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Abstract This paper presents two new iterative methods to

compute generalized singular values and vectors of a large

sparse matrix. To reach acceleration in the convergence

process, we have used a different inner product instead of

the common one, Euclidean one. Furthermore, at each

restart, a different inner product has been chosen by the

researchers. A number of numerical experiments illustrate

the performance of the above-mentioned methods.
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Introduction

There are a number of applications for generalized singu-

lar-value decomposition (GSVD) in the literature including

the computation of the Kronecker form of the matrix pencil

A� kB [5], solving linear matrix equations [1], weighted

least squares [2], and linear discriminant analysis [6] to

name but a few. In a number of applications like the

generalized total least squares problem, the matrices A and

B are large and sparse, so in such cases, only a few of the

generalized singular vectors corresponding to the smallest

or largest generalized singular values are needed. There is a

kind of close connection between the GSVD problem and

two different generalized eigenvalue problems. In fact,

there are many efficient numerical methods to solve gen-

eralized eigenvalue problems [8–11]. In this paper, we will

examine the Jacobi–Davidson-type subspace method which

is related to the Jacobi–Davidson for the SVD [5], which in

turn is inspired by the Jacobi–Davidson method to solve

the eigenvalue problem [4]. The main step in Jacobi–

Davidson-type method for the (GSVD) is solving the cor-

rection equations in an exact manner requiring the solution

of linear systems of original size at each iteration. In

general, these systems are considered as large, sparse, and

nonsymmetrical. For this matter, we use the weighted

Krylov subspace process to solve the correction equations

in an exact manner, and we show that our proposed method

has the feature of asymptotic quadratic convergence.

The paper is organized as follows. In ‘‘Preparations’’,

we will remind the readers of basic definitions of the

generalized singular-value decomposition problems and

their elementary properties. ‘‘A new iterative method for

GSVD’’ introduces our new numerical methods to solve

generalized eigenvalue problems together with an analysis

of the convergence of these methods. Several numerical

examples are presented in ‘‘Numerical experiments’’.

Finally, the conclusions are given in the last section.

Preparations

Definition 2.1 Supposes that A 2 Rm�n and B 2 Rp�n.

The generalized singular values of the pair ðA;BÞ are

presented as
X

ðA;BÞ ¼ r r� 0; detðATA� r2BTBÞ ¼ 0
��� �

:
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Definition 2.2 A generalized singular value is called

simple if ri 6¼ rj, for all i 6¼ j.

Theorem 2.3 Suppose A 2 Rm�n, B 2 Rp�n, and m� n.

Here, taking the previous theorem into consideration, we

see that there are orthogonal matrices Um�m, Vp�p and a

nonsingular matrix Xn�n, such that

UTAX ¼
X

1
¼ diagða1; . . .; anÞ ai � 0;

VTBX ¼
X

2
¼ diagðb1; . . .; bnÞ bi � 0;

ð1Þ

where q ¼ minfp; ng, r ¼ rankðBÞ, and

b1 � � � � � br [ brþ1 ¼ � � � ¼ bq ¼ 0. If aj ¼ 0 for any

j,r þ 1� j� n, then
P

ðA;BÞ ¼ r r� 0jf g. Otherwise,
P

A;Bð Þ ¼ ai
bi

i ¼ 1; . . .; rj
n o

.

Proof Refer to [3].

Theorem 2.4 Let A 2 Rn�n, B 2 Rn�n have the GSVD:

UTAX ¼
X

1
¼ diagðaiÞ; VTBX ¼

X
2
¼ diagðbiÞ ;

furthermore, consider it as nonsingular. Here, then, the

matrix pencil

0 A

AT 0

� �
� k

I 0

0 BTB

� �
ð2Þ

has eigenvalues kj ¼ �aj
�
bj; j ¼ 1; . . .; n which corre-

sponds to the eigenvectors:

uj

�xj
�
bj

 !
; j ¼ 1; . . .; n ð3Þ

where uj is the ith column of U and xj is the ith column of

X.

Proof Refer to [3].

Let D be a diagonal matrix, that is,

D ¼ diagðd1; d2; . . .; dnÞ. If u and v are two vectors of Rn,

we define the D-scalar product of ðu; vÞD ¼ vTDu: which is

well defined if and only if the matrix D is positively defi-

nite or to say di [ 0; i ¼ 1; . . .; n. The norm associated

with this inner product is the D-norm �k kD which is defined

as uk kD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u; uð ÞD

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
uTDu

p
8u 2 Rn.

As assumption B has full rank, ðx; yÞðBTBÞ�1 :¼
yTðBTBÞ�1

x is an inner product, and due to this, the cor-

responding norm satisfies xk k2ðBTBÞ�1 :¼ ðx; xÞðBTBÞ�1 .

