only the extension of results of [9, 24] but to the more
general results on time scales. In addition, several authors
have focused on study of both Kamenev-type and Philos-
type oscillation criteria on the time scales. For example, in
[4], Agwa et al. studied both Kamenev-type and Philos-
type oscillation criteria of the following second-order
nonlinear delay dynamic equation

(r(1)g(x(1),x*()))* + p(1)f (x(x(1))) = 0, € T, t < 1.
(1.8)

In [10], Chen et al. considered the second-order dynamic
equation with damping on time scales

() + PO (1) + g(Df (1) = 0

and by employing Riccati transformation to established the
sufficient conditions of Kamenev-type as well as Philos-
type oscillation criteria. In [29], Saker have established the
sufficient conditions of oscillation of the following second-
order nonlinear neutral delay dynamic equations on time
scales

(r()([y(e) + p(e)y(t — D)) + (2,5t = 9))

and discussed both Kamenev-type and Philos-type oscil-
lation criteria. In [8], Bohner and Saker have studied the
oscillation criteria for the second-order perturbed dynamic
equation on time scales:

(r(n)(A(0)")* + F(1,x(a(1))) = G(t,x(1),x*(1)).

In [1], Agarwal et al. modified the dynamic equation (1.11)
and considered the following equation

(r(n) (X(0)")® + F(1,x(1)) = Gt x(1),x*(1)),

and studied the sufficient conditions for oscillation. They
have assumed that there exist two positive rd-continuous
functions p and g such that

(1.9)

(1.10)

(1.11)

(1.12)

1. r:T—Ris a positive and rd-continuous
function and y € N is odd ,

2. p,q: T — Rare rd-continuous functions such

that p(t) — g(t) >0 forr € T,

3. F:TxR—RandG:T xR?>— R are

functions such that uF(f,u) >0
and uG(t,u,v) >0 for allu € R\{0},veR,r €T,
G(t,u,v)| < q(1)[u'Vu € R\ {0},

veRreT.

In [18], Graef and Hill both have investigated nonoscil-
lation solutions of higher order nonlinear delay dynamic
equation on time scales
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(a(e () + a(f (x(g(1))) = (1) (1.13)

and established the sufficient conditions of non-oscillation.
Recently, Negi et al. [26] considered the second-order
nonlinear dynamic equations with integro forcing term and
deviating argument on time scales

Y1) + ByA (1) = B()y (1)

VeeT,

+ HA (r, y(1), /_ t T (t — s)H(s, y(s))As) (1.14)
and
YA () + By (1) = B(t)y(r) + W(t,y(1), y(wi (1, y(1))),
(1.15)

respectively, where f>0,w;(t,y(¢)) = by (¢, y(ba(t,. . .,
(b, (£,¥(1)) ...)))). By the Riccati technique, Negi et al.
have investigated the Kamenev-type oscillation criteria of
both the Egs. (1.14) and (1.15), respectively.

In this paper, we first deal with two functions K(y(r —
h)) and W(y (¢ — h)), which play an important role in our
analytical findings. As we see in the above assumption (4),
the absolute value of functions F and G are related with the
absolute value of the unknown function u(zr), with the
functions p(f) and ¢g(¢), respectively. In Eq. (1.10), Saker
have assumed that the continuous function f : T x R — R
such that uf(¢,u) > OVu # 0 and |f(¢,u)| > g(¢)|u’|, where
a nonnegative function g(¢) defined on T. In Eq. (1.9),
Chen have assumed function f € C(R,R) such that
xf(x) > 0Vx # 0 and f(x) > Lx, where L is positive real
constant. In Eq. (1.13), Graef considered the function f €
C(R,R) such that for 7>0, |f(x(1)|<|x(®)| +
B for all x(r),Vr € T, where A, B are non-negative real
constant. Motivated by the above literature, recently in [26]
Negi et al. have assumed |[H2 (¢, 5(z), £(¢))] > p(2)|n(¢)| and
n()HA(t,n(1), E(1)) <O for n(t) #0 for the dynamic
equation (1.14), and (1.15) by replacing H to W.

To establish oscillation criteria for (1.2), we need
[Ky()] = p(0)ly()] for y(1) # 0 such that y())K(y(1)) > 0.
Moreover, there exist a function f € C(R,R) such that
IR ONIELIGIVG] as well as
y(O)fOW(A(1))) > OVy(f) # 0 in R, where M() is a non-
negative rd-continuous function defined on T. Now we
choose the real coefficients wj, k; such that

0
ki, wj :{ e
+ve : if i,j are odd natural number ,

: if i,j are even natural number ,

and W, KC are defined in (1.1), then we obtain the following
relation

K 0)] = lkiy() + kay* (1) + -

1.16
=k1|y(t)\|1+z—?y2(t),---|2k1|y(t)l, (10

such that y(t)K(y(r)) > OVy(r) € R,z € T. Similarly, we
immediately obtain an inequality

WA Zwily (1) vieT. (1.17)

Now let us consider a function f € C(R,R) for y(r) € R
such that F(WyA(1)) = q(r)sen(s(t)) VA ()], Ve € T,
then, from (1.17), we obtain,

[FOWYA(0))] = lq(t)sgn(y ()W (1))l
>q(Owily ()] Vy() €R, VreT,

where ¢(¢) is non-negative rd-continuous function defined
on T. Thus, we can find such function f € C(R, R) which
satisfy

FOVOA )] = a()wily* ()],

and y(t)f (W(HA(t))) > 0, for y(t) # OVt € T and g(t) is
rd-continuous function defined on T. In Eq. (1.18), abso-
lute value of frelated to the absolute value of y*(¢)vt € T.

