Math Sci (2017) 11:145-154
DOI 10.1007/540096-017-0220-6

=
@ CrossMark

ORIGINAL RESEARCH

Wavelet methods for solving three-dimensional partial differential

equations

Inderdeep Singh' - Sheo Kumar'

Received: 31 August 2016/ Accepted: 12 March 2017/ Published online: 23 March 2017

© The Author(s) 2017. This article is an open access publication

Abstract We present, a collocation method based on Haar
wavelet and Kronecker tensor product for solving three-
dimensional partial differential equations. The method is
based on approximating a sixth-order mixed derivative by a
series of Haar wavelet basis functions. The present method
is suitable for numerical solution of all kinds of three-
dimensional Poisson and Helmholtz equations. Numerical
examples are solving to establish the efficiency and accu-
racy of the present method. Numerical results obtained are
better as compared to numerical results obtained in past.
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Introduction

In many applications of engineering and science, there are
various boundary value problems which involve three-di-
mensional partial differential equations. Only a few of
these equations can be solved by analytical methods. In
most cases, we depend on numerical solutions of such
partial differential equations. There are several numerical
methods available for solving these equations; the most
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common method used for solving such equations is finite
difference method; but this method is slow. In the last few
years, other numerical techniques were developed, which
are more accurate, efficient and faster than previous
numerical algorithms, such as: (a) Jacobi pseudospectral
approximation for solving nonlinear complex generalized
Zakharov system in [2], (b) A highly accurate collocation
algorithm for solving 1 + 1 and 2 + 1 fractional percola-
tion equations in [3], (c) Spectral-Galerkin algorithms
using Jacobi polynomials for solving second- and fourth-
order differential equations in [8] and [9] respectively, and
(d) Legendre spectral-Galerkin method for solving multi-
dimensional elliptic Robin boundary value problems in
[11], (e) Jacobi spectral-Galerkin method for the integrated
forms of fourth-order elliptic differential equations in [10].
In the last few decades, methods based on wavelet basis
functions have been used abruptly. These methods are
more efficient and give more accurate numerical results as
compared to other well known methods. Wavelet methods
are more interesting, accurate and reliable for solving
integral and differential equations. Wavelets are a powerful
and efficient mathematical tool that divides the data func-
tions or operators into distinct frequency constituents and
each constituent is analyzed or investigated with a resolu-
tion matching on its scale. Nowadays, wavelet methods are
becoming a favorite choice of researchers for solving dif-
ferential and integral equations. Haar [12] discovered a
function, later known as Haar wavelet, in 1909. Such Haar
functions are rectangular pair pulses and these are known
as Daubechies wavelet of order 1. Also, it is a simplest
orthonormal wavelet with compact support. The main
disadvantage of Haar wavelets is their discontinuity and,
therefore, derivatives do not exist at the points of discon-
tinuities. Due to this, it is impossible to obtain the
numerical solution of differential and integral equations.
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There are two possibilities for overcoming these short-
comings. First, to regularize the piecewise constant Haar
functions with interpolation splines; this technique has
been applied by Cattani in [4, 5]. But, by this technique, it
is difficult to find the solution easily and simplicity of Haar
wavelets gets lost. Another possibility, which is proposed
by Chen and Hsiao in [6, 7] is that they recommended to
expand the highest derivative appearing in the differential
equation into the Haar series, instead of the function itself.
The other derivatives (and the functions) are obtained
through integrations.

Numerical solutions of differential and integral equa-
tions using Haar wavelet have been presented by Lepik in
[14, 15]. Numerical solutions of two-dimensional PDEs
using Haar wavelet have been presented in Lepik [16]. The
fundamental idea behind the Haar wavelet method is to
convert the given problem into a system of equations
which involves finite number of variables. In numerical
analysis, because of the property of localization, wavelet
based algorithms have become an important tools for
solving ordinary and partial differential equations. A new
approach of the Chebyshev wavelets method for partial
differential equations with boundary conditions of the
telegraph type equation has been presented in [13]. Haar
wavelet collocation method has been presented in [19], for
solving boundary layer fluid flow problems. A numerical
assessment of parabolic partial differential equations using
Haar and Legendre wavelets has been presented in [20].
Numerical solution of two-dimensional elliptic PDEs with
nonlocal boundary conditions has been presented in [21].
In the present paper, we use Haar wavelet collocation
method for solving three-dimensional Poisson and Helm-
holtz equations because Haar wavelet method has sparse
representation, fast transformation, and possibility of
implementation of fast algorithms. The general linear
partial differential equation of the second order in three
independent variables is of the form

2 2 2

O“u o“u O“u
A11(X,%Z)@+Bl1(x,y,2)a—yz+ C11(x7y72)a—zz "
2

+Fu|xy o Ou Ou Ou O°u | =o.

