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Abstract In this paper, we present a collocation method

based on Gaussian Radial Basis Functions (RBFs) for

approximating the solution of stochastic fractional differ-

ential equations (SFDEs). In this equation the fractional

derivative is considered in the Caputo sense. Also we prove

the existence and uniqueness of the presented method.

Numerical examples confirm the proficiency of the method.

Keywords Stochastic fractional differential equations �
Radial basis functions

Introduction

Fractional calculus introduced because it can fill the

existing gap for describing a large amount of work in

engineering [1, 2], and different phenomena in nature such

as biology, physics [3, 4]. Mathematicians and physicists

have been created numerous articles about fractional dif-

ferential equations(FDEs) for finding analytical and

numerical methods, including Adomian Decomposition

Method [5], Variational Iteration Method [6, 7], Homotopy

perturbation Method [8] and homotopy analysis method

[9]. H. Rezazadeh et al. have generalized the Floquet

system to the fractional Floquet system in 2016 [10].

Stochastic Differential Equations (SDEs) models play a

great role in various sciences such as physics, economics,

biology, chemistry and finance [11–15]. The reader has at

least knowledge about independence, expected values and

variances and also basic definitions of stochastic, that is

necessary to read articles in this field [16]. M.Khodabin

et al. approximate solution of stochastic Volterra integral

equations in 2014 [17], also R.Ezzati et al. work on a

stochastic operational matrix based on block pulse func-

tions in 2014 [18]. We introduce SFDEs [19]:

DauðtÞ ¼ f ðt; uðtÞÞ þ r
Z t

t0

gðt; sÞdwðsÞ; uðt0Þ ¼ ut0 :

ð1Þ

for 0� a� 1 and t 2 0; T½ � , where Da is the Caputo frac-

tional derivative of order a which will be defined later. r is

Max amplitude of noise also
R t

t0
gðt; sÞdwðsÞ is the

stochastic term, that produce some noise in our result,

throughout the paper we putting r ¼ 1. SFDEs play a

remarkable role for physical applications in nature [20–22].

Using RBFs for solving partial differential equations

(PDEs) are very popular among many researchers, during

the last two decades [23, 24]. Also RBFs is applied in

mechanics [25], Kdv equation [26], Klein-Gordon equation

[27], then in 2012 Vanani et al. used RBF for solving

fractional partial differential equations [28]. Gonzalez-

Gaxiola and Gonzalez-Perez used Multi-Quadratic RBF for

approximating the solution of the Black-Scholes equation

in 2014 [29].

The motivation of this paper is to extend the application

of the RBF to solve SFDEs.
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The layout of the paper is the following. In Sect. 2 some

essential definitions of fractional calculus is proposed. In

Sect. 3 we explain using RBFs method for SFDEs and

prove the existence and uniqueness of the presented

method. In Sect. 4 various examples are solved to illustrate

the effectiveness of the proposed method. Also a conclu-

sion is given in the last section.

Preliminaries and notations

In this section, we give some basic definitions and prop-

erties of fractional calculus which are defined as follow [4].

Definition 2.1 The Caputo fractional derivative of order m
is defined as

D#f ðxÞ ¼ Jp�#Dpf ðxÞ ¼ 1

Cðp�#Þ

Z x

0

ðx� tÞp�#�1 d
p

dtp
f ðtÞdt;

p� 1\#�p; x[0

where Dp is the classical differential operator of order p.