For simplicity, throughout this paper, we denote
[aco)r = [acc) (N T. In addition, we also need the fol-
lowing assumptions, as follows:

(1.18)

e (0;) Assume a,p : [ty,00); — R are positive rd-con-
tinuous functions such that 0<p(f) <k;<oco and

q(1) := p(r) 2.

o0 1
. (0 . A=,
( 2) /,0 ez(t)(t, S())

2t) = ety >0 VieT.

where

Let us recall that, a solution y(#) of (1.2) is a non-trivial or

y(#) # 0, such that y(r) € CrA;([ty, oo)y) for certain #, > .
If it is eventually positive or eventually negative, then it
must be non-oscillatory, otherwise oscillatory, i.e., it is
oscillatory if there exists a real sequence, say {a,} such
that a, — 0o as n — oo and y(a,) = 0¥n € N. Our atten-
tion is restricted to those solutions of (1.2) which exist on
the half-line [t,,00); and satisfy sup{|y(f)|:t> 1.} #0
for any #, <t, and sup T = oo.

This paper is organized as follows: In Sect. 2, we give
basic definitions and present some necessary Lemmas. In
the next section, we establish the sufficient conditions of
oscillation of our Eq. (1.2). We further establish the
Kamenev-type and Philos-type oscillation criteria. Some
remarks for the particular case are also discussed. At the
end in Sect. 4, to validation our results, we give an
example. We also discuss the cases when the time scale is
of a particular form.

’r @ Springer
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Preliminaries

In this section, we present some basic definitions, useful
Theorems and basic facts of time scales.

Definition 2.1 [6]. For ¢t € T, forward and backward jump
operators g, p : T — T are defined by
o(t):=inf{s€T:s>1} and p(t):=sup{seT:s<r},
respectively. The classification of points of time scale T.
For t € T, ¢ is called right-scattered if r <o (), and right
dense if for all r<supT such that ¢ = o(¢). Similarly, ¢ is
left-scattered if ¢ > p(t), and left dense if for all # > infT
such that t = p(z). The graininess operator p: T — [0, 00)
is defined by u(t) = o(t) —t.

Remark 2.2 Weputinf() =sup T (i.e., 6(t) = ¢if T hasa
maximum £), sup) = inf T (i.e., p(¢f) = ¢ if T has a mini-

mum ), where () is an empty set.

Definition 2.3 [6] A function f : T — R is called rd-con-
tinuous provided it is continuous at all right-dense points in
T and its left-sided limit exist (finite) at all left—dense points
in T, which is denoted by C,y = Cry(T) = Cy(T, R).

We define T =T — {¢}, if T has

a left-scattered maximum &, and T* = T, otherwise.

Definition 2.4 [6] For a function f : T — R and ¢t € T*,
we define f2(¢), to be a number (provided it exists) with the

property that for any given € > 0, there exists a neigh-
borhood Z = (r — 6,14 ) T for some ¢ > 0 such that

|[F(a(0)) —f (] =12 ()o(r) = ]| < ela(r) — r]

Thus, we call f2(¢) the A or Hilger derivative of f at t.

Theorem 2.5 [6] For the functions g,f: 1T — R and
t € T". The following statements are true:

1. If f is differentiable at t, then f is continuous at t,
2. If fis continuous at t and t is right-scattered, then f is

A-derivative at t and f2(1) = LW~ ;

u(t)

3. Iftis right-dense, then fis differentiable at t iff f(t) =
limﬁ,"w exists and finite value;

4. If f is differentiable at t, then

17 =£(a(1)) = £(2) + u(e)f*(1);
5. Iff and g both are differentiable at t, then a product
fe : T — R is differentiable at t and

()™ (1) = f2(1)g(1) + £ (a(1))g™ (1)
=f(1)g*(1) +12(1)g(a(0)),

hence,for
t € T such that a<t<b,¥Ya,b € T, we have the fol-
lowing facts

’r @ Springer

Vre Z.

b b
/ ()8 (5)As = £(b)g(b) — Fla)g(a) — / FAs)8(s)As
(2.1)

b b
/ F()82(5)As = £(b)g(b) — f(a)g(a) — / F(5)8° (5)As:
(22)

6. If g(t)g(a(r)) # 0, then '% is differentiable at t and

YO — £
(§) N O

Definition 2.6 [6] A function w : T — R is regressive if
1 + u(t)q(t) # 0,¥t € T. Denote the collection of all rd-
continuous  functions w:T —R by R, and
R ={weR:1+4 u()w() >0 for all e T}.

Definition 2.7 [6] A function F: T — R is called an
anti—derivative of f:T-R, provided
FA(t) =f(t)Vt € T. Then Va,b € T such that a<b,
Cauchy integral is defined by

b
/ F(S)A(s) = F(b) — F(a).

Definition 2.8 [23] Let T :q_z, we have the relation
FA(t) = Df(t), where
f(gt) —f(1)
g —1)
i £ (4") —f(0)

n—00 q"

(2.3)

Dyf (1) = (2.4)

t=0,

is the g-difference operator.

Remark 2.9 1In Definition 2.7, Eq. (2.3) does not hold for

all time scale, for example, in g-calculus (i.e., T = q_Z) the
following relation is not correct always

b
/ D,f(t)d,t = f(b) — f(a). For more detail see page 12

a

in [5].

Definition 2.10 [6] If w € R, then we define a expo-
nential function by

t
ew(t,s) = exp (/ nﬂ<r)(w(r))Ar), Vie T, seTk,

where #,(z) is the cylinder transformation, which is defined
by

log (1 + hz)
0eLTHY Th#0
m(z) = o 790

Z, :h=0.
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Before going to our main section, we first introduce
some necessary lemmas which are crucial for our proofs.