>a_xu a_y7 6_Z7 axZayv ...

on K={(x,y,2):a<x<b,c<y<d,e<z<f}, with

boundary conditions

u(O,y,z) :gO(Y>Z)7u(x’O7Z) :gl(x,z),u(x,y,O) :gZ(xvy)a
(2)

and

u(1,y,2) = g3(y,2),u(x, 1,2) = g4(x,2),u(x,y,1) = g5(x,y),
(3)
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where A1, Bi1, Ci1, 80,81, 82, 83, 84,85 and f are known
functions. The Poisson equation in three-dimensional
Cartesian coordinates system plays an important role due to
its wide range of application in areas like ideal fluid flow,
heat conduction, elasticity, electrostatics, gravitation and
other science fields especially in physics and engineering.
Poisson and Helmholtz equations are arising in different

branches of science and engineering such as fluid
mechanics, electricity and magnetism and torsion
problems.

Our main aim is to develop an accurate and efficient
collocation method using Haar wavelet and Kronecker
product for solving three-dimensional partial differential
equations such as Poisson and Helmholtz equations, by
approximating a sixth-order mixed derivative by a series of
Haar wavelet basis functions. In Sect. 2, Haar wavelet
method has been discussed. Error analysis has been
described in Sect. 3. In Sect. 4, numerical examples have
been solved using the present method and compared with
the exact solutions.

Kronecker product of two matrices

For saving calculation time, we use the concept of
Kronecker product of matrix A with matrix B of orders
p X q respectively and is defined as:

a 1B Cl12B aqu
Clle azzB aqu

A@B= | N E (4)
anB apB ap,B

The first documented work on Kronecker products was
written by Johann Georg Zehfuss between 1858 and 1868.
In MATLAB, the Kronecker product of two matrices A and
B is directly calculated with the command kron(A, B).
Kronecker product of three matrices
The Kronecker product of three A, B and C matrices
each of orders p x g can be calculated as:

ankE apnkE agE
azlE ang s aqu

ARBRC=| | . . Nk (5)
ap k. apnk apeE

where E is of the form:
b“C b12C bqu
b21C b22C s bqu

E=oc=| . . | (6)
bp1C  bypC b,,C
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Haar wavelet method

Consider x € [g1,02], y € [03,04] and z € [05,06] where
g1, 03, 03, G4, 05 and g¢ are given constants. We shall
define the quantities M; =21, M, = 2" and M; = 2%
where Jy, J> and J; are the maximal levels of resolution.
Now, divide the interval [61,03], [03,04] and [os, o6
respectively into 2M;, 2M, and 2M3 subintervals, each of
length Ax = (0, — 01)/2My, Ay = (064 — 03)/2M, and
Az = (06 — 05)/2M3 respectively. Now, we introduce

parameters : dilatation parameter j; = 0,1,2,...,J;; j» =
0,1,2,....,J» and jz=0,1,2,...,J3 and translation
parameter k; = 0,1,2,...m; — 15 kb, =0,1,2,...,mp — 1

and k3 =0,1,2,...,
ms = 253, The wavelet numbers i, i» and i3 are calculated
according the formula iy =m; +k; + 1, i =my +ky + 1
and i3 = m3 + k3 + 1 respectively. Therefore, we have

ms — 1, where m; = 2/', my = 22 and

L, o <x<o,

hi(x) =< =1, w<x<oz, (7)
0, otherwise,
17 ﬁl §y<ﬁ27
hiz(y): _17 ﬁ2§y<ﬁ37 (8)
0, otherwise,
and
17 71 §Z<’y2a
hiy(z) = ¢ —1, 7, <z<ys, )
0, otherwise,
where oy = g +2kjw1Ax, o = a1 + (2k; + 1)w; Ax,
03 = 01 +2(k1 + 1)(1)1A)C, (O] :Ml/ml,
ﬁl = 03 + 2k Ay, ﬁz =03+ (2](2 + 1)602Ay,
f3 =03+ 2(kr + 1) Ay, wp = My /my,
V1 = 05 + 2ksms Az, VY2 = 05+ (2k3 + 1)0)3AZ,
y3 = 05 + 2(ks + w3 Az, w3 = M3 /ms.