Inspired by the equality Zk k2F¼ traceðZTZÞ for a real

matrix Z, we define the ðBTBÞ�1
-Frobenius norm of Z by

Zk k2ðBTBÞ�1;F
¼ traceðZTðBTBÞ�1

ZÞ: ð4Þ

A new iterative method for GSVD

We will advance different extraction methods here which

are often more appropriate for small generalized singular

values than the standard one from ‘‘A new iterative method

for GSVD’’. Before dealing with these new methods, we

should refer to our main idea which is developed consid-

ering Krylov subspace methods.

Theorem 3.1 Assume that r; u; vð Þ is a generalized sin-

gular triple: Aw ¼ ru and ATu ¼ rBTBw, where r is a

simple nontrivial generalized singular value, and

uk k ¼ Bwk k ¼ 1, and suppose that the correction

equations

P ¼ I � ~u~uT 0

0 I � BTB ~w ~wT

� �
; ð5Þ

are solved exactly in every step. Provided that the initial

vectors ð~u; ~wÞ are close enough to ðu;wÞ the sequence of

approximations ð~u; ~wÞ converges quadratically to ðu;wÞ.

Proof Refer to [4].

Lemma 3.2 Having in mind the Theorem 3.1, now sup-

pose that m steps of the weighted Arnoldi process [7] have

been performed on the following matrix:

I � uuT 0

0 I � BTBwwT

� �
�hI A

AT �hBTB

� �
: ð6Þ

Furthermore, consider the matrix eHm as the Hessenberg

matrix, whose nonzero entries are the scalars ~hi;j, con-

structed by the Weighted Arnoldi process. Here, we notice

that the basis eVm ¼ ~v1; . . .; ~vm½ � constructed by this algo-

rithm is D-orthonormal and we have

eV T
mD
eVm ¼ Im; ð7Þ

I � uuT 0

0 I � BTBwwT

� �
�hI A

AT �hBTB

� �
eVm

¼ eVmþ1

eHm

hmþ1;me
T
m

� �
: ð8Þ

Proof See [4].

We know that similar to Krylov methods, the mth

ðm� 1Þ iterate xm ¼ sm; tm½ �t of the weighted-FOM and

weighted-GMRES methods belong to the affine Krylov

subspace:
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s0

t0

� �
þ jm

I � uuT 0

0 I � BTBwwT

� ��

�
�hI A

AT �hBTB

� �
;

r
sð Þ
0

r
tð Þ
0

 !!
: ð9Þ

Now, it is the time to prove our main theorem.

Theorem 3.3 Considering Theorem 3.1, m steps of the

weighted Arnoldi process have been run on (7). Here, the

iterate xm ¼ sm; tm½ �t is the exact solution of the correction

equation:

P
�hI A

AT �hBTB

� �
s

t

� �
¼ �r; s?~u; t? ~w: ð10Þ

Proof The iterate xWF
m of the weighted-FOM method is

selected, because its residual is D-orthonormal or

r
ðsÞ
m

r
ðtÞ
m

 !WF

?D jm
I � uuT 0

0 I � BTBwwT

� ��

�
�hI A

AT �hBTB

� �
;

r
sð Þ
0

r
tð Þ
0

 !!
: ð11Þ

The iterate xWG
m of the weighted-GMRES method is

selected to lessen the residual D-norm in (9). Here, we

notice that it is the solution of the least squares problem:

minimize s;t½ �t2 4:4ð Þ
A ~w� h~u

AT~u� hBTB ~w

� �				

�P
�hI A

AT �hBTB

� �
s

t

� �				
D

: ð12Þ

In these methods, we use the D-inner product and the D-

norm to calculate the solution in the affine subspace (9) and

we create a D-orthonormal basis of the Krylov subspace:

jm
I�uuT 0

0 I�BTBwwT

� �
�hI A

AT �hBTB

� �
;

r
ðsÞ
0

r
ðtÞ
0

 ! !
:

ð13Þ

by the weighted Arnoldi process. An iterate xm of these two

methods can be transcribed as

sm
tm

� �
¼ s0

t0

� �
þ eVm

y
ðsÞ
m

y
ðtÞ
m

 !
;

where ym 2 Rm.