Lemma 2.11 Let y(¢) be a non-oscillate solution of (1.2)
and assume that Oy, O;, relations (1.16) and (1.18) hold,
then there exists 5o >0 ; 5o > t, such that

y(1) > 0,y*(t) > 0 and y**(r) <0 (2.5)

and

y(t —h) > 0,y*(t — h) > 0 and y**(t — h) <0, on [sg, 00).
(2.6)

Proof Let y(f) be an eventually positive solution of (1.2).

Then there exists # € [fp,00); such that y(r) >0 on

[t1,00)7. Let us take t, € [t;,00) such that t, >t + h,

then we must have y(#) > 0 and y(r — h) > 0 on [f,,00).

From equation (1.2) and O; — O, (1.16) and (1.18), we
obtain

V() + a0y (1) < — (1) + p(0)y(t = h) + p(O)u(r)[y* (t — h)])

IN

— (9(1) + p(0)y(r — h) + p(t)u(t)y* (t — )
< = (1) +p@)y°(t — h)) <0.

Since a(t)u(r) <1 and using the above relation, we obtain

(2.7)

AA
Y22 () a(t) A
t)<0, on [, 0),
(e T T=atum” " 2,007
(2.8)
which is equivalent to
A
<e a(t) (t,so)yA(t)) <0, Vten,00)r. (2.9)
T=al)l)

Then e . (t,5)y*(¢) is an eventually decreasing func-
1—a(t)u(r)

tion and thus it is eventually of one sign. We claim that it is
eventually non-negative. Let us assume that it is eventually

negative, ie., y*(f) is eventually negative because
ey(t,50) >0 as w> 0, for all we R*, then there exist
t, <t3 and a constant C > 0 such that

€__a (t7 SO)yA(t) < C<07
1—a(r)u(r)

for allts +h <t <t.

(2.10)

Integrating Eq. (2.10) from #,; to ¢, we obtain

3(1) < y(ts) + C / PR S

1 € as) (S,S())
1—a(s)u(s)

For sufficiently large ¢, we obtain a contradiction because
of O,. Therefore, we have

y(t) > 0,y2(¢) > 0 and y*(1) <0,

and

y(t—h) > 0,y*(t —h) > 0 and y**(r — h) <0, on [so,00)-

O
Lemma 2.12 If (2.5) holds, then for ¢ # 59, we have
(1)
0<g(n) < <1, 2.11
(< 20 @.11)
where G(1) := ti;ﬂj:it(t).

Proof For t # s, and from (2.5), we obtain

0 >3 =3(0) = [ PAOA = 0 —s). @12)

S0

From (2.12) and using (4) of Theorem 2.5, we obtain

t— 5o y(t)
0<— =3 < <1.
t—so + u(t) (x) y° (1)
Now with the help of Lemmas 2.11 and 2.12, we obtain a
new Lemma as follows, O

Lemma 2.13 If Egs. (2.5) and (2.11) hold, then for 259 < ¢,
we have
1G()w(1)

gtyw(t) _y(t—h)
2 o0) =1

o) T oy T

'A . . . . .
where w(t) = 5(t)’y%)) is Riccati transformation function.

<(tr—150) (2.13)

Proof The relation 2sy <t can be rewritten as ¢ — sy > %
Using (2.6), we obtain

y(r—h)—y(so—m:/

Sn*/’l

—h
yA(s)As > yA(t —h)(t — s0)

> yA(1)(r = s0),

which implies

é VA1) <y(t — h). (2.14)
From Egs. (2.14), (2.11) and w(¢). Hence, we obtain
(GOW) _ vl —h) _
— 1
2 4(1) yo(r)

O

Oscillation criteria

In this section, we establish some sufficient conditions of
oscillation for Eq. (1.2). For so € T.

Theorem 3.1 Assume that O, O,, relations (1.16) and
(1.18) hold. Moreover, if there exist a A-derivative function

Y
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0(t) > 0 and so > 0; 19 < 2s9 <t respectively and satisfying
the following
t

F(s)As = o0, (3.1)

lim sup
1—00 250

where

(8°() = 6(1)e" (1) (a(r) + p(1) 5))2>

A = (aﬂmgm - 000

(3.2)
then, Eq. (1.2) oscillates on [tyo0)y.

Proof Assume to the contrary that (1.2) has a non-oscil-
latory solution. Let y(f) be a nonoscillatory solution of
(1.2). Then, without loss of generality, we assume that
y(t) is an eventually positive solution, i.e., there exists
5o > tp such that y(r) > OVr € [sy00)y. A similar argument
holds for the case when y(f) is an eventually negative
solution. We define a Riccati transformation function such
that

S a(U)
wle) = o) 5

to <2s9<t.

A-derivative of Eq. (3.3) w.r.t t, we have

a0 e (Y00 - 64 (0)?
= 9°(1) 0 +5(t)< ) )

wh(1)

3 (1) 67(1)y(1)
o(7) Yo (1)8%(1)

From (2.11) and (3.4), we obtain
540
o(1)

07(t) aa
yo(1)

=w(1) —w(r)

wA(t) <w(r)
(3.5)

To solve the right-hand side of Eq. (3.5), we use Eqgs. (2.7),
(2.11) and a relation y*(¢) > 0, we obtain

(1) (1)

< = 0%(1)G(r) — 5”(l)a(t)%w t p 0

¥ (1)

From (3.6) and (2.13), we obtain

m AA _ 50 —5(a @W
O = TG0 — 5 (al) Tl
- PO (1) 550

Substituting (3.7) into (3.5), we arrive at

\¢
ﬁ @ Springer

myAA(t)S —(3”(t)<y(t) _‘_p(t)ya(tih) +Cl(t)yA(t))

84 () o°(1)
wh(r) < w(t)W —wA()G(r) 3200)
— 5 () %wm P 0) 5 57 (0)

1

o(1)

—0°(0G(1)

= —07(0G(1) + 5= (6*(1) = 609" (1) (a(r) + p(1)5))

(5* (1) = G(0)5° (1) (a(e) + p(1)3))”
457(5)9(5) |

From Egs. (3.2) and (3.8), we arrive at
wh(t) < = F (1),

+

for 25y <t.

