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Abstract This paper investigates properties of conver-

gence of distances of p-cyclic a-w-type contractions on the

union of the p subsets of a space X defining probabilistic

metric spaces and Menger spaces. The paper also investi-

gates the characterization of both Cauchy and G-Cauchy

sequences which are convergent, in particular, to best

proximity points. On the other hand, the existence and

uniqueness of fixed points and best proximity points of p-

cyclic a-w-type contractions are also investigated. The

fixed points of the p-composite self-mappings, which are

obtained from the p-cyclic self-mapping restricted to each

of the p subsets in the cyclic disposal, are also investigated

while a generalization and some illustrative examples are

also given.

Keywords p-cyclic a-w contractions � Best proximity

points � Probabilistic metric spaces � Menger spaces �
Triangular norms

Introduction

Fixed point theory in the framework of probabilistic metric

spaces [1–4] is receiving important research attention. See,

for instance, [2–4, 7–13]. In addition, Menger probabilistic

metric spaces are a special case of the wide class of proba-

bilistic metric spaces which are endowed with a triangular

norm [2, 3, 7, 9, 11, 15, 16, 30]. In probabilistic metric

spaces, the deterministic notion of distance is considered to

be probabilistic in the sense that, given any two points x and y

of ametric space, ameasure of the distance between them is a

probabilistic metric Fx;y tð Þ, rather than the deterministic

distance d x; yð Þ, which is interpreted as the probability of the
distance between x and y being less than t t[ 0ð Þ [3].

Fixed point theorems in complete Menger spaces for

probabilistic concepts ofB andC-contractions can be found in

[2] together with a new notion of contraction, referred to as

W; Cð Þ-contraction. Such a contraction was proved to be

useful for multivalued mappings while it generalizes the

previous concept ofC-contraction.On the other hand, 2-cyclic

u-contractions on intersecting subsets of complete Menger

spaces were discussed in [7] for contractions based on control

u-functions. See also [8]. It was found that fixed points are

unique. In addition, u-contractions in complete probabilistic

Menger spaces have been also studied in [11] through the use

of altering distances. See also [14, 26]. On the other hand,

probabilistic Banach spaces versus Fixed Point Theory were

discussed in [10]. The concept of probabilistic complete

metric space was adapted to the formalism of Banach spaces

defined with norms being defined by triangular functions and

under a suitable ordering in the considered space. In parallel,

mixed monotone operators in such Banach spaces were dis-

cussed while the existence of coupled minimal and maximal

fixed points for these operators was analyzed and discussed in
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detail. Further extensions to contractivemappings in complete

fuzzy metric spaces using generalized distance distribution

functions have been studied in [8, 9] and references therein.

The concept of altering distances was exploited in a very

general context to derive fixed point results in [14], and

extended later on in [15] to Menger probabilistic metric

spaces. On the other hand, general fixed point theorems have

been very recently obtained in [16] for two new classes of

contractive mappings in Menger probabilistic metric spaces.

The results have been established for a�w contractive map-

pings and for a generalizedb-type one. It has also tobe pointed
out that the parallel background literature related to results on

best proximity points and fixed points in cyclic mappings in

metric and Banach spaces as well as topics related to common

fixed points is exhaustive including studies of fixed point

theory and applications in the fuzzy framework. See, for

instance, [5, 6, 13, 17–27, 31–37] aswell as references therein.

This paper investigates properties of convergence of

distances of p-cyclic contractions on the union of the p

subsets of the abstract set X defining the probabilistic

metric spaces and the Menger spaces as well as the char-

acterization of Cauchy and G-Cauchy sequences which

converge to best proximity points of p-cyclic a-w-type
contractions. The existence and uniqueness of fixed points

and best proximity points of p-cyclic a-w-type contrac-

tions. The fixed points of the p-composite self-mappings,

which are obtained from the cyclic self-mapping restricted

to each of the p subsets in the cyclic disposal, are also

investigated while illustrative examples and a further

generalization are also given.

Denote Rþ ¼ z 2 R : z[ 0f g, R0þ ¼ Rþ [ 0f g,
Zþ ¼ z 2 Z : z[ 0f g, Z0þ ¼ Zþ [ 0f g,
�n ¼ f1; 2; . . .; ng, and denote also by L, the set of distance

distribution functions H : R ! 0; 1½ �, [1], which are non-

decreasing and left continuous such that H 0ð Þ ¼ 0 and

sup
t2R

H tð Þ ¼ 1. Let X be a nonempty set and let the proba-

bilistic metric (or distance) F : X � X ! L a symmetric

mapping from X � X, where X is an abstract set, to the set

of distance distribution functions L of the form H : R !
0; 1½ � which are functions of elements Fx;y for every

x; yð Þ 2 X � X. Then, the ordered pair X;Fð Þ is a

probabilistic metric space (PM) [2, 3, 29] if

1. 8x; y 2 X Fx;y tð Þ ¼ 1 ; 8t 2 Rþ
� �

, x ¼ yð Þ
� �

2. Fx;y tð Þ ¼ Fy;x tð Þ; 8x; y 2 X, 8t 2 R

3. 8x; y; z 2 X; 8t1; t2 2 Rþ Fx;y t1ð Þ
��

¼ Fy;z t2ð Þ ¼ 1
�
) Fx;z t1 þ t2ð Þ ¼ 1
� � �

ð1:1Þ

A particular distance distribution function Fx;y 2 L is a

probabilistic metric (or distance) which takes values Fx;y tð Þ
identified with a probability distance density function H :

R ! 0; 1½ � in the set of all the distance distribution func-

tions L.