Remark 2.2 For the Caputo derivative we have

D#xb ¼
0; b\#;

Cðbþ 1Þ
Cðbþ 1� #Þ ; b�#;

8<
:

Remark 2.3 D�# is defined as D�#f ðtÞ ¼
1

Cð#Þ
R t

0
f ðtÞðt � fÞ#�1

df; t[ 0; 0\#� 1:

Definition 2.4 Let ðX;F;qÞ be a probability space with a

normal filteration ðFtÞt� 0 and w ¼ fwðtÞ : t� 0g be a

Brownian motion defined over this filtered probability

space. Consider the following SFDE

Dauðt;mÞ ¼ f ðt;uðt;mÞÞþ
Z t

0

gðt; s;mÞdwðsÞ; uð0;mÞ ¼ u0

for t 2 ½0;T �, and m2X. For simplicity of notation we drop

the variable m so we have the following equation

DauðtÞ ¼ f ðt; uðtÞÞ þ
Z t

0

gðt; sÞdwðsÞ; uð0Þ ¼ u0

from Remark (2.3) we can see

uðtÞ ¼ u0 þ D�af ðt; uðtÞÞ þ D�a
Z t

0

gðt; sÞdwðsÞ;

therefore, we have

uðtÞ ¼ u0 þ
1

CðaÞ

Z t

0

f ðv; uðvÞÞðt � vÞa�1
dv

þ 1

CðaÞ

Z t

0

Z v

0

gðv; sÞðt � vÞa�1
dwðsÞdv:

ð2Þ

Also we admit the following assumptions.

Assumption 2.5 Suppose f and g are L2 measurable

functions satisfying

f ðm; xÞ � f ðm; yÞj j �K1 x� yj j;
gðt;mÞ � gðt; nÞj j �K2ð m� nj jÞ;

ð3Þ

ð f ðm; xÞj jÞ �K3ð1þ xj jÞ; ð gðt;mÞj jÞ�K4; ð4Þ

for some constants K1;K2;K3;K4 and for every x; y 2 R

and 0�m; n� t� T ¼ 1:

Stochastic integral 2.6 Now we should explain the

approximation of the stochastic term. White noise is known

as the derivative of the brownian motion W(s) [30], so we

approximating the term dws

dt
. Let t0 ¼ 0 � t1 ¼ Dt � � � � �

tN ¼ T ¼ 1; with ti ¼ iDt , for i ¼ 0; . . .;N be a partition of

0; 1½ �. This method introduced in [31] , we approximate dws

dt

by dŵs

dt

dŵs

dt
¼ 1ffiffiffiffiffi

Dt
p

XN
i¼1

cifiðsÞ; ð5Þ

where ci �Nð0; 1Þ is introducing by

ci ¼
1ffiffiffiffiffi
Dt

p
Z tiþ1

ti

dWðtÞ; i ¼ 1; . . .;N

where

fiðsÞ ¼
1; ti � s\tiþ1;

0; otherwise;

8><
>:

Collocation method based on RBFs for solving
SFDEs

The Radial basis functions method has been known as a

powerful tool for solving ordinary, partial and fractional

differential equations and also integral equations and etc.

So in this section we use this method for solving (2).

Before that we consider some preliminaries.

Interpolation by RBFs

Let ft1; . . .; tNg be a given set of distinct points in

0; T½ � 	 R. Then the approximation of a function u(t) using

RBFs uðtÞ ¼ uð tk kÞ, can be written in the following form

[32, 33]

uðtÞ 
 pN;m�1uðtÞ ¼
XN
k¼1

ckuð t� tkk kÞþ
Xm�1

l¼0

dlplðtÞ; x2D

where p0; . . .;pm form a basis for m-dimensional linear

space Pmð½0;T �Þ of polynomials of total degree less than or
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equal to m on the [0, T]. Suppose Cm
Nð½0;T �Þ ¼

spanfu0; . . .;uN ;p0; . . .;pmg then pN;m :Cð½0;T�Þ!
Cm
N ð½0;T�Þ is the collocation projector on the collocation

points X ¼ ft0; . . .; tNg � ½0;T�. Since enforcing the inter-

polation conditions pN;mðtiÞ ¼ uðtiÞ; i¼ 1; . . .;N, leads to a

system of N linear equations with Nþm unknown, usually

we add m additional conditions:

Xm�1

k¼0

ckplðtkÞ ¼ 0; l ¼ 0; . . .;m� 1:

Using RBFs for solving SFDEs (2)

Let D ¼ ½0; T � 	 R and u : Cð½0; T �Þ ! R and also suppose

that uN is the approximation of u based on these functions

so we can write

uNðtÞ ¼
XN
i¼1

kiuiðtÞ þ
Xm�1

l¼0

dlplðtÞ; t 2 D � R:

N is the number of nodal points within the domain D and ci
denotes the shape parameter. Also we know there are dif-

ferent kinds of RBFs, but in this research we need only one

of them with titled Gaussian that we represented as follow:

uiðtÞ ¼ e

� t�tik k2
c2
i :

The collocation method based on RBF basis for solving (2)

can be written in the following form:

where

uNðtÞ ¼
XN
i¼1

ciuið t � tik kÞ þ
Xm�1

l¼0

dlplðtÞ; x 2 D

Lemma 3.1 (Existence and Uniqueness) Assume that

there exists a constant K1 [ 0 such that

jf ðu1; tÞ � f ðu2; tÞj �K1ju1 � u2j

and

K1

aCðaÞ\1

for each t 2 ½0; T� and all x; y 2 Rn, then Eq. (2) has an

unique solution on [0, T].

Proof First, we transform Eq. (2) in to a fixed point

problem. For this purpose consider the operation

P : C ½0; T �;Rnð Þ ! C ½0; T �;Rnð Þ

defined by

PðuÞðtÞ ¼ u0 þ
1

CðaÞ

Z t

0

f ðm; uðmÞÞðt � mÞa�1
dm

þ 1

CðaÞ

Z t

0

Z m

0

gðm; sÞdŵðsÞdm

As we can see according to Eq. (2) we have

PðuÞðtÞ ¼ uðtÞ

If we show P is a contraction operator, using the Banach

contraction principle we conclude P has a fixed point and

we conclude Eq.(2) has a unique solution. Consequently

applying Eq.(3) it is easy to see that

jPðu1ÞðtÞ � Pðu2ÞðtÞj �
1

CðaÞ

Z t

0

j f ðu1ðmÞ; mÞð

�f ðu2ðmÞ; mÞÞjðt � mÞa�1
dm�

uNðt1Þ ¼ uðt0Þ þ
1

CðaÞ

Z t1

0

f ðm; uNðmÞÞðt1 � mÞa�1
dmþ 1

CðaÞ

Z t1

0

Z m

0

gðm; sÞdŵðsÞdm

uNðt2Þ ¼ uðt0Þ þ
1

CðaÞ

Z t2

0

f ðm; uNðmÞÞðt2 � mÞa�1
dmþ 1

CðaÞ

Z t2

0

Z m

0

gðm; sÞdŵðsÞdm

..

.

uNðtNÞ ¼ uðt0Þ þ
1

CðaÞ

Z tN

0

f ðm; uNðmÞÞðtN � mÞa�1
dmþ 1

CðaÞ

Z tN

0

Z m

0

gðm; sÞdŵðsÞdm

Xm�1

k¼0

ckplðtkÞ ¼ 0; l ¼ 0; . . .;m� 1

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:
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K1

CðaÞ ju1 � u2j
Z t

0

ðt � mÞa�1
dm� K1

aCðaÞ ju1 � u2j:

On the other side using the assumption of the lemma we

know that K1

aCðaÞ\1, therefore the proof is completed. h

Illustrative example

In this section, we solve SFDEs using RBFs and Galerkin

method [19], these equations don’t have exact solution so

we use numerical approximation for sufficiently small

partition on t. While we have this relation

jeexact � eRBFsj ¼ jeexact � eGalerkin þ eGalerkin � eRBFsj

� jeexact � eGalerkinj þ jeGalerkin � eRBFsj

then we approximate the solution in the form of RMSError

[34] as follow

RMSError ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼0 URBFsðxi; 0Þ � UGalerkinðxi; 0Þð Þ2

n

s

In this paper, we introduce RMSError after 50 and 60 times

run the program for different points and r.