Integrating Eq. (3.9) from 2sy to #, we have

t
F(5)As <w(2s9) <o0.
2S0

(3.10)

For sufficient large ¢, we derive a contradiction to (3.1), as
the left-hand side of (3.10) finite, which completes the
proof of our theorem. O

From Theorem 3.1, we may also obtain some results
concerning the oscillation behavior of solutions of
Eq. (1.2).

Corollary 3.2 Assume that Oy, O, relations (1.16) and
(1.18) hold. Moreover, if there exist a A-derivative function
o(t) > 0 and so > 0,19 <2s9<t, respectively, and satisfy-
ing the following conditions as follows,

limsup [ 6°(s)G(s)As = oo

(3.11)
1—00 2s0
and
. " (5%(s) — G(s)5°(s) (als) + p(s)3))’
fim sup / s e
(3.12)

then, Eq. (1.2) oscillates on [tyo0)y.

The next result immediately follows from Theorem 3.1
by different choices of (t). In particular, we take (t) as
positive constant (say C > 0), we establish the following
corollary.
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Corollary 3.3 Assume that Oy, O,, relations (1.16) and R 5A(t) A G(t) ,
(1.18) hold. Moreover, if there exists so>0 such that W (1) < 5 (1) (w(t) + u()w™(1)) _%W (1)
to <2s0 <t, and satisfying the following condition below ¢
. ' () w2 = G(1)o(r) — a(t)G(r)w(r) — p(1) 5 G(O)w(2),
limsup | —>(4— (a(s) +p(s) —) As = o0,
=00 Jay 4 2 which is equivalent to
o1 M) A< - ains g >
then, Eq. (1.2) oscillates on [tyo0)y. -~ °(r) ®) (1)< —G(0o(r) +Alr)w(?) 0 ®)
A
We introduce one more condition u(t) =% <1 to obtain 2
oduce one mor M5 e+ 20RO (o a0 fan
a new oscillations criteria for (1.2). 4G(1) 5(1) ) 10
Theorem 3.4 Assume that Oy, O,, relations (1.16) and
(1.18) hold. Moreover, if there exist a A-derivative function < _0(s() + o(1)A% (1) . (3.19)

o(t) > 0 and so > 0 such that p(t) ii((;)) <1 and ty <2s9 <t,

respectively, and satisfying the condition

. ! 1 3(s)A%(s) _
llrtlliilp /2s0 W {Q(s)é(s) ~T400) ]As = o0,

(3.14)
where

A
A() = 55i5) -~ 900 (al0) + p0)3).

(3.15)

then, Eq. (1.2) oscillates on [£po0).

Proof Assume to the contrary that (1.2) has a non-oscil-
latory solution. Let y(r) be a non-oscillatory solution of
(1.2). Then, without loss of generality, we assume that
y(¢) is an eventually positive solution of (1.2), i.e., there
exists 7o <sp such that y(r) > OV? € [so00)y. A similar
argument holds for the case when y(¢) is eventually nega-
tive. Now A-differentiate equation (3.3) w.r.t £, we have

A A A o
Ay _ yo(1) Ay (Y20)
wo=a0 () o0 ()
From Egs. (3.3), (2.11) and (3.16), we obtain

A AA
wi(r) < (28 w?(t) = %w%) + (1) yya ((t?

(3.16)

=20 )+ oA @) — L0 02(0) + 8)
(3.17)

To solve the right-hand side of Eq. (3.17), we replace 6° ()
by 06(¢) in (3.7). We obtain

Substituting (3.18) into (3.17), we arrive at

4G(1)

Since 2@ u(r) < 1. So dividing (3.19) by 1 — 20 u(r)
7 M . g (3. y 5 M(1), we
arrive at

M}
aG6(n) |

(3.20)
Integrating Eq. (3.20) from 2s to t. Therefore, we have

3(s)A%(s)

e | R S

—w(t) <w(2sp) <o0.

For sufficiently large ¢, we derive a contradiction to (3.14),
as the left-hand side of above relation finite, which com-
pletes the proof of our theorem. O

Theorem 3.5 Assume that Oy, 0,, relations (1.16) and
(1.18) hold. Moreover, if there exist a A-derivative function
o(t) > 0 and 5o >0, 1) <2s9<t, respectively, and satisfy-
ing the following condition,

imsun [
As) — 8(s)G(s)(als s)s g
<5(s)g(s) ICHORR )gjéiﬁ)( ) +r()3) )m— .

(3.21)
then, Eq. (1.2) oscillates on [tyo0)y.

Proof Assume to the contrary that (1.2) has a non-oscil-
latory solution. Let y(f) be a non-oscillatory solution of
(1.2). Then, without loss of generality, we assume that
¥(#) is an eventually positive solution of (1.2) i.e., there
exists 7o <sp such that y(r) > OV € [soo0)y. A similar
argument holds also for the case when y(¢) is eventually
negative. Now from equations (2.7), (3.3) and (3.16), we
obtain

Y
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PP ) PSR () NPT (1)
w0 < G (0 = o 0 OF + 0
(3.22)
From (3.18), we have
yAA P
o(1) oS G(1)o(r) — a()G(r)w(t) — p(r) 5 G(1)w(1)
(3.23)
Substituting (3.23) into (3.22), we arrive at
A o 5A(t) g _ 50) g 2
WA < = 8060 + o (1) = 2 55 (07(0)
— G(1)(ale) + p(r) ) (o).
(3.24)