A Menger PM-space is a triplet X;F; Dð Þ, where X;Fð Þ
is a PM-space which satisfies:

Fx;y t1 þ t2ð Þ� D Fx;z t1ð Þ; Fz;y t2ð Þ
� �

; 8x; y; z 2 X;
8t1; t2 2 R0þ

ð1:2Þ

under D : 0; 1½ � � 0; 1½ � ! 0; 1½ � is a t-norm (or triangu-

lar norm) belonging to the set T of t-norms which satisfies

the properties:

1. D a; 1ð Þ ¼ a

2. D a; bð Þ ¼ D b; að Þ
3. D c; dð Þ�D a; bð Þ if c� a, d� b

4. D D a; bð Þ; cð Þ ¼ D a;D b; cð Þð Þ ð1:3Þ

A property which follows from the above ones is

D a; 0ð Þ ¼ 0 for a 2 0; 1½ �. Typical continuous t-norms are

the minimum t-norm defined by DM a; bð Þ ¼ min a; bð Þ, the
product t-norm defined by DP a; bð Þ ¼ a:b and the Luka-

siewicz (or nilpotent-minimum) t-norm defined by

DL a; bð Þ ¼ max aþ b� 1; 0ð Þ which are related by the

inequalities DL �DP �DM .

The (probabilistic) diameter of a subset A of X is a

function from R0þ to 0; 1½ � defined by DA zð Þ ¼

sup
t\z

inf
x; y2A

Fx;y tð Þ and A is probabilistically bounded if D
p
A ¼

sup
z2Rþ

DA zð Þ ¼ 1 (D
p
A can be defined equivalently as

lim
z!1

DA zð Þ), probabilistically semibounded if 0\D
p
A\1

and probabilistically unbounded if D
p
A ¼ 0 [1, 2]. The

diameter of a subset A � X in the PM-space X;Fð Þ,
induced by a metric space X; dð Þ, refers to maximum real

interval measure, where the argument of the probabilistic

metric is unity, that is,

diam A¼ inf t 2 Rþ : sup
x;y2A

Fx;y tð Þ : d x;yð Þ ¼ sup
x;y2A

d x; yð Þ
 ! !

¼ 1

( )

if t 2 Rþ : sup
x;y2A

Fx;y tð Þ : d x;yð Þ ¼ sup
x;y2A

d x; yð Þ
 ! !

¼ 1

( )

6¼ ;

1 otherwise

8
><

>:

ð1:4Þ
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Example 1.1 Let X be an abstract nonempty set, X;Fð Þ be
a PM-space and X; dð Þ be a companion metric space and let

A be a nonempty subset of X with Fx;y tð Þ ¼ a x;yð Þt
b x;yð Þtþd x;yð Þ for

t� t1, where t1 ¼
supx;y2A d x; yð Þ

�a��b
, and Fx;y tð Þ ¼ 1 for t[ t1

with some given positive real functions subject to b x; yð Þ ¼
�b; a x; yð Þ ¼ �a � �b

� �
2 Rþ and a x; yð Þ ¼ b x; yð Þ ¼ 1 if

d x; yð Þ\ supx;y2A d x; yð Þ. In this case, diam Að Þ ¼ t1 �1
being, in particular, infinity if �a ¼ �b (i.e., the probability

one is reached as a limit as t ! 1) or if supx;y2A d x; yð Þ is
arbitrarily large (i.e., if A is unbounded as a subset of the

metric space X; dð Þ). If supx;y2A d x; yð Þ\1 and �a[ �b then

diam Að Þ\1.

The (probabilistic) distance in-between the subsets A

and B of X defines the argument interval length of zero

probability distance in-between points of two subsets A and

B of X and it is defined as:

D ¼ d A;Bð Þ ¼ inf z 2 R0þ : sup
x2A; y2B

Fx;y zð Þ ¼ 0

 !

ð1:5Þ

Definition 1.1 [7, 8, 16] Let X;F;Dð Þ be a Menger PM-

space. Then:

1. A sequence xnf g in X is said to be convergent to x in X

if, for every e; k 2 Rþ, there exists n0 ¼ n0 e; kð Þ 2
Z0þ such that Fxn; x eð Þ[ 1� k, whenever n� n0.

2. A sequence xnf g in X is said to be a Cauchy sequence

if, for every e; k 2 Rþ, there exists n0 ¼ n0 e; kð Þ 2
Z0þ such that Fxn; xm eð Þ[ 1� k, whenever n;m� n0.

3. X;F;Dð Þ is complete if every Cauchy sequence in X is

convergent to a point in X.

4. A sequence xnf g is said to be G-Cauchy if, for every

e 2 Rþ, lim
n!1

Fxn; xnþm
eð Þ ¼ 1,8m 2 Z0þ.

5. X;F;Dð Þ is G-complete if every G-Cauchy sequence in

X is convergent in X. h

Assertion 1.1 Let X;F;Dð Þ be a Menger PM-space with

D ¼ DM;DP or DL. The following properties hold:

1. xnf g � X convergent ) xnf g is Cauchy ) xnf g is

G-Cauchy.