The collocation points are obtained as:

(2 - 1)

X, = o + oM, ,11:1,2,3,4,...,2M1; (10)
20, — 1
v, =By + w12:1,2,3,4,...,2M2; (11)
2M,
and
(2L -1)
— —— 53=1,2,3,4,...,2M;. 12
I3 /1+ 21‘4?3 s 63 5 &y Dy Ty ) 3 ( )

Consider the approximate wavelet solution of the form

2M, 2M, 2M3

=220 Wil ()

l| ]lo ll;

hi, () his (2).-

uxwiz X052

(13)

Integrating (13), twice with respect to x, from O to x, we
obtain

”yyzz(xvyaz) = “yyzz(oaya Z) + x”xyyzz(oay>z)

oM, 2M, 2M; (14)

+ZZZWW?BP2!1 2( )his (z).

=1 lz 1 lz
Putting x = 1 in (14), we obtain

”xyyzz(oay7 Z) = uyyzz(L)’a Z) - uyyzz(07y7 Z)
2M, 2M, 2M; (15)

—ZZmem iy ()i, (2).

h=1i=1i=

From (14) and (15), we obtain

”yyzz(xayvz) = “yyzz(OaYa Z) + x(”yyzz(LYaz) - “yyzz(oy)’a Z))

2M; 2M, 2M3

+ZZ Z “/111213 P211

l| 112 113

— Py (1)) i, (y)his (2)-

(16)

Again, integrating (16), twice with respect to y, from 0 to y,
we obtain

uzz(x,y, Z) = lpll(xvy7z) +y‘//12(x» Z) +x‘vb13(yaz)
2My 2M, 2M;5
+Z Z Z ‘/Viliziz (P27i1 (x) - 'XPZ«,il (1))P2,i2 (y)hi3 (Z)
i1=1 =1 i3=1
(17)
where

l//II(XaYa Z) = MZZ(X,O,Z) + MZZ(O,y,Z) - uzz(oa 0, Z)a (18)

‘plz(xa Z) = (Myzz(x,(),Z) - uyzz<0>O>Z) +X(MyZZ(O,O,Z)
_”yzz(laoaz)))7
(19)
l//13(y,Z) = (uzz(l,y,z) - Mzz(l,O,Z) - MZZ(O,y,Z) (20)
+1::(0,0,2)).
Putting y = 1 in (17), we obtain
Yio(x,2) = e (x, 1,2) — Yy (x, 1,2) — xipy5(1, 2)
M, 2M, 2M;
_ZZZ i1his P211 XPZ,il(l))PZ,iz(l)his (Z)
i=1i=1i=

(1)

From (17), using (21), we obtain

Y
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=Y (x,9,2) +y(uz(x, 1,2) =y (x, 1, 2)

—x13(1,2)) + x15(y, 2)
oM, 2M, 2M

+ZZZ Wlllzh PZII(X) XPZH(l))(PZQ( )

l] 1!2 1!1

—yP2, (1))hi(2).

uzz(an7 Z)

(22)

Now, integrating (13) twice with respect to z from O to z,
we obtain

uxxyy(xvyaz) = uxxyy(xyyao) + Zuxxyyz(xvyao)

2M1 2M2 2M3 (23)
+ZZZ 111213 y)PZIs( )
l| 112 ll;
Putting z = 1 in (23), we obtain
uxxyyz(-xvy>o> = uxxyy(x>% 1) - uxxyy(xay7 O)
2M, 2M, 2M; (24)
_ZZZ l112l3 y)leS(])
i=1i=1i=
From (23), using (24), we obtain
uxxyy(xvyaz) = uxxyy(xv)’a O) + Z[uxxyy(xaya 1) - uxxyy(xvyvo)]
2M, 2M, 2M;
+ZZZWI”7[; I] )(P2l3( ) ZPZJ}(I))'
ll 112 113
(25)

Again, integrating (25) twice with respect to x, from O to x,
we obtain

Uy (%,9,2) = Y1 (X, 3, 2) + x5 (v, 2) + 23 (x, )
2M 2M, 2M;3
+ZZZ 111213P2 i (y)(P2~,i3(Z) - ZPZ,is(l))7
h=1i=1i3=
(26)
where
IIIZI(Xaya Z) = uyy(O,y, Z) + uyy(x,y,O) - u)’)’(o’yvo)»
(27)
Y2 (¥:2) = (tayy(0,,2) — 1y (0,7, 0)
{0y (0,9,0) = by (0,3, 1), 2%)
‘//23 (x y) ( Uyy (x’ ) u}’}’(07y7 1) - u}'}'(x’yv 0)
+ ”vv(o y,0)) - ®

Putting x = 1 in (26), we obtain:

ﬁ @ Springer

lﬁ22(y’z) = u}‘}’(I’Y7Z) -

oM, 2M, 2M;

_Z Z Z an;PZ i

11 112 lh

lle(lay’ Z)
hiy () (P2,i,(2)

— 2s(1,y)
— 2Py (1)).