Therefore, the matching residual rm ¼ r
ðsÞ
m ; r

ðtÞ
m

h it

satisfies

r
ðsÞ
m

r
ðtÞ
m

 !
¼

A ~w� h~u

AT~u� hBTB ~w

� �
� I � uuT 0

0 I � BTBwwT

� � �hI A

AT �hBTB

� �
sm

tm

� �

¼
A ~w� h~u

AT~u� hBTB ~w

� �
� P

�hI A

AT �hBTB

� �
s0

t0

� �
þ eVm

y
ðsÞ
m

y
ðtÞ
m

 ! !
;

¼
r
sð Þ
0

r
tð Þ
0

 !
� P

�hI A

AT �hBTB

� �
eVm

y
ðsÞ
m

y
ðtÞ
m

 !
;

¼ eVmþ1 be1 �
eHm

hmþ1;me
T
m

 !
y
ðsÞ
m

y
ðtÞ
m

 ! !
;

where b ¼ r0k kD, r0 ¼ r
ðsÞ
0 ; r

ðtÞ
0

h it
; and e1 is the first vector

of the canonical basis.

At this point, the weighted-FOM method entails finding

the vector yWF
m ¼ y

ðsÞ
m ; y

ðtÞ
m

h it
solution of the problem:

eV T
mD
eVmþ1ðbe1 � eHmy

WF
m Þ ¼ 0;

which is equal to solve

eHmy
WF
m ¼ be1: ð14Þ

To the extent that the weighted-GMRES method is

considered, the matrix eVmþ1 is D-orthonormal, so we

have

rmk k2D¼ eVmþ1ðbe1 � eHmymÞ
		 		2

D
¼ be1 � eHmym
		 		2

2
;

and problem (12) is condensed to find the vector yWG
m

solution of the minimization problem:

minimizey2Rm be1 � eHmy
		 		

2
: ð15Þ

We can reach the solution of (14) and (15) with the use

of the QR decomposition of the matrix eHm, as for the FOM

and GMRES algorithms.

When m is equal to the degree of the minimal polyno-

mial of

I � uuT 0

0 I � BTBwwT

� �
�hI A

AT �hBTB

� �

for r0 ¼ ½rðsÞ0 ; r
ðtÞ
0 �t, the Krylov subspace (13) will be

invariant. Therefore, the iterate xm ¼ ½sm; tm�t gained by

both methods is the exact solution of the correction

Eq. (10). j

It is time to write the main algorithm in this paper now.

The following algorithm applies FOM, GMRES, weighted-

FOM, and weighted-GMRES processes to solve the cor-

rection Eq. (10) and as a final point to solve the generalized

singular-value decomposition problem. They are repre-

sented as F-JDGSVD, G-JDGSVD, WF-JDGSVD, and

WG-JDGSVD.
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As Algorithm 3.1 displays, there are two loops in this

algorithm. One of them computes the largest generalized

singular value called the outer iteration, and the other

called the inner iteration solves the system of linear

equation at each iteration. Numerical tests indicate that

there is a significant relation between parameter m and the

norm of residual vector and the computational time.

Convergence

We will now demonstrate that the method we have pro-

posed has asymptotically quadratic convergence to gener-

alized singular values when the correction equations are

solved in an exact manner and tend toward linear conver-

gence when they are solved with a sufficiently small

residual reduction.

Theorem 3.4 Having in mind Theorem 3.3, suppose that

m steps of the weighted Arnoldi process have been per-

formed on (6) and xm ¼ ½sm; tm�T is the exact solution of the

correction Eq. (10). Provided that he initial vectors ð~u; ~wÞ
are close enough to ðu;wÞ, the sequence of approximations
ð~u; ~wÞ converges quadratically to ðu;wÞ.

Proof Suppose

A ¼ 0 A

AT 0

� �
; B ¼ I 0

0 BTB

� �

and P are like what you have seen in (5). Let sm; tm½ �T with

sm?~u and tm? ~w be the exact solution to the correction

equation:

PðA� hBÞ sm
tm

� �
¼ �r: ð16Þ

Besides, let au ¼ ~uþ s; s?~u, and bw ¼ ~wþ t; t? ~w,

for certain scalars a and b, satisfy (15); note that these

decompositions are possible meanwhile uT~u 6¼ 0 and wT ~w 6
¼ 0 because of the assumption that the vectors ð~u; ~wÞ are

close to ðu;wÞ. Projecting (16) yields

PðA� hBÞ s

t

� �
¼ �r þ P

ðl1 � hÞs
ðl2 � hÞBTBt

� �
: ð17Þ

Subtracting (16) from (17) gives

PðA� hBÞ s� sm
t � tm

� �
¼ P

ðl1 � hÞs
ðl2 � hÞBTBt

� �
:

Thus for ð~u; ~wÞ close enough to ðu;wÞ, PðA� hBÞ is a
bijection from ~u? � ~w? onto itself. Together with

l1 ¼ ~uTAð ~wþ tÞ ¼ hþ O tk kð Þ;
l2 ¼ ð ~wþ tÞTATð~uþ sÞ= Bð ~wþ tÞk k2¼ hþ O sk k þ tk kð Þ;

this implies asymptotic quadratic convergence:

au� ð~uþ smÞ
bw� ð ~wþ tmÞ

 !					