From (3.3), (2.11) and y**(¢) <0, we obtain a relation
below,

w(t) > 656(—8)w0(t). (3.25)
Substituting (3.25) into (3.24), which yields
A
W0 <~ 30600) + 55 W (0
50) a 5([) o
TR WO = 590 e + ) 3w ),
(3.26)

which is equivalent to

(6*(1) = 8(NG(1) (alt) + p(1)5))
67(1)

wh(r) < = 3(1)G(r) +

o(1)

oI

w(r) —

(3.27)

By following the similar steps of Eqgs. (3.8) and (3.9),
Eq. (3.27) become

(6() = 8(0G(1) (a(0) + p(1)3))"

wh(t) < = 8(1)G(1) + 45(1)

(3.28)

Integrating Eq. (3.28) from 2s; to t. Therefore, we have

As) — 8(s)G(s) (a(s 5)3 2
/ [5@%) I CHORR )gié)(ﬁ)( ) +p()3) ]As

2S0

(3.29)

Y4
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For sufficiently large ¢, we derive a contradiction to (3.21),
as the left-hand side finite,which completes the proof of our
theorem. U

In view of Theorem 3.5, we immediately obtain fol-
lowing corollary.

Corollary 3.6 Assume that Oy, O,, relations (1.16) and
(1.18) hold. Moreover, if there exist A-derivative function
o(t) > 0 and 50> 0,1y <259 <t, respectively, and satisfy-
ing the following conditions,

t

lim sup ‘ 0(s)G(s)As = o0 (3.30)
and
. " (5%(s) — 8()G(s)(als) + p(s)2))’
fim sup / 23(s) Fhs<oo,
(3.31)

then, Eq. (1.2) oscillates on [tyo0)y.

Remark 3.7 In view of Theorems 3.4 and 3.5, we obtain
various sufficient conditions of oscillation of Eq. (1.2) by
taking different choice of 4(z).

To present our next theorems, we first introduce Saker’s
result [29] as follows

(t—sf )N < =Nt —a(s))V'<0  for

(3.32)
N>1 and o(s)<t.

By using an integral averaging technique of Kamenev-type,
we present some new oscillation criteria of (1.2).

Theorem 3.8 Assume that O;,0;, relations (1.16) and
(1.18) hold. Moreover, if there exist A-derivative function
6(t) > 0 and there exists N' > 1 and all sufficiently large
s0 >0, tg <2s9<t such that

1 t
lim sup - / (t— )N F(s)As = o0, (3.33)
2

1—00 )

where

5 ’ )2
f([) = <5ﬂ(t)g(t) _ (5 (t) - g(t)é (t) (a(l‘) "v‘p(t) E)) )

46° (1)G(1)
(3.34)
Then, Eq. (1.2) oscillates on [tyo0)y.

Proof Assume to the contrary that (1.2) has a non-oscil-
latory solution. Let y(f) be a non-oscillatory solution of
(1.2). Then, without loss of generality, we assume that
¥(¢) is an eventually positive function, i.e., there exists #
such that y(r) > OVr € [foo0)y. A similar argument holds
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also for the case when y(¢) is eventually negative. From
Eq. (3.9), we have

F()< —wh(r), for 2sp<t.

Multiplying above relation by (7 — s)N
from 2sy to t. we obtain

t — YW F(s)As< — t — VWA (s)As
[ =9 o< = [ = wrons

S0 250

and then integrating

(3.35)

By comparing the right-hand side of (3.35) with Eq. (2.2),
we have

- / (= WA (s)As = (1 — 250 w(2s0)
o (3.36)
— )27 (5)As.
+ [ (= s

50

From Egs. (3.32), (3.35) and (3.36), we arrive at

/2 t (t — )N F(s)As < (1 — 2s0)" w(2s0). (3.37)
Thus

1 [ —250)"

v 2so(t—s)N}"(s)As<—(t tNO) Ww(250), %)

for 250 <t.

Taking lim sup as t — oo both sides of Eq. (3.38), we have

1 t
lim supw/ (t— S)N}"(S)As<oo. (3.39)
2

1—00 t S0

Thus, we derive a contradiction to (3.33), which completes
the proof of our theorem. O

Corollary 3.9 Assume that Oy, O,, relations (1.16) and
(1.18) hold. Moreover, if there exists A-derivative function
o(t) > 0, and for N > 1, and all sufficiently large sy >0,
such that ty < 2sg <t and satisfying the conditions below,

t

limsup % | (t — sV 8°(1)G (1) As = o0, (3.40)
and
. 1 [ (0°(t) = G(1)8° (1) (a(t) + p(1) §))?
limsupZsy J, (1=9)" PO
As < o0,

(3.41)
then, Eq. (1.2) oscillates on [tyo0)y.

Theorem 3.10 Assume that Oy, O,, relations (1.16) and
(1.18) hold. Moreover, if there exists A-derivative function

For N> 1 and all

3 (1)
0(t) >0 such that u(t) 7 <L

sufficiently large so >0, to<2so<t and satisfying the
condition below,

[ t—sV
lim supw/ %
2

t—oo I <1 () N( )) {Q(s)a(s)  0(s)A%(s)
ot T IS

4G(s)

As = oo,

(3.42)

where A(t) is given by (3.15). Then, Eq. (1.2) oscillates on
[too0) -

Proof Assume to the contrary that (1.2) has a non-oscil-
latory solution. Let y(f) be a non-oscillatory solution of
(1.2). Then, without loss of generality, we assume that
¥(¢) is an eventually positive function, i.e., there exists #y
such that y(r) > OVr € [foo0)y. A similar argument holds
for the case when y(f) is eventually negative. From
Eq. (3.20), we have

1
() [Q(t)é(t) )

(1A% (1)
4G(1)

} < —wh(r) for 2s9<1.