2. X;F;Dð Þ G-complete ) X;F;Dð Þ is complete

Proof Proof of (i) Step 1 We first prove that xnf g
convergent ) xnf g is Cauchy. Since xnf g is convergent

then for every e; k 2 0; 1ð Þ 2 Rþ, there exists n0 ¼
n0 e; kð Þ 2 Z0þ such that Fxm; x e=2ð Þ[ 1� k=2, 8n;
m � n0ð Þ 2 Z0þ. Then, since F : R ! 0; 1½ � is non-de-

creasing, one gets:

Fxn;xm eð Þ�D Fxn;x e=2ð Þ; Fxm;x e=2ð Þ
� �

�min DM Fxn;x e=2ð Þ; Fxm;x e=2ð Þ
� �

;
�

DP Fxn;x e=2ð Þ; Fxm;x e=2ð Þ
� �

;

DL Fxn;x e=2ð Þ; Fxm;x e=2ð Þ
� �

¼ min min Fxn;x e=2ð Þ; Fxm;x e=2ð Þ
� �

;
�

Fxn;x e=2ð Þ:Fxm;x e=2ð Þ;
max Fxn;x e=2ð Þ þ Fxm;x e=2ð Þ � 1

� �
; 0
�

¼ Fxn;x e=2ð Þ þ Fxm;x e=2ð Þ � 1

¼ DL Fxn;x e=2ð Þ; Fxm;x e=2ð Þ
� �

[ 2 1� k=2ð Þ � 1 ¼ 1� k; 8n;m � n0ð Þ 2 Z0þ

ð1:6Þ

and then xnf g is a Cauchy. Since the above inequalities

hold for any n;m � n0ð Þ 2 Z0þ, it turns out that

lim inf
n!1

Fxn; xnþm
eð Þ[ 1� k; 8m 2 Zþ.

Proof of (i) Step 2 We next prove by contradiction that

xnf g is Cauchy ) xnf g is G-Cauchy. Assume that xnf g is

Cauchy while it is not G-Cauchy. Then,

lim inf
n!1

Fxn;xnþm
e1=2ð Þ[ 1� k and

lim sup
n!1

Fxn; xnþm
e1ð Þ\1� 2k, for some m 2 Z0þ, some

e1 2 Rþ and some given k ¼ k e1ð Þ 2 0; 1=2ð Þ. Since

Fx; y tð Þ is non-decreasing in t for all x; y 2 X, so that

Fx; y e1ð Þ�Fx; y e1=2ð Þ, then:
1� 2k[ lim inf

n!1
Fxn; xnþm

e1ð Þ� lim inf
n!1

Fxn;xnþm
e1=2ð Þ[ 1

� k;

ð1:7Þ

8m 2 Zþ: But then k\k=2. Then, xnf g is G-Cauchy.

Proof of (ii): Let X;F;Dð Þ beG-complete and let xnf g � X

be any given Cauchy sequence. Then xnf g isG-Cauchy, from
property (1), and convergent to some x 2 X since X;F;Dð Þ is
G-complete. Since xnf g is an arbitrary Cauchy sequence

convergent in X, it turns out that X;F;Dð Þ is complete. h

The e; kð Þ-topology in a Menger in a PM-space

X;F;Dð Þ is a Hausdorff topology introduced by the family

of neighborhoods Nx of a point x 2 x given by Nx ¼
Nx e; kð Þ : e 2 Rþ; k 2 0; 1ð Þf g where

Nx e; kð Þ ¼ z 2 X : Fx;z eð Þ[ 1� k
� �

. In this topology, a

function is continuous at x0 2 X if and only if f xnð Þf g !
f x0ð Þ for every convergent sequence xnf g ! x0. See [1, 16]

for more details. h

We next denote by u zþð Þ and u z�ð Þ, respectively, the
right and left limits of u tð Þ as t ! z.

Definition 1.2 A function u : R ! R0þ is said to be a

Uxy-function if, for given real constants x; y 2 R0þ, with

y� x, it satisfies the following conditions:
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1. u tð Þ is strictly increasing for t 2 x;1½ Þ
2. u xþð Þ ¼ y

3. u tð Þ is everywhere left-continuous

4. u tð Þ ¼ 0 for t 2 �1; xð � h

The set of functions Uxx is simply denoted by Ux. If

u : R ! R0þ is in Ux then u xð Þ ¼ u x�ð Þ ¼ 0�u xþð Þ ¼ x

and then if u 2 U0, it is continuous at t ¼ 0. Note also that

the particular set of functions U0 coincides with the set of

functions U of [15, 16] which have continuity at cero.

Definition 1.2 will be used in the following to establish the

class of contractions under investigation using functions in

the sets UD and UDD̂, where D is the distance in-between

adjacent subsets of the cyclic disposal in X.

Definition 1.3 [16] A function w : R0þ ! R0þ is said to

be a W-function if it continuous with w 0ð Þ ¼ 0 and

wn anð Þ ! 0 when an ! 0 as n ! 1.

Main results on best proximity points for p-cyclic
a-w-type contractions

The definition of a p � 2ð Þ-cyclic a-w-type contraction

follows:

Definition 2.1 Let X;Fð Þ be a PM-space and let Ai be

nonempty subsets of X,8i 2 �p such that D ¼ d Ai; Aiþ1ð Þ is
the common distance in-between adjacent subsets, 8i 2 �p.