(30)
Substituting (30) in (26), we obtain

u)’)’('xayaz) = lle('x7y7Z) +x(u}'}'(17y7z) -

—23(1,9)) + 23(x,y)
2My 2M, 2M;

+ ZZZ Wz]m3 PZz]

I[ 1!2 1!3

— 2P (1))

x//21(1,y,z)

— xPa,iy (1))hi, () (P2, (2)

(31)

Now, integrating (13) twice with respect to y, from O to y,
we obtain:

uxxzz(xayvz) = Mxxzz(x7 0, Z) + yuxxyzz(xv()vZ)

2My 2M, 2M;3 (32)
+ZZZW1112H i Ple(l)h%( )
11 112 113
Putting y = 1 in (32), we obtain
uxxyzz(xv 0, Z) = “xxzz(x7 I,Z) - uxxzz(xa 0, Z)
2M, 2M, 2M; (33)
_ZZZVVHQB i P212( )his(z)'
h=1i=1i=
From (32) and (33), we obtain
uXXZZ('x7y7 Z) = MXXZZ('X7 07 Z) + y[uXXZZ('x7 17 Z) - uXXZZ('x7 07 Z)]
2M, 2M, 2M3
+Z ZZ Wlllzl% ll P2 12( ) yP2,i2(1))hi3 (Z)
11 1!'; 113
(34)

Again, integrating (34), twice with respect z, from 0 to z,
we obtain

Uer(X,9,2) = Y31 (%, ,2) + 2030 (%, ¥) + y33(x, 2)
oM, 2Ms 2M,

+Z Z Z Wlllzlq l|

11 112 lh

P2 lz(y) _yPZ,iz(l))Pz-,i3(Z)’

(35)
where
‘/J3l(xay7 Z) = Mxx()@y, O) + uxx(x7 0, Z) - MXX(X,O,O),
(36)
(”xxz(xayv 0) - uxxz(x,0,0) + )’("‘xxz(x>070)
—Uy(x,1,0))),

Ya(xy) =

(37)
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Wa3(x,2) = (e (x, 1,2) — ue(x,1,0)
— Uy (x,0,2) + Uy (x,0,0)).

Putting z =1 in (35), we obtain

l,b32()€,y) = uxx(xaya 1) - lp31(xvyv 1) - ylanS(x’ 1)

2My 2M> 2M3

_Z Z Z ‘/thtzz; 11

1!2 1!3

X)(Paiy (¥) = yP2,i (1)) Pois (1)

(39)
From (35) and (39), we obtain

U (%,9,2) = Y31 (%, ¥, 2) + 2(unc(x, 3, 1) =

_ylnb'B(x, l)) + yl/I33(X,Z)
2M, 2M, 2M;

+2 0D Wi

(Pais(2) = 2Pr (1))

Y3 (x,3,1)

P212( ) yPZ,iz(l))

(40)

Again, integrating (40), twice with respect to x, from O to x,
we obtain

u(x,y,z) = @O(xay;z) +x(pl(yaz) +zq02(x,y)
—y23(x) + yu(x, 2)
2M, 2M, 2M;
+ ZZZ 111213P211 P21 ( ) yPle(l))
=1 i=1i=
(Pz,z3( ) — ZPZ-,IS(I))
(41)
where
(P()(x,y72) = M(O,y,Z) + u(x,y,O) - u(07y70) + M(X,O,Z)
- U(0,0,Z) - u(x, 07 0) + M(07 07 0)7
(42)
?1(9,2) = (uc(0,¥,2) — u(0,,0) — (0,0, 2) + u,(0,0,0))
+2(ux(0,¥,0) — ux(0,y,1) + (0,0, 1) — ux(0,0,0))
—yz(u:(0,1,0) — u,(0,1,1) + u,(0,0,1) — u (0 0,0))
+y(u,(0,1,0) — u,(0, 1, 2) + u,(0,0,2) — u,(0,0,0)),
(43)
Py (x,y) = u(x,y, 1) = u(0,y,1) — u(x,y,0)
+u(0,y,0) — u(x,0,1) +u(0,0,1) + u(x,0,0) (44)
- M(O, 07 0)7
@3(x) = u(x,1,1) —u(0,1,1) — u(x, 1,0)

+u(0,1,0) — u(x,0,1) + u(0,0, 1) + u(x,0,0) (45)
—u(0,0,0),

=u(x,1,z) —u(0,1,z) — u(x, 1,0)
0) — u(x,0,z) + u(0,0,2) + u(x,0,0) (46)

|
<
—~
\.o >
=
~~

Putting x = 1 in (41), we obtain

©1(v,2) = u(l,y,2) — @o(1,y,2)