Multiplying above relation by (7 — s)N
from 2s( to ¢, we obtain

t (t o S)N
Ly oo
- /2 = Y u o)A

S0

and then integrating

5()A%(s)
" 4G0) }AS

IA

(3.43)

By following the similar steps of Egs. (3.35)-(3.37),
Eq. (3.43) become

N (R S5(s)A%(s)
—— < |G(s)d(s) — —5—~—
/250 (1 — 208 H(S)) |: ( ) ( ) 4g(S) (344)
As < (r— 2SQ)NW(2S0).
Thus, we have
L e=9N
N o, (1 — ga((:;u(s))
$)A%(s —250)V
[g(s)é(s) - %] As < %w@so)
(3.45)
Taking lim sup as t — oo in Eq. (3.45), we obtain
. | s
lim sup — T R N
o N/2 (1-5u0) (3.46)
A6
[Q(s)é(s) 2G05) ]AA <00.

Y
ﬁ @ Springer
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Thus, we derive a contradiction to (3.42), which completes
the proof of our theorem. (]

Theorem 3.11 Assume that Oy, O,, relations (1.16) and
(1.18) hold. Moreover, if there exists a A-derivative func-
tion 6(t) > 0. For N > 1 and all sufficiently large sy >0,
to <259 <t, and satisfying the condition below

lirtllizlptijv zl(t—s)N
A(s) — 6(s)G(s)(als 5)5 2
(5(5)%) CHORR >g;5>(§)< ) +p(9)3) )
As = o0,

(3.47)
Then, Eq. (1.2) oscillates on [tyo0)y.

Proof Assume to the contrary that (1.2) has a non-oscil-
latory solution. Let y(f) be a non-oscillatory solution of
(1.2). Then, without loss of generality, we assume that
¥(¢) is an eventually positive function, i.e., there exists f
such that y(f) > OVt € [fpo0);. From Eq. (3.28) and fol-
lowing the similar steps of Egs. (3.35)—(3.39), we easily
obtain a following relation

1/ N
t_ - (l — S)
(8%(s) — 8(5)G(s)(als) +p(s) )
<5<s>g<s> - 350 2

(3.48)

For all sufficiently large t, we derive a contradiction to
(3.47). O

Corollary 3.12 Assume that Oy, O, relations (1.16) and
(1.18) hold. Moreover, if there exists a A-derivative func-
tion 6(t) > 0. For N > 1 and all sufficiently large sy >0,
to < 2so9 <t and satisfying the following conditions below,

1 t
lim sup —

msup- 2‘(t—s)N5(s)g(s)As:oo, (3.49)
and

o 58 (s) — 8(5)G(s)(als) + p(s)3))’
lim sup 57 ZSO(I‘S)N( e )
As < o0.

(3.50)

Then, Eq. (1.2) oscillates on [fgo0)y.

Y4
ﬁ @ Springer

Our next aim to establish the Philos-type oscillation
criteria for (1.2). We define some elementary assumptions
as follows:

For any number € R, we define positive and negative
parts, 17, and #_, respectively, of # by

ny :=max{0,n} and n_ :=max{0,—n}.

Assume that the rd-continuous functions H,h: D — R,
where D = {(z,s); 20 < so <t} such that

H(t,1) = 0,H(1,s) > 0 and H(t,5) <0, 1p<s<t

(3.51)

and H(1,s) (A-derivative w.r.t second variable) is rd-
continuous function.

Theorem 3.13 Assume that Oy, 0,, relations (1.16),
(1.18) and Egq. (3.51) hold. Moreover, if there exist A-
derivative function 06(t) >0 and s0>0, to<2s9<t,
respectively, and satisfying the following conditions below,

5 Ho(o(2), 5)
H? (a(),s) + T

(5 = 95" (atr) + (1) 3) ) (3.52)
~h(1,s) -
== VH (a(1), s)

and

lim sup

1 a(1)
e H(a(r)aso)/zm

() (3.53)
(H”(J(t),s)é“(s)g(s) =il )As_oo,

46° (£)G(s)
then, Eq. (1.2) oscillates on [tyo0)y.

Proof Assume to the contrary that (1.2) has a non-oscil-
latory solution. Let y(f) be a non-oscillatory solution of
(1.2). Then, without loss of generality, we assume that
¥(t) is an eventually positive function, i.e., there exists #
such that y(r) > OVr € [foo0)y. A similar argument holds
for the case when y(¢) is eventually negative. We have
defined Riccati transformation function in (3.3). Now from
(3.8), we have

1
5(1)

(50 = 609" (1) (a(t) + p(6)3) Jwit)

G(t)w?(t) for 259 <t.

wh(t) < — 87()G(1) +

(3.54)

Multiplying Eq. (3.54) by H?(o(z),s) i.e., H(a(z),0(s)),
and then integrating from 2s, to a(¢), we obtain
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a(t) a(t)
5 H’(a(t),s)0°(s)G(s)As < 5 H’(a(t),s)0°(s)G(s)As < H(a (1), 250)w(2s0)
a(t) 40 s 2
- H(a (1), s)w™(s)As +/2 %As.
o (3.59)
* 250 H(o(1),5) Dividing (3.59) by H(o(z),2s0) , we obtain
1 s
= (0%(s) = G(5)87(s) (als) + p(s) 5 ) Jwls) 1 O o (h-(1,5))*
(5;)(5) ( 2)) H(G(I),ZS())/ZSO (H (a(1),5)0%(5)G(s) T 357(5)0(s)
- 52(;) G(s)w?(s))As As <w(2s0) <oo.
(3.55) (3.60)