Example 4.1 Consider the following SFDE:

D
3
2uðtÞ þ uðtÞ ¼ t þ 1þ r

Z t

0

dWðsÞ; uð0Þ ¼ 1:

We have Tables 1, 2 and 3 after 60 times run the program

with n ¼ 17.

Example 4.2 Consider the following SFDE:

DauðtÞ þ uðtÞ ¼ 2t2�a

Cð3� aÞ �
t1�a

Cð2� aÞ þ t2 � t þ r

Z t

0

sdwðsÞ; uð0Þ ¼ 0; 0\a� 1:

For a ¼ 1
2
and various r we have Table 4 after 50 times run

the program with nodal points n ¼ 12 and for a ¼ 3
2
and

different value for r we have Table 5 after 50 times run the

program with n ¼ 11.

Table 1 URBFs for Example (4.1) with n ¼ 17 and r ¼ 1.

t URBFs t URBFs t URBFs

0 0.6666 0.3750 1.1109 0.75 1.5894

0.0625 0.7391 0.4375 1.188 0.8125 1.6696

0.1250 0.8113 0.5 1.2666 0.875 1.7478

0.1875 0.8852 0.5625 1.3445 0.9375 1.8201

0.25 0.9604 0.6250 1.4233 1 1.9076

0.3125 1.0356 0.6875 1.5059

Table 2 UGalerkin for example (4.1) with n ¼ 17 and r ¼ 1

t URBFs t URBFs t URBFs

t UGalerkin t UGalerkin t UGalerkin

0 0.866 0.3750 2.1326 0.75 0.5876

0.0625 1.2892 0.4375 0.5363 0.8125 0.3984

0.1250 0.3070 0.5 1.7974 0.875 0.0539

0.1875 1.6771 0.5625 1.9590 0.9375 2.6604

0.25 1.1019 0.6250 2.6902 1 1.9019

0.3125 0.7147 0.6875 2.7538

Table 3 RMS Error for exam-

ple (4.1), n ¼ 17
r RMS

1 0.058

0.8 0.0464

0.6 0.0229

0.3 0.0251

0.2 0.0107

0.09 0.0038

0.009 4.287 9 10-4

0.001 7.1078 9 10-5

Table 4 RMS Error for exam-

ple (4.2) with a ¼ 1
2
, n ¼ 12

r RMS

0.7 0.0308

0.3 0.0230

0.1 0.0248

0.05 0.0107

0.03 0.0103

0.01 0.0140

0.006 0.0104

Table 5 RMS Error for Exam-

ple (4.2) with a ¼ 3
2
, n ¼ 11

r RMS

0.6 0.0470

0.5 0.0450

0.4 0.0614

0.2 0.0422

0.1 0.0512

0.05 0.0503

0.03 0.0498

0.008 0.04995
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Example 4.3 Consider the following SFDE:

D0:5uðtÞþ uðtÞ ¼ ðtþ 1Þ5þ
Z t

0

cosðsÞdwðsÞ; uð0Þ ¼ 1:

Example 4.4 Consider the following SFDE:

D0:75uðtÞþ u3ðtÞ ¼ t3þ 1þ
Z t

0

ðs2þ 1Þ3dwðsÞ; uð0Þ ¼ 0:

In this work, the accuracy of approximate solution,

when taking larger n and smaller r, is expected that more

accurate the approximate results.

Conclusion

The main goal of this work was to purpose an efficient

algorithm for the stochastic fractional differential equa-

tions. In this paper, while we don’t have exact solution for

SFDEs we used RBFs to approximate the solution of these

kind of equations. In addition, we discussed about exis-

tence and uniqeness of the presented method. The present

RMS Error in the tables shows that the results are highly

accurate in comparison with another method using by

Galerkin algorithm (Tables 6, 7).
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tivecommons.org/licenses/by/4.0/), which permits unrestricted use,
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