—205(1,y) +yzo3(1) — you(1,2)
2M, 2M, 2M;

- ZZZ 111213P211

(Pz,u( ) = ZPZ-,lz(l))'

) (P2, (¥) = P2, (1))

(47)

From (41) and (47), we obtain

M(.X,y7Z) = QD()(-x,y,Z) +x{u(1,y7z) - QD()(l,y,Z)

—205(1,5) +yz03(1) — ypu(1,2) } + 205 (x,y)
M, 2M> 2M;

+)}(/)4 X, Z +ZZZW”121; Ple

=1li=1i3=
(P2,iz( ) _yPliz(l))(PZ-,is( ) _ZPZJE(I))'

—yz(p3(x)

—xP; (1))

(48)

Substituting the values from (22), (31) and (40) in (1), we
obtain
OM; 2M 2M;

ZZZ tltzz; l|l2!; x ¥, 2 )+Silizi3(xvyvz) (49)

=1i=1i=1
+Tlllzl3(x Y, 2 )] F()C yvz)a
where

lllzl%(x ;2 ) = {hll( )}{(Pliz(y)

—yP2, (1)) H{ (P2, () — 2P2,,(1)) } (50)
~ {Hy(iv, x) H{Pui(i2,y) H{P12(i3,2) },
1112’3(‘x Yz ) = {(P211( ) XP27,‘1(1))}{/’![2()))}{(1)2’[3(2)
— 2P (1))} = {Par(iv, ) {Ha (2, y) H{Pa (i3, 2) },
(51)
Ti1i2i3 (x,y,z) = {(quil (x) _xp2,i1 (1))}{(P2Jz(y)
—yP2i, (1)) iy (2)} = { P31 (i1, %) H{ P32 (i2, y) HH3 (i3, 2) },
(52)
and
F(xvyvz) :f(x,y,z) - (%1(%%2) +Z(“~¥X(x>y7 1)
- !//31(&)’, 1) _ywSS(xa 1))
+ y33(x,2))
- (IPZI(xava) +x(u)[\'(17yaz) - l//21(17yvz) (53)

—2s(1,y)) + 23 (x,y))
- (lpll(x7yvz> +y(uzz('x7 17Z)
=2 13(1,2)) + xh13(y, 2))-
Expressions for {h; (x)}, {h;,(y)} and {h;(z)} are given
below:

—¥y(x1,2)

@ Springer
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{hi, ()} = {H1 (i1, %)}, {(P2i, () = yP2;, (1))} = {P11(i2,¥)},

{(P25(2) — 2P2,(1))} = {P12(i5,2)},

(54)

{hi, ()} = {Ha(iz, ¥) 3, {(P2, (x) — xP2;, (1))} = {Par (i1, %)},

{(P2s(2) = 2P2is (1)} = {Pna(i5, 2)},

{hi,(2)} = {H3(i3,2)}, {
{(P2i,(y) — P2, (1))

(55)

(P,iy (x) = xP2;, (1))} = {P31(i1,x)},
} = {Pxn(ix,y)}.

(56)

Discretising (49)—(53) using (10)—(12), we obtain the fol-
lowing system of equations in matrix form

[W][R+ S+ T] = [F],

(57)

where W represents the wavelet coefficient matrix. The
value of matrix R can be calculated as:

R=H, ® P ® Py,

where
H(1,x) Hi(1,x,)
Hi(2,x1) Hi(2,x)
H, =
H](ZM],X]) H1(2M17~x2)
Pll(17yl) Pll(lvyZ)
P“(2,y1) P11(27y2)
Py =
P11(2M2,y1) PII(2M27y2)
and
Pi2(1,z1) Pi(1,22)
P12(2,21) P2(2,22)
Pp =

P1p(2M3,z1)  Pi2(2M3,2)

(58)
H] (17)(2M])
H] (27)(2M|)
H](ZM],XZM])
(59)

Pll(17y2Mz)
P11(2,y2m,)

P (2M>, yom,)
(60)

Pi2(1,220m5)
P12(2,22m,)

P12 (2M3, 200, )
(61)

The value of matrix S can be calculated as:

S =Py @ Hy ® Py,
where

P (1,x1)
Py1(2,x1)

Py (1,x2)
P1(2,x2)
Py =

P21(2M1,)C1) P21(2M17x2)

ﬁ @ Springer

(62)

P (1, x0m,)
P1(2,xm,)

P (2M, x211,)
(63)