Then T :
S

i2�p Ai !
S

i2�p Ai is a p � 2ð Þ-cyclic a-w-type

contraction if T Aið Þ 	 Aiþ1, 8i 2 �p and there exist two

functions a :
S

i2�p Ai

� �
�

S
i2�p Ai

� �
� Rþ ! R0þ and

w 2 W satisfying the following inequality:

a x; y; tð Þ 1

FTx; Ty u Kt þ 1� Kð ÞDð Þð Þ � 1

� 	

� w
1

Fx; y u tð Þð Þ � 1

� 	
;

ð2:1Þ

8 x; yð Þ 2 Ai � Aiþ1; 8i 2 �p; 8t [Dð Þ 2 Rþ; where

K 2 0; 1ð Þ, for any givenu 2 UDD̂ and any given real D̂�D.

Note that if T :
S

i2�p Ai !
S

i2�p Ai is p � 2ð Þ-cyclic and

if x 2 Ai for some i 2 �p then for any j 2 �p and n 2 Z0þ,

Tnpþiþjx 2 Anpþiþj ¼ Ak for some k 2 �p since if n;m 2 Zþ
and n 
 m mod pð Þ then Am ¼ An. In particular,

Aiþnp ¼ Ai, 8i 2 �p, 8n 2 Z0þ. It can be pointed out that p-

cyclic contractions include the case of cyclic self-map-

pings T on X such that X ¼
S

i2�p Ai. In this case, Aif gi2�p

is said to be a cyclic representation of X; Tð Þ. On the

other hand, note that is an a-w-type contraction if (2.1)

holds with D ¼ 0 for t 2 Rþ [16]. The distances in-be-

tween adjacent subsets are assumed to be identical just to

facilitate the exposition by simplifying the contractive

condition to the form (2.1) so as to make less involved

their associate calculations. Note that the distances in-

between adjacent subsets in non-expansive cyclic self-

mappings are identical in uniformly convex Banach

spaces [27].

An equivalent constraint to (2.1) is now discussed:

Proposition 2.1 The constraint (2.1) is identical to:

FTx;Ty u tð Þð Þ

� a x;y;K�1 t�Dð Þ þDð Þ
a x;y;K�1 t�Dð Þ þDð Þþw F�1

x;y u K�1 t�Dð Þ þDð Þð Þ� 1
� � ;

ð2:2Þ

8 x;yð Þ 2 Ai�Aiþ1, 8i 2 �p, 8t [Dð Þ 2 Rþ which is also

identical, if a x;y; tð Þ 6¼ 0, 8 x;yð Þ 2 Ai�Aiþ1, 8i2 �p,

8t [Dð Þ 2 Rþ, to

F�1
Tx;Ty u tð Þð Þ� 1þ a�1 x; y; K�1 t � Dð Þ þ D

� �

w F�1
x;y u K�1 t � Dð Þ þ D

� �� �
� 1

� � ð2:3Þ

Proof Note that, given K 2 0; 1ð Þ and D� 0, the function

bK;D : D;1½ Þ ! D;1½ Þ defined by bK;D tð Þ ¼ Kt þ
1� Kð ÞD for t 2 D; 1ð Þ is a strictly increasing, bijective

and bicontinuous function of (then continuous) inverse

b�1
K;D tð Þ ¼ K�1 t � Dð Þ þ D for t 2 D; 1ð Þ, which can be

extended by continuity to t ¼ D by defining

b Dð Þ ¼ D.Then, one gets from (2.1) that

FTx;Ty u tð Þð Þ
1� FTx;Ty u tð Þð Þ �

a x; y; K�1 t � Dð Þ þ Dð Þ
w F�1

x;y u K�1 t � Dð Þ þ Dð Þð Þ � 1
� � ;

ð2:4Þ

8 x; yð Þ 2 Ai � Aiþ1, 8i 2 �p, 8t [Dð Þ 2 Rþ which is iden-

tical to (2.2). Equation (2.3) follows directly from (2.1) if

a x; y; K�1 t � Dð Þ þ Dð Þ 6¼ 0. h

Note from (2.2) that, if a x; y; tð Þ ¼ 1 and

u tð Þ ¼ w tð Þ ¼ t, 8x; y 2 X, 8t 2 R, then the p-cyclic a-w-
type contraction T :

S
i2�p Ai !

S
i2�p Ai becomes a p-cyclic

B-contraction since one gets FTx;Ty tð Þ�Fx;y K�1 t � Dð Þð
þDÞ, 8x; y 2 X, 8t 2 Rþ from (2.2) if a x; y; tð Þ ¼ 1 and

u tð Þ ¼ w tð Þ ¼ t. Thus, a p-cyclic B-contraction is a par-

ticular type of p-cyclic a-w-type contraction. See [2] for the
case D ¼ 0. Some basic properties of a p-cyclic a-w-type
contraction are now given:

Proposition 2.2 Let X;Fð Þ be a PM-space. Let T :
S

i2�p Ai !
S

i2�p Ai be a p-cyclic a-w-type contraction with

Ai � X being bounded, 8i 2 �p with D ¼ d Ai; Aiþ1ð Þ, 8i 2 �p

and �D ¼ max
i2�p

diam Aið Þ being the distance in-between

adjacent subsets, 8i 2 �p. Then, the following properties

hold provided that u 2 UDD̂ for any given D̂�D:
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1. FTnx;Tny u tð Þð Þ ¼ 1, 8 x; yð Þ 2 Ai � Aiþ1, 8i 2 �p,