From (2.1), we obtain the right-hand side of (3.55) as
follows

a(t)
< H(o(t), 250)w(2s0) +/

250

0.9+ D (336) - 660079 (o) +6)3)) |
w(s)As
- " (s) :
_ 5 H(a(1),s) 70 G(s)w”(s)As. (3.56)
Substituting (3.52) into (3.56), we arrive at
a(t)
H’(a(t),s5)0°(s)G(s)As
250
~a (1)
<H(a(t),2s0)w(2s0) +/2v
NGO NN (0 PO
o T huts) = H ()9 5 000 ())
As.
(3.57)

which is an equivalent to

a(s)
H(a(t),5)0°(s)G(s)As < H(o(t), 2s0)w(2s0)

2S0

O (h_(t,5))*

+ e

_/U(f) \/H“(o(t),s)é“(s)g(s)w(s)_ h_(t,s) As
5 o(s) 24/0%(5)G(s)

(3.58)

S0

Implies that

for sufficiently large ¢. Thus, we derive a contradiction to
(3.53). O

Corollary 3.14 Assume that Oi,0,, relations (1.16),
(1.18) and Egq. (3.51) hold. Moreover, if there exist A-
derivative function 6(t) >0 and s9>0, fo<2s9<t,
respectively, and satisfy the following conditions below
H?(a(t),5)

5(1)

(50 - 6o (1) (at) + p(1)3) )

H%(a(1),s) +
(3.61)

=— He(a(t),s),

limsup ———
Hocp H(a(t),250) Jas,

= oo and lim su
P H (o (1), 250)

Then, Eq. (1.2) oscillates on [tgo0)y.

Theorem 3.15 Assume that O;,0,, relations (1.16),
(1.18) and Egq. (3.51) hold. Moreover, if there exist A-
derivative  function 0(t) >0 and s9>0, such that

u(t) 238 <1 and ty <2s¢<t, respectively, and satisfy the
conditions below

(3.63)

Y
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ol (h(1,9))?
hIleigp (6(t),2so)/zs0 (H (o(2), $)Gs) 4G(s) )
5(S) As = 00
(1-58 )

(3.64)

where A(?) is given by (3.15). Then, Eq. (1.2) oscillates on
[l‘()OO)T.

Proof Assume to the contrary that (1.2) has a non-oscil-
latory solution. Let y(f) be a non-oscillatory solution of
(1.2). Then, without loss of generality, we assume that
¥(¢) is an eventually positive function, i.e., there exists %
such that y(r) > OVr € [foo0)y. A similar argument holds
for the case when y(¢) is eventually negative. We have
defined Riccati transformation function in (3.3). Now from
(3.19), we have

A0
"
)

G(t

(t)>w (1) < = G(1)o(1) + A(1)w(r)

- W w? (1),
which can be written as
6o _ A()
TN S () (1)
(1= 5 (1= 5u)
g(1)

(3.65)

Multiplying Eq. (3.65) by H°(o(t), s) and then integrating
from 2sy to o(t), we have

/om H(a(), $)9(5)(s) ,
_ ) -
250 (1 (s“(s)“(s))
a(t)
_ : Ha(a(t),S)WA(S)AS
a(r) H(o(1),5)A(s)
+ T~ w(s)As
/ (1-29u(s))

_/a(r) HU(O'(I)?AS)Q(S)
250 5(s)(1—:5)”8”(s))

From (3.63), (3.66) and by following the similar steps of
Egs. (3.56)—(3.59), we obtain

w?(s)As. (3.66)

Y4
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As <H(o(t),2s0)w(2s0)

(3.67)
Dividing Eq. (3.67) by H(a(7),2s0), we obtain
L L % (9
EoR / ) <H (010,9)65) =505 )
0(s) As<w(2sp) <oo
(1 — 50 (s )) '
(3.68)

For sufficiently large ¢, we derive a contradiction to (3.64),
which completes the proof of our theorem. O

Theorem 3.16 Assume that O;,0;, relations (1.16),
(1.18) and Egq. (3.51) hold. Moreover, if there exist A-
derivative function 6(t) >0 and s9>0, 1H<2s9<t,
respectively, and satisfying the following conditions below

Y (15) + ) (%0) = G0(0(ate) + () )

_ h(t,s) i

- 7 5o (I,S),

0
(3.69)

and

. 1 !
hIlIlil:lp H(tv 2S0) \/230 (3 70)

(H(t, 5)0(s)G(s) — %) As = 0o

then, Eq. (1.2) oscillates on [tyo0)y.

Proof Assume to the contrary that (1.2) has a non-oscil-
latory solution. Let y(f) be a non-oscillatory solution of
(1.2). Then, without loss of generality, we assume that
¥(#) is an eventually positive function, i.e., there exists f
such that y(f) > OVr € [tp00);. We have defined Riccati
transformation function in (3.3). Now multiplying
Eq. (3.28) by H(t, s) and integrating from 2s, to t, we have
following relation

" H$)0(0G(s)As < — [
t As) — 8(s)G(s)(als 5)3

[ Hey) (0%(s) — o( )g(sg()g() (s) +p( )2))WJ<S)AS
250 :

H(1, )W (s)As
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[ H(1,5)d(s)
2 (67(9))?
From (2.2) and (3.51), we obtain

t

H(t,5)0(s)G(s)As < H(t,2s0)w(2s0)

(w?(s))*As. (3.71)

250

! As) — 8(s)G(s)(a(s D]
+/2 (HA(r,s)+H(z,s) (0%(s) — o )ig()s() (s) + ! )2)))

S0

w?(s)As
[T H(t,5)0(s)
2 (67(5))°

From Egs. (3.69), (3.72) and by following the similar steps
of Egs. (3.35)-(3.39), we obtain a new relation

1 ' (h_(t,5))*
e /2 | (H(t, $)3(5)9(s) _T(s)>

(w?(s))*As. (3.72)

(3.73)

S0

As <w(2s9) <00,

for sufficiently large ¢. Thus, we derive a contradiction to
(3.70), which completes the proof of our theorem. (]

Corollary 3.17 Assume that Oi,0,, relations (1.16),
(1.18) and Egq. (3.51) hold. Moreover, if there exist A-
derivative function 06(t) >0 and s0>0, to<2s9<t,
respectively, and satisfying the following conditions below,

HY (1) + ) (980 = 6030 (a0 + (1) 5))
i)
=50 H(t,s)
(3.74)
and
lim sup t H(t,5)0(s)G(s)As

t—00 (t7 2‘90) 2s0

= o0 and limsup

[y
1—00 I"I(l‘7 25()) 2 ’

45(s)

S0

(3.75)

then, Eq. (1.2) oscillates on [tyoo)y. We can easily see that
Eq. (1.2) in its general form involves differential equation
and different types of difference equations depending on
the choice of the time scale T.