Hy(1,y1) Hy(1,y) Hy(1,yau,)
H2(27y1) H2(27)72) H2(2>y2M2)
Hy = ) . ) . ;
Hy(2M»,y1) Hy(2M»,y») Hy(2M3, you,)
(64)
and
Py (1,z1) Py (1,22) Py (1, 20m,)
Py (2,21) Py (2,22) Py(2,20m,)
Py =
Py»(2M3,z1)  Ppn(2M3, ) Py (2M3, 2001, )
(65)
The value of matrix T can be calculated as:
T = P31 ® Py QH;z, (66)
where
P3i(1,x1) P31(1,x2) P31 (1, x001,)
P31(2,x1) P31(2,x2) co P3(2,x0m,)
P3 = ) ) ) ) ;
P31 (2M,x1) P31(2M,,x;) P31 (2M,, xom,)
(67)
P3(1,y1) P3(1,y2) P (1, you,)
P3(2,y1) Pu(2,y2) - Pn(2,ym,)
Py = ) ) ) ) ;
P3,(2M5,y1) Pn(2M>,y») P3,(2My, you,)
(68)
and
H;(1,21) H3(1,2) H3(1, zo0,)
H3(2721) H3(27Z2) H3(27Z2M3)
H; =
H3(2M37Z1) H3(2M3722) H3(2M37ZZM3)
(69)

Each component of F can be evaluated as:

F(x,y,2) = {Fi0)H{F2(0) H{F3(2)} = F1 ® (F2 ® F3),

(70)
where
Fi1 = [Fi(x1),F1(x2), ..., F1(xm, )], (71)
Fy = [F2(y1), F2(y2), - - F2(yau,)]; (72)
Fs = [F3(z1), F3(z2), - - -, F3(zam, )] (73)

The numerical solution of given problem is obtained by
substituting the values of wavelet coefficients into (48).



Math Sci (2017) 11:145-154 151
Error analysis for three-dimensional PDEs 1 opl gl o0 2

e b= [ [ ( S o (e () <z>> axdyds,
In this section we present the error analysis for our pro- s
posed scheme. In order to analyze the convergence of our (80)

method, we state and prove the following convergence
theorem:

Theorem Suppose that u(x, y, z) satisfies a Lipschitz
condition on D = [0,1) x [0,1) x [0, 1), that is there exist
a positive constant L;,L,,L; and L4, such that for all

(xlayvz)’ (xz,y,z), (XS»)’;Z)’ (x4ayvz)’ (xs,y,z), (x6»)’;2)’
(x7,y,2) and (xs,y,z) in D, we have

| u(x2,y,2) — u(x1,y,2) |= Li| 22 — x1 |,
| u(xa,y,2) —u(x3,,2) [= Lo| x4 — x3 |, (74)
| u(xs,y,z) — u(xs,y,2) |= Ls| x6 — x5 |,
| u(xg,y,2) — u(x7,y,2) |= La| xs — x7 |.

Then, the error bound || E,, ||, obtained from above is

| En = 0(%) (75)

Here, the order of convergence is of the order 4.

Proof Consider My =M, = M3 =M. Let Uppaer(x,5,2)
and Ugpproximare (X, y,z) be the exact and approximate solu-
tions of the partial differential equation. The error at the Jth
level of resolution is defined as:

E, = Mexacz(x,yy Z) — Uapproximate (xvY7 Z)

oo oo oo
= Z Z Ciripishiy (X)hiy (¥)hiy (2)
11 =2M+1i,=2M+1i3=2M+1 (76)
o0
= Z Cirizishiy (X)hiy () hiy (2),
i1,0,i3=2M+1
where
2M 2M 2M
uapproxzmate XY, 2 2220111713 i )h3(Z),
i1=li=liz=

(77)

and the wavelet coefficients are calculated as:

o = [ [t o om, e

= <h;(x), <h,(y), <u(x,y,z),h,(z) > > >.

Here <. > shows the inner product. Define || .
L,

H Ey Hz :/ / / (uexact(x:y7z)
0 Jo Jo

From (76) and (79), we obtain

II, as:

— Uapproximate (.X, Y, Z) )dedde'

(79)

Using definition of inner product, from (80), we obtain

2 o0 o0
IEnl3=" > D CinisCogr

i1,i2,i3=2M+1p,q,r=2M+1

</01 hi, (x)hp(x)dx) (/01 h,-z(y)hq(y)dy) (81)
< /0 | hi}(z)hr(Z)dZ>.

Using orthogonality conditions, from (81), we obtain

l o0
-y

iy,ip,i3=2M+1

2 2
|| En, HZ (Cilizi3) . (82)
According to (9), we can write

<u(x,y,z),h,-3(z) > :/ M(X,y,Z)hi3(Z)dZ

0
k+0.5/m k+1/m
:/ M(X,y,Z)dZ—/
k/m k+0.5/m

Applying mean value theorem, that is there exist z; €

(£ &03) and z, € K03 EH guch that

(83)
u(x,y,z)dz.