8t [Dþ 2 �Dð Þ 2 Rþ, 8n 2 Z0þ.
2. lim

t!1
FTnx;Tny u tð Þð Þ ¼ 1, 8 x; yð Þ 2 Ai � Aiþ1, 8i 2 �p,

8n 2 Z0þ.
3. Fx;y u tð Þð Þ ¼ Fx;y sð Þ ¼ 0, 8 x; yð Þ 2 Ai � Aiþ1, 8i 2 �p,

t 2 �1; Dð Þ, s 2 �1; D̂
� �

.

4. Fx;y u Dþð Þð Þ ¼ Fx;y D̂
� �

¼ 0; 8 x; yð Þ 2 Ai �
Aiþ1; 8i 2 �p if D̂ ¼ D;Fx;y u Dþð Þþ

� �
¼ Fx;y D̂þ� �

¼ 1; 8 x; yð Þ 2 Ai � Aiþ1; 8i 2 �p if D̂ ¼
D;Fx;y u Dþð Þð Þ ¼ Fx;y D̂

� �
¼ 1;

8 x; yð Þ 2 Ai � Aiþ1; 8i 2 �p if D̂[D

where D̂ ¼ u Dþð Þ ¼ lim
t!Dþ

u tð Þ and Fx;y D̂þ� �
¼ lim

s!Dþ

lim
t!sþ

Fx; y u tð Þð Þ.

Proof Since Ai and Aiþ1 are bounded then the maximum

distance in-between any two points of adjacent subsets is

not larger than Dþ 2 �D. Then, lim
s!1

Fx;y sð Þ ¼ max
i2�p

maxz2Ai; x2Aiþ1
Fz;x u tð Þð Þ ¼ 1;8 x; yð Þ 2 Ai � Aiþ1, 8i 2 �p, if

t 2 Dþ 2 �D; 1ð Þ, since the distance distribution function

F : R ! 0; 1½ � is non-decreasing and left-continuous, and

T Aið Þ 	 Aiþ1 with D ¼ d Ai; Aiþ1ð Þ, 8i 2 �p. Then,

F�1
x;y u K�1 t � Dð Þ þ D

� �� �
¼ Fx;y u K�1 t � Dð Þ þ D

� �� �

¼ 1 for t 2 Dþ 2 �D; 1ð Þ so that

w F�1
x;y u K�1 t � Dð Þ þ D

� �� �
� 1

� �

¼ w 0ð Þ ¼ 0; t 2 Dþ 2 �D; 1ð Þ

since K 2 0; 1ð Þ, K�1 t � Dð Þ þ D[ 2 �Dþ D and

u K�1 t � Dð Þ þ Dð Þ[u 2 �Dþ Dð Þ 8t [Dþ 2 �Dð Þ 2 Rþ,
since u : R ! R0þ is strictly increasing and left-contin-

uous in D; 1ð Þ, F : R ! 0; 1½ � is non-decreasing and left

continuous and w 0ð Þ ¼ 0. Thus, from Proposition 2.1

[Eq. (2.3)], FTx;Ty u tð Þð Þ ¼ F�1
Tx;Ty u tð Þð Þ ¼ 1 for t 2 Dþð

2 �D; 1Þ. Again, since K 2 0; 1ð Þ, K�1 t � Dð Þ þ
D[ 2 �Dþ D and u K�1 t � Dð Þ þ Dð Þ[u 2 �Dþ Dð Þ, since
u : R ! R0þ is strictly increasing and left-continuous in

D; 1ð Þ, if u 2 UD(Definitions 2.1 and 1.2), F : R ! 0; 1½ �
is non-decreasing and left continuous and w 0ð Þ ¼ 0, then

one gets for t 2 Dþ 2 �D; 1ð Þ, that:

FTx;Ty u K�1 t � Dð Þ þ D
� �� �

¼ F�1
Tx;Ty u K�1 t � Dð Þ þ D

� �� �

¼ 1;

w F�1
Tx;Ty u K�1 t � Dð Þ þ D

� �� �
� 1

� �
¼ w 0ð Þ ¼ 0

so that, again one gets from Proposition 2.1 [Eq. (2.3)],

FT2x;T2y u tð Þð Þ¼ F�1
T2x;T2y

u tð Þð Þ ¼ 1 for t 2 Dþ 2 �D; 1ð Þ.
Now, proceed by complete induction by assuming that

FTnx;Tny u tð Þð Þ ¼ F�1
Tnx;Tny u tð Þð Þ ¼ 1 for t 2 Dþ 2 �D; 1ð Þ

for any given n 2 Z0þ. Since K 2 0; 1ð Þ, K�1 t � Dð Þ þ
D[ 2 �D þD;u K�1 t � Dð Þ þ Dð Þ[u 2 �Dþ Dð Þ for

t 2 Dþ 2 �D; 1ð Þ, F : R ! 0; 1½ � is non-decreasing and

left continuous and w 0ð Þ ¼ 0, one has for

t 2 Dþ 2 �D; 1ð Þ, Tnx � Aiþn 
 Aj and Tny � Aiþnþ1 

Ajþ1 for a unique integer j ¼ j ið Þ 2 p� 1 [ 0f g fulfilling

n ¼ qpþ j� i� i for some q ¼ q ið Þ 2 Zþ and the given

i 2 �p that:

FTnx;Tny u K�1 t � Dð Þ þ D
� �� �

¼ F�1
Tnx;Tny u K�1 t � Dð Þ þ D

� �� �
¼ 1;

w F�1
Tnx;Tny u K�1 t � Dð Þ þ D

� �� �
� 1

� �
¼ w 0ð Þ ¼ 0:

Then, from Proposition 2.1 [Eq. (2.3)], FTnþ1 x;Tnþ1y

u tð Þð Þ ¼ F�1
Tnþ1x;Tnþ1y

u tð Þð Þ ¼ 1 for t 2 Dþ 2 �D; 1ð Þ.
Hence, the proofs of Properties (1) and (2) follow by

complete induction.

Properties (3)–(5) follow directly from the definitions of

the sets UDD̂ for s ¼ u tð Þ, being equivalent to

t ¼ t sð Þ¼ arg z 2 R : u z�ð Þ ¼ s for s 2 u Dð Þ; D̂
� �� �

which is point-wise unique for any s 2 u Dð Þ; D̂
� �

, zero

for t 2 R0� if UDD̂ and, left-continuous and strictly

increasing for t 2 Rð Þ[D. h

It turns out that Proposition 2.2 holds, in particular, for

u 2 UD. The a-admissibility of a-w-type contractions is

defined to state layer on the main result:

Definitions 2.2 Let X;Fð Þ a PM-space. Then:

1. an a-w-type contraction T : X ! X is a-admissible for

a given function a : X � X � Rþ ! R0þ [16] if

8x; y 2 X; 8t
2 Rþ a x; y; tð Þ� 1ð Þ ) a Tx; Ty; tð Þ� 1ð Þ½ �;

2. a p-cyclic a-w-type contraction T :
S

i2�p Ai !
S

i2�p Ai

is a-admissible for a given function a :
S

i2�p Ai

� �
�

S
i2�p Ai

� �
� Rþ ! R0þ if

8 x; yð Þ 2 Ai � Aiþ1; 8i 2 �p; 8t
2 Rþ a x; y; tð Þ� 1ð Þ ) a Tx; Ty; tð Þ� 1ð Þ½ �:

h

Definitions 2.3 T :
S

i2�p Ai !
S

i2�p Ai be a a� w-type p-

cyclic mapping, u 2 UDD̂ and w 2 W. Then:

1. the pair x; Txð Þ 2 clAi; clAiþ1ð Þ, where cl :ð Þ stands for
the closure of the :ð Þ-set, for any given i 2 �p is a pair of

quasi-best proximity points if Fx;Tx D̂ þ e
� �

[ 1� k
for any given e 2 Rþ and Fx;Tx Dð Þ ¼ Fx;Tx D�ð Þ ¼ 0.
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Each of them is a quasi-best proximity point in the

corresponding subset Ai.

2. A quasi-best proximity point is a best proximity point

if Fx;Tx D þ eð Þ[ 1� k for any given e 2 Rþ and

k 2 0; 1ð Þ. h

Remarks 2.1 Since u 2 UDD̂ then D̂ ¼ u Dþð Þ�D. If

u 2 UD, then D̂ ¼ u Dþð Þ ¼ D and, if the pair x; Txð Þ is a
pair of quasi-best proximity points, then Fx;Tx Dð Þ ¼
Fx;Tx u Dþð Þð Þ ¼ 0 and Fx;Tx Dþð Þ ¼ 1 [see also the two first

properties of Proposition 2.2 (iv)].

If u 2 UDD̂ with D̂ ¼ u Dþð Þ[D then

Fx;Tx D̂ þ e
� �

[ 1� k for arbitrarily small positive real

constants e and k so that Fx;Tx D̂þ� �
¼ 1 and Fx;Tx Dð Þ ¼

Fx;Tx D�ð Þ ¼ 0 but it is not guaranteed that Fx;Tx Dþð Þ ¼ 1,

then, it is not guaranteed in this case that x; Txð Þ is a pair of
best proximity points if u is not continuous at D. h

The most important of the main results of this paper

follows below:

Theorem 2.1 Let X;F; Dð Þ be a G-complete PM-space

and let T :
S

i2�p Ai !
S

i2�p Ai be a p-cyclic a-w-type con-

traction with u 2 UDD̂ for some D̂ 2 Rð Þ�D satisfying the

following conditions:

1. D ¼ d Ai; Aiþ1ð Þ[ 0 and diam Aið Þ[ D̂� D, 8i 2 �p,
2. T is a-admissible,
3. there exists x0 2

S
i2�p Ai such that a x0; Tx0; tð Þ� 1,

8t 2 Rþ,
4. if xnf g � Xð Þ ! x is a Picard iteration generated as

xnþ1 ¼ Txn, 8n 2 Z0þ with x0 2
S

i2�p Ai, such that

a xn; Txn; tð Þ� 1, 8n 2 Z0þ, 8t 2 Rþ then

a xn; x; tð Þ� 1, 8n 2 Z0þ, 8t 2 Rþ.