					 ¼ s� sm
t � tm

� �				

				 ¼ O
s

t

 !					

					

2
0
@

1
A:

Numerical experiments

In this section, we look for the largest generalized singular

value, using the following default options of the proposed

method:

Maximum dimension of search spaces 30

Maximum iterations to solve correction equation 10

Fix target until rk k� e 0:01

Initial search spaces Random

Example 4.1 The matrix pair ðA;BÞ is constructed, such
that that they are similar to experiments as [7]. We choose

two diagonal matrices of dimension n ¼ 1000. For

j ¼ 1; 2; . . .; 1000

C ¼ diagðcjÞ; cj ¼ n� jþ 1ð Þ=2n; S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p
;

D ¼ diagðdjÞ; dj ¼ j=250d e þ rj

where the rj uniformly distributed on the interval ð0; 1Þ and
�d e denotes the ceil function. We take

A ¼ Q1CDQ2; B ¼ Q1SDQ2

where Q1 and Q2 are two random orthogonal matrices. The

estimated condition numbers of A and B are 4:4e2 and

5:7e0, respectively (Table 1).

We can see that by increasing the value of m, the

number of outer and inner iterations decreases. There-

fore, the consuming time also decreases. But not that if

m is very large, the number of iterations increases

because of loosing the orthogonality property. This

example is given to show the improvement brought by

the weighted methods WF-JDGSVD and WG-JDGSVD

is simultaneously on the relative error and on the com-

putational time (Fig. 1).

From figure one, we can see that the suggested method

WG-JDGSVD is more accurate form the other methods.
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Example 4.2 In this experiment, we take A ¼ CD and

B ¼ SD of various dimension n ¼ 400; 800; 1000; 1200:

This example is given to show the performance of two

new methods on the large sparse problems. In this test, we

have difficulties in computing the largest singular value for

ill-conditioned matrices A and B. We note that in this

experiments, due to the ill-conditioning of A and B, it

turned out to be advantageous to turn of the Krylov option.

Example 4.3 Consider the matrix pair ðA;BÞ, where A is

selected from the university of Florida sparse matrix col-

lection [8] as lp-ganges. This matrix arises from a linear

programming problem. Its size is 1309� 1706 and it has a

total of Nz ¼ 6937 nonzero elements. The estimated

condition number is 2:1332e4, and B is the 1309� 1706

identity matrix (Tables 2, 3).

We should mention that, for all considered Krylov

subspaces sizes, each weighted method converges in less

iterations and less time than its corresponding standard

method. The convergence of F-JDGSVD and G-JDGSVD

is slow, and we have linear asymptotic convergence.

However, the two WF-JDGSVD and WG-JDGSVD

methods have quadratic asymptotic convergence, because

the correction Eq. (10) is solved exactly.

Remark 4.4 From the above examples and tables, we can

see that the two suggested methods are more accurate than

G-JDGSVD and F-JDGSVD for the same value m, but its

computational times are often a little longer than

G-JDGSVD and F-JDGSVD. Therefore, we can use WF-

JDGSVD and WG-GSVD if the computational time is less

important.

Remark 4.5 The algorithm we have described finds the

largest generalized singular triple. We can compute mul-

tiple generalized singular triples of the pair ðA;BÞ using a

deflation technique. Suppose that Uf ¼ u1; . . .; uf

 �

and

Table 1 Implementation of Algorithm 3.1 for A;Bð Þ with different values of m

m F-JDGSVD G-JDGSVD WF-JDGSVD WG-GSVD

rmax rk k2 Time rmax rk k2 Time rmax rk k2 Time rmax rk k2 Time

4 0.5766 0.0084 23.95 0.5767 0.0062 28.35 0.5773 9.22e-5 31.13 0.5770 8.88e-6 22.08

6 0.5773 0.0052 19.82 0.5770 0.0043 23.32 0.5772 4.82e-5 28.76 0.5768 4.01e-6 17.51

8 0.5773 0.0023 16.10 0.5771 0.0028 19.30 0.5773 7.92e-6 23.66 0.5772 1.00e-6 14.70

10 0.5772 0.0058 14.85 0.5772 0.0014 16.31 0.5773 2.81e-6 17.99 0.5772 9.94e-7 12.04

Fig. 1 Errors plot created by F-JDGSVD, G-JDGSVD, WF-JDGSVD, and WG-GSVD
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Wf ¼ w1; . . .;wf


 �
contain the already found generalized

singular vectors, where BWf has orthonormal columns. We

can check that the pair of deflated matrices

Â :¼ ðI � UfU
T
f ÞAðI �WfW

T
f B

TBÞ and

B̂ :¼ BðI �WfW
T
f B

TBÞ
ð18Þ

has the same generalized singular values and vectors as the

pair ðA;BÞ (see [3]).