<u(x,y,z), hi,(z) >
Kk—i—OS )u(x,y,zl)f<H71*k+m0'5)u(x,y,@)}
2m[ u(x,y,z1) — u(x,y,22)].
(84)
Again,
<hi2(y)v <M(x,y7z),h,-3(z) > > (85)

1
= <hi2(y),%(u(x,y,zl) - u(x7y312)) >,
From (85), using the definition of inner product, we obtain

S
hi, (v), <u(x,y,2), hii(z) > > 7(/0 Sl y,zn) = u(xy, z2)lhi (v)dy,

(86)
Using (8), from (86), we obtain
<h,(y), <u(x,y,2),hi(z) > >
1 k05 kit
= %[ 5_] u(x,y,zl)dy - [$ M()C7y,21)dy‘| (87)

k+0.5 k+1

1 T e
- %[L u(x7y712)dy + /ﬁ

m

”(x»)’, Z2)dy‘| .

Again, applying mean value theorem, we obtain:

Y
ﬁ @ Springer
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1
<hi2(y)7 <M(x7y,Z)7hi3(Z) > > :%

m m m
1 k+1 k+0.5
+%KT— . )”(%%Zz)
k+05 k
- - “(X7Y3,Z2)]
m m

(88)
After simplifications, from (88), we obtain

<hiz(y), <u(x,y,z),h,-3(z) > >

1
= m["(&yhzl) — u(x,y2,21) — u(x,y3,22) (89)
+u(x,ya, 22)]-

Hence,

1
Ci1i2i3 = <hil (x)’mw(%yl?zl) -

u(xvy?n ZZ) + u(x, y47Z2)]

u(x,y2,21) >

1 1
= sy | Wrn.1) ey, 1) = ey ).
+ u(x, y4,22)]hi(x)dx.

(90)
From (90), using (7), we obtain
| k05 kel
Cilizis = m /k u(x7y1uzl)dx - /Lo.su(x7ylvzl)dx‘|
| k05 kel
~ 5 L u(x,y2,21)dx + [ﬁu(x,yz,zl)dx]
| k05 kel
i m ﬁ u(x,ya,z2)dx — /Mu(x,yzt,zz)dx.
k0.5 kel
—/ “(X7Y3,Zz)dx+[0 u(x,y3, z2)dx]
k k05
(91)

Applying mean value theorem, from (91), we obtain

C 1 k+05 k k+1 k+05
iy — 21+2m - & M(JC] V],Z]) m ”(XZ ylvz])
k+05 k u(x )+ k+05 k u(x
21+2m 3:Y2,21 m 4:32,21)
+05 k+1 k+05
ﬂm p ux§,y4722)

k+ +1 k+ .5
2/+2m p u(x7,y3,22) +

m

x(, Y4, 22]

X&)’uZz]

(92)

@ Springer

KIH-O.S —%)u(x,yl,zl) B <k+—l—k+0'5>u(x,y2,zl)]

After simplifications, from (92), we obtain

1
ICiiis | §—22j+3m[|u(x1a)’1,21) — u(x2,y1,21).
Fu(xa,y2,21) — u(x3,y2,21)]]. (93)
1
+ m[W(%J%@) — u(xe, y4,22)
+ u(xs, y3,22) — u(x7,y3,22)|]-
Using (74), from (93), we obtain

1 4L

| lll213| — 2zj+3m2m (94)

where L = max{Ly, L, L3, Ls}. After simplifications, from
(94), we obtain

4L L 1

Ciizis| < J3775 3 < 553, (95)
Squaring both sides, from (95), we obtain
L’ 1
2
(Ciriain)” < 5773, - (96)
By substituting (96) in (82), we obtain
X L 1

I En I3 < A (97)

i ,izﬁzgz:;wr 29 mtm?
After simplifications, from (97), we obtain

I*1 = 1
IEnlo<o0s Y. o5 (98)

i1,l,i3=2M+1 )
Expanding (98), we obtain

1y (22224,) 99

j=J+1 \i;=0i,=0i3=0

2
| En Hzf

From (99), after simplification, we obtain

1B B2k S (5): (100)
m'2Y G\
From (100), after series summation, we obtain
B0 Bes (101)
After taking square root, we obtain
| Enll, =~ O(%). (102)
m