Then, the following properties hold:

1. FTnpx0; T nþmð Þpþjx0
pmþ jð Þ u Dð Þ þ eð Þð Þ[ 1� k,

8t [Dð Þ 2 Rþ, 8j 2 �p for any given real constants

e 2 Rþ and k 2 0; 1ð Þ, some n0 ¼ n0 e; kð Þ 2 Zþ and

8n � n0ð Þ 2 Z0þ, 8m 2 Zþ, and

FTnx0;Tnþ1x0 u tð Þð Þ

� 1

1þ wn F�1
x0;Tx0

u K�n t � Dð Þ þ Dð Þð Þ � 1
� � ;

8t [Dð Þ 2 Rþ; 8n 2 Zþ:

2. If u 2 U0 and
T

i2�p Ai 6¼ ; then

lim
n!1

FTnx0;Tnþ1x0 tð Þ ¼ lim
n!1

FTnpþjx0; T nþmð Þpþjþ1x0
tð Þ ¼ 1;

8t 2 Rþ:

Furthermore, Tnx0f g �
S

i2�p Ai and Tnpþjx0f g � Aiþj

are both Cauchy and G-Cauchy convergent sequences

to a limit point x 2
T

i2�p cl Ai. If the subsets Ai are

closed for i 2 �p then x ¼ Tx ¼ Tpx, that is, it is a fixed

point of the self-mappings T :
S

i2�p Ai !
S

i2�p Ai and

Tp 
 T � Tp�1ð Þ :
S

i2�p Ai




Ak ! Ak, 8k 2 �p, 8x0 2 Ai,

8i 2 �p, 8j 2 p� 1 [ 0f g.
3. If Ai is closed, 8i 2 �p and

T
i2�p Ai ¼ ; then if x0 2 Ai

for any i 2 �p then there is a limit cycle

�xi; T�xi; . . .; T
p�1�xið Þ, to which the sequence Tnx0f g

converges, with Tp�xi ¼ �xi, �xi 2 Ai, �xiþj ¼ T j�xi 2 Aiþj,

8i 2 �p; 8j 2 p� 1 [ 0f g being a fixed point of the

composite self-mappings (of domain and image

restricted to each of the subsets)

Tp :
S

i2�p Ai




Ak ! Ak,8k 2 �p, and it is also a quasi-

best proximity point (in particular, a best proximity

point if u 2 UD 
 UDD̂) of T :
S

i2�p Ai !
S

i2�p Ai. The

subsequence Tnpþjx0f g in Aiþj converges to

xiþj ¼ T jxi,8j 2 �p if x0 2 Ai for some i 2 �p. Further-

more:

lim
n!1

FTnpx0; T nþmð Þpx0 eð Þ ¼ Fx0;Tx0 1ð Þ ¼ 1;

FTnpx0; T nþmð Þpx0 eð Þ[ 1� k

FTnpjx0; Tnpjþ1x0 u Dð Þ þ eð Þ[ 1� k;

lim
n!1

FTnpjx0; Tnpjþ1x0 u Dð Þ þ eð Þ ¼ F�xiþj;�xiþjþ1
¼ 1

for any given e 2 Rþ, k 2 0; 1ð Þ and for some

n0 ¼ n0 e; kð Þ, 8n � n0ð Þ 2 Z0þ:

Proof Let x0 2
S

i2�p Ai such that the condition (3) holds.

Since T :
S

i2�p Ai !
S

i2�p Ai is a p-cyclic a-w-type con-

traction, x0 2
S

i2�p Ai, a x0; Tx0; tð Þ� 1,

xnþ1 ¼ Txn ¼ Tnþ1x0 6¼ xn, 8n 2 Z0þ, 8t 2 Rþ and T is a-
admissible, assume that a xj; Txj; t

� �
� 1,

8j 2 �n [ 0f g 2 Z0þ, 8t 2 Rþ. Since

a xn; Txn; tð Þ� 1 ) a Txn; Txnþ1; tð Þ� 1, 8t 2 Rþ, then

a xj; Txj; t
� �

� 1, 8j 2 nþ 1 [ 0f g 2 Z0þ, 8t 2 Rþ. Then,

a xj; Txj; t
� �

� 1, 8j 2 �n [ 0f g 2 Z0þ, 8t 2 Rþ )
a xj; Txj; t
� �

� 1, 8j 2 nþ 1 [ 0f g 2 Z0þ, 8t 2 Rþ. It has

been proved by complete induction that a xn; Txn; tð Þ� 1,

8n 2 Z0þ, 8t 2 Rþ provided that a x0; Tx0; tð Þ� 1,

8t 2 Rþ.Then a xn; Txn; tð Þ 2 1; þ1½ Þ and

a�1 xn; Txn; tð Þ 2 0; 1ð �, 8n 2 Z0þ, 8t 2 Rþ if

a x0; Tx0; tð Þ� 1,8t 2 Rþ. On the other hand, since u 2
UDD̂ and since T :

S
i2�p Ai !