Remark 3.18 When T =R, Eq. (1.2) become second-

order linear delay difference equation:
Y'(1) +a()y () +y(t) + K(y(t = b)) + FOV( (t — h) =0,

(3.76)

where we have o(f) =t u(t) =0,g%(t) = ¢'(t) and

/ab g(t)At = /ab g(t)de.

Remark 3.19 When T = Z, Eq. (1.2) become second-
order linear delay difference equation:

Ay(1) + a(t)Ay(1) + y(1) + K(y(t = h)) +F OV (Ay(t = 1))
(3.77)
where we have o(f) =1+ 1,u(t) = 1,g"(t) = Ag(t) and

b b—1 b—1
/ 8080 = g0l = 3 ¢(0)

Remark 3.20 When T =HWZ K >0, Eq. (1.2) become
second-order linear delay difference equation with step size
hl

K (1) + al)) v (0) + 5(0) + KO0~ ) 58)
+fW(Awy(t = h))) =0,
where we have a(f) =t + I, u(t) = I, f2(t) = Awf(t) and

/f 1At = Z; L,flh V.

For a function

FOVEE (D)) = g(Dsen(x(n)) WA (1) Vx € R,

where g() = £ W vt e T, we would like to illustrate our
wip(t)

results by means of the following examples.

Example

Let us consider a second-order non-linear dynamic equa-
tion on time scale T.

1 X e
A0 + M0 + 30 + D kw0 = 1)
n=1
+2—sgn Z W(am-1) t—m)* =0
(4.1)

In view of Corollary 3.3, we choose the parameters as

follows: o(t) == La(t) :=1,p(t) := 3, Vkn, Wi €
R* such that 0<p(t) <k; <00, ka1 > 0, ko, := 0 and
Wom = 0,wou_1) > 0Vn,m € N respectively. Also 0<

u(t)y<t— so< tfor all t> 2sy, so>2. Thus, we have
1 <G(r) <1. Therefore, it is easy to verify that the condi-
tions Oy, O,, (1.16), (1.18) and (3.13) hold. The parameters
also satisfying the following conditions below:

[ (o002 (L)

> t—2sp) — 00 as t — o0.

16
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When p(f) = 0, we have

(t —2s9) — 00 as t — o0.
(4.3)

Now by the above parameters and conditions (4.2) and
(4.3), we establish some examples on different time scales
as follows.

Example 4.1 For T = Z, a second-order non-linear dif-
ference equation
2 1 S (2n—1)
Ay (1) +—Ay(0) +y(1) + D k- ((t = )
n=1
sgn(y(1)) | (2m—1)
2=—"= _n(Ay(t—nh =0.
Wil ’;W(Zm 1)( )’( ))
(4.4)
Where h=1 So=1p =2 such that
[2’OO)T:{2 3 4 },05<k] = 1,k2n+1 :W and

Wm—1) = = 1>Vn m € N. We have O<pu(r) =1<r—2

for all 4<r € {5,6,8,...} and 0.5<G(r)<1. Thus O; —
0,, (1.16) and (1.18) hold. It is easy to calculate that for
each ¢ € [2,00),, we have

—At:/ e_1(t,2 At:/

/2 ec()(t,2) 2 ’( ) 2
t 1 oo t—1 1

exp(/ log<l—>As>At:/ <1—)At
2 s 2 =2 l
S|

= —A =
=T

Therefore O, and Eq. (4.2) hold. Hence (4.4) oscillates on
[2, OO)T = {2') 3) 4; . }

Remark 4.2 Similarly, for T =HWZ, i > 0,, etc., there
exists so > 0 such that (4.1) oscillates on [fy, 00)y.

Example 4.3 For T = R, a second-order non-linear dif-
ferential equation

1 o0
" - _ @2n-1) _
Y0+ 0430+ 3 lj 3y O =) =0
(4.5)

Thus for each ¢ € 2, 00), we obtain O, holds, as follows

——dt = e_1(t,2)dt

/2 e (t,2) 2 (,2)
[ee] t 1 002

:/ exp(/ ——ds)dt:/ —dt = o0.
2 2 S 2 !

’r @ Springer

Therefore, from Eq. (4.3) and in view of corollary 3.3, we
conclude that (4.5) oscillates on [2, c0).

Conclusion

The oscillation of a function is a number that quantifies
how much a function varies between its extreme values as
it approaches infinity or some other point. It is very
important qualitative property of a function. There are
many criteria for oscillations, out of which two important
are Kamenev and Philos type. In this present work, we
have established such criteria for Eq. (1.2). First we have
proved Lemmas 2.11-2.13 and then used Riccati trans-
formation technique to establish the main result. We have
obtained some new conditions for the oscillations. It is also
important to note that the results presented in this paper are

not valid for T = ¢Z. The reason is given in the Remark
2.9. We have also constructed few examples for some time
scale T,ie., T=R, T =27 and T = /'Z to illustrate the
results.
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