This shows that the convergence is of the order 4. [
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Table 1 Maximum absolute errors of Example 1 on K={(xy,2:0<x<l,0<y<1,0<z<1}, with
J1=J2=1]3 Maximum absolute error boundary conditions:
0 8.9227E—004 u(O,y,z) = u(xa 0, Z) = u(x,y, 0) = u(l,y, Z) (107)
1 6.4125E—004 =u(x,1,2) = ulx,y, 1) =0,
2 2.0157E—004 where
3 5.3267E—005 -
f(x,y,2) = 6xyz[yz" (1 = 2x)(1 = y)(1 — 2)
+x222(1 = x)(1 = 2y)(1 — 2) (108)

Numerical examples and discussion

We have applied our method on some numerical examples,
to observe the accuracy and efficiency of the present
method for solving three-dimensional Poisson equations.

Example 1 Consider the following linear three-dimen-
sional Poisson equation

u *u u

2, 2 e P 103

Viu=aat52 oz =@ (103)

on K={(x,y,2):0<x<1,0<y<1,0<z<1}, with

boundary conditions:

u(0,y,2) = u(x,0,z) = u(x,y,0) = u(1,y,2) (104)
=u(x,1,z) = u(x,y,1) =0,

where

f(x,y,2) = sin mx.sin my.sin 7z (105)

The exact solution is  u(x,y,z) = —ze.sin(mx).
sin(my).sin(nz). Table 1 shows the maximum absolute
errors of Example 1.

The proposed method is more simplest and different
from the method presented in [23]. For J =3, the
maximum absolute error obtained by [23] is
1.3730E — 004, where as in our research paper maximum
absolute error is 5.3267E — 005.

Example 2 Consider the following linear three-dimen-
sional Poisson equation
*u u u

2
VM:@—Fa—yz"f'a—Zz: (106)

f(x,y,2),

Table 2 Maximum absolute errors of Example 2

+ 2%y (1 = x)(1 — y)(1 = 22)].

The exact solution is u(x,y,z) = X°y’z
(1 =x)(1 —y)(1 —z). Table 2 shows the maximum abso-
lute errors of Example 2.

Example 3 Consider the following linear three-dimen-
sional Helmholtz equation

2 2 2
w2 = 8 T T soou =f(xy2),

e o T (109)

on K={(xy,2):0<x<1,0<y<1,0<z<1}, with

boundary conditions:

u(0,y,z) = u(x,0,z) = u(x,,0) = u(l,y,z) = u(x,1,z)
= u('x7y7 1) = 07

(110)
where

(111)

The exact solution is u(x,y,z) = sin(nx).sin(zy).sin(nz).
Table 3 shows the maximum absolute errors of Example 3.

f(x,v,z) = (2500 — 37%).sin mx.sin my.sin nz.

Example 4 Consider the following linear three-dimen-
sional Helmholtz equation

u *u u

2 _

v u—@+a—)ﬂ+a—zz+1500u =f(x,2), (112)
on K={(xy72:0<x<l,0<y<l,0<z<1}, with
boundary conditions:

u(0,y,2) = u(x,0,2) = u(x,y,0) = u(l,y,2) (113)

=u(x,1,z) = u(x,y,1) =0,

where

Table 3 Maximum absolute errors of Example 3

J1=J2=1]3 Maximum absolute error J1=J2=1]3 Maximum absolute error
0 8.9892E—005 0 3.4255E—-004
1 4.5356E—005 1 2.3325E—-004
2 1.1495E—005 2 7.1992E—005
3 3.0247E—-006 3 1.8931E—005

’r @ Springer
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Table 4 Maximum absolute errors of Example 4

J1=12=1]3 Maximum absolute error
0 3.6587E—005
1 3.0419E—-005
2 1.1531E—-005
3 2.9835E—006

f(x,v,2) = (6x(1 — 2x) — (1500 — 27%)x*(1 — x)).sin 7y.sin 7z.
(114)

The exact solution is u(x,y,z) = x*(1 — x).sin(ny).sin(nz).
Table 4 shows the maximum absolute errors of Example 4.

Conclusion

It is concluded from here that the Haar wavelet method is a
powerful mathematical tool for solving three-dimensional
partial differential equations. As we increase the values of
2M,, 2M, and 2M3;, absolute errors decrease rapidly and
the numerical solutions are much closer to the exact solu-
tions. Also, proposed method gives better results as com-
pared to numerical results presented in [23]. Also, proposed
method is applicable to many types of three-dimensional
Poisson equations (see, for example, in Sect. 4, Example 2)
whereas method presented in [23] is applicable to only one
type of three-dimensional Poisson equation. In view of
numerical results, it is concluded that proposed method
based on Haar wavelet is more efficient and accurate for
solving three-dimensional partial differential equations.
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