Example 4.6 In generalized singular-value decomposi-

tion, if B ¼ In, the n� n identity matrix, we get the sin-

gular value of A. SVD has important applications in image

and data compression. For example, consider the following

image.

This image is represented by a 1185� 1917 matrix A.

Which we can then decompose via the singular-value

decomposition as A ¼ U
P

VT where U is 1185� 1185,P
is 1185� 1917, and V is 1917� 1917. The matrix A,

however, can also be written as a sum of rank 1 matrices

A ¼
Pr

j¼1 rjujv
T
j , where r1 � r2 � � � � � rr [ 0 are the r

nonzero singular value of A. In digital image processing,

any matrix A of order m� nðm� nÞ generally has a large

number of small singular values. Suppose there are ðn� kÞ
small singular values of A that can be neglected (Fig. 2).

Then, the matrix Ak ¼ r1u1vT1 þ r2u2vT2 þ � � � þ rkukvTk
is a very good approximation of A, and such an approx-

imation can be adequate. Even when k is chosen much less

then n, the digital image corresponding to Ak can be very

close to the original image. Below are the subsequent

approximations using various numbers of singular values.

The observation on those examples, we found when

k� 20, the images are blurry but with the increase of

singular values, when their numbers are about 50, we have

a good approach to the original image.

Conclusions

In this paper, we have suggested two new iterative meth-

ods, namely, WF-JDGSVD and WG-JDGSVD, for the

computation of some of the generalized singular values and

corresponding vectors. Various examples studied illustrate

these methods. To accelerate the convergence, we applied

the Krylov subspace method for solving the correction

equations in large sparse problems. In our methods, we see

the existence of asymptotically quadratic convergence,

because the correction equations are solved exactly. In the

meantime, the correction equations in F-JDGSVD and

G-JDGSVD methods are solved inexactly for large sparse

problems, so we have linear convergence.

Table 2 Implementation of

Algorithm 3.1 for ðA;BÞ with
various dimensions and m ¼ 6

n F-JDGSVD G-JDGSVD WF-JDGSVD WG-GSVD jðAÞ jðBÞ

rk k2 Time rk k2 Time rk k2 Time rk k2 Time

400 8.82e-4 7.03 0.0098 6.08 2.47e-8 11.85 2.14e-9 11.78 3.5e2 3.2e0

800 0.0085 19.59 0.0063 21.89 9.19e-8 26.09 4.44e-8 22.25 3.6e2 5.6e0

1200 0.0034 27.83 0.0073 29.35 6.74e-6 41.18 5.19e-7 42.35 4.8e2 6.6e0

1600 0.0075 38.65 0.0084 35.89 1.19e-5 49.09 4.99e-5 58.17 6.0e2 8.9e0

Table 3 Implementation of Algorithm 3.1 for A;Bð Þ with different values of m

m F-JDGSVD G-JDGSVD WF-JDGSVD WG-GSVD

rmax rk k2 Time rmax rk k2 Time rmax rk k2 Time rmax rk k2 Time

10 3.9889 0.0075 52.57 3.9865 0.0079 48.86 2.7297 0.00034 63.59 3.9890 0.00015 55.36

20 3.9907 0.0054 46.63 3.9889 0.0035 42.84 2.7298 0.00098 56.99 3.9890 0.00041 47.39

30 2.7298 0.0016 39.78 3.9889 0.0097 36.08 3.9907 0.00043 48.74 3.9888 0.00040 39.65

40 3.9897 0.0091 33.17 3.9888 0.0052 30.89 2.7298 0.00027 38.37 3.9887 0.00014 32.68

Fig. 2 Original image
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As the amount of the WF-JDGSVD and WG-JDGSVD

methods is not much larger than that of the F-JDGSVD and

G-JDGSVD methods, and as the weighted methods need

less iterations to convergence, the parallel version of the

weighted methods seems very interesting. From the

tables and the figures, we see that when m increases, the

suggested methods are more accurate than the previous

methods; moreover, by increasing the dimension of the

matrix, two suggested methods are applicable; this results

are supported by convergence theorem which shows the

asymptotically quadratic convergence to generalized sin-

gular values.
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