S
i2�p Ai is a p-cyclic a-w-type

contraction, u is strictly increasing in D; 1ð Þ with

u Dð Þ ¼ D̂�D[ 0(see Definitions 2.1 and 1.2) and then
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there exists t [Dð Þ 2 Rþ such that Fx0;Tx0 tð Þ[ 0,

8t [Dð Þ 2 Rþ. Since the distance distribution function is

non-decreasing and left-continuous and K�1 [ 1, then

Fx0;Tx0 u K�1 t � Dð Þ þ Dð Þð Þ�Fx0;Tx0 tð Þ[ 0 and 0�F�1
x0;Tx0

u K�1 t � Dð Þ þ Dð Þð Þ � 1\þ1, 8t [Dð Þ 2 Rþ. Now,

note that a�1 xn; Txn; tð Þ 2 0; 1ð � since a xn; Txn; tð Þ
2 1; 1½ Þ; 8n 2 Z0þ,8t 2 Rþ. Thus, if a�1 Tnx0;ð
Tnþ1x0; K

�1 t � Dð Þ þ DÞ 2 0; 1ð �; 8n 2 Z0þ, 8t [Dð Þ 2
Rþ and, furthermore,

Case a lim inf
n!1

a�1 Tnx0;ð Tnþ1x0; K
�1 t � Dð Þ þ DÞ

[ 0, 8t [Dð Þ 2 Rþ
then one gets from (2.3) that

F�1
Tx0;T2x0

u tð Þð Þ� 1þ a�1 x0; Tx0; K
�1 t � Dð Þ þ D

� �

w F�1
x0;Tx0

u K�1 t � Dð Þ þ D
� �� �

� 1
� �

� 1þ w F�1
x0;Tx0

u K�1 t � Dð Þ þ D
� �� �

� 1
� �

;

8t [Dð Þ 2 Rþ;

ð2:5Þ

equivalently,

F�1
Tx0;T2x0

u K�1 t � Dð Þ þ D
� �� �

� 1

þ w F�1
x0;Tx0

u K�2 t � Dð Þ þ D
� �� �

� 1
� �

;

8t [Dð Þ 2 Rþ

ð2:6Þ

and replacing in (2.5) x0 ! Tx0, Tx0 ! T2x0 with the use

of (2.6) leads to:

F�1
T2x0;T3x0

u tð Þð Þ� 1þ w F�1
Tx0;T2x0

u K�1 t � Dð Þ þ D
� �� �

� 1
� �

� 1þ w2 F�1
x0;Tx0

u K�2 t � Dð Þ þ D
� �� �

� 1
� �

; 8t [Dð Þ 2 Rþ

ð2:7Þ

and proceeding recursively in the same way:

F�1
Tnx0;Tnþ1x0

u tð Þð Þ� 1þ w F�1
Tn�1x0;Tnx0

u K�1 t � Dð Þ þ D
� �� �

� 1
� �

� 1þ w2 F�1
Tn�2x0;Tn�1x0

u K�2 t � Dð Þ þ D
� �� �

� 1
� �

� 1þ wn F�1
x0;Tx0

u K�n t � Dð Þ þ Dð Þð Þ � 1
� �

;

8t [Dð Þ 2 Rþ; 8n 2 Zþ;

ð2:8aÞ

equivalently,

FTnx0;Tnþ1x0 u tð Þð Þ� 1

1þ wn F�1
x0;Tx0

u K�n t � Dð Þ þ Dð Þð Þ � 1
� � ;

8t [Dð Þ 2 Rþ; 8n 2 Zþ

ð2:8bÞ

Since K�1 [ 1 and u 2 UDD̂ then lim
n!þ1

K�n t � Dð Þð
þDÞ ¼ þ1, lim

n!1
u K�n t � Dð Þ þ Dð Þ ¼ þ1, 8t [Dð Þ

2 Rþ and lim
n!1

F�1
x0;Tx0

u K�n t � Dð Þ þ Dð Þð Þ ¼ 1, 8t [Dð Þ
2 Rþ. Thus,

lim
n!1

wn F�1
x0;Tx0

u K�n t � Dð Þ þ Dð Þð Þ � 1
� �

¼ 0;

8t [Dð Þ 2 Rþ
ð2:9Þ

since lim
n!1

wn F�1
x0;Tx0

u K�n t � Dð Þ þ Dð Þð Þ � 1
� �

¼
lim
n!1

wn tnð Þ ¼ 0 if tnf g ! 0. Then, lim
n!1

FTnx0;Tnþ1x0 u tð Þð Þ
¼ 1;8t [Dð Þ 2 Rþ from (2.8b).

Case b lim
n!1

a�1 Tnx0; T
nþ1x0;ð K�1 t � Dð Þ þ DÞ ¼ 0;

8t [Dð Þ 2 Rþ

We first prove that lim sup
n!1

wn F�1
x0;Tx0

�
u K�nðð t � Dð Þ

þDÞÞ �1Þ\1; 8t [Dð Þ 2 Rþ: The above condition is

identical to lim sup
n!1

wn F�1
x0;Tx0

u tnð Þð Þ � 1
� �

\1 with tn ¼

tn tð Þ ¼ K�n t � Dð Þ þ D and, since K\1, K�n ! 1 as

n ! 1 and u tð Þ is strictly increasing then tnf g ! 1 and

u tnð Þ ! 1 as n ! 1. Assume that this is not the case so

that lim sup
n!1

wn F�1
x0;Tx0

u tnð Þð Þ � 1
� �

¼ 1. Then, since the

function w : R0þ ! R0þ is everywhere continuous in its

definition domain it can only diverge at infinity and then

lim
n!1

F�1
x0;Tx0

u tnð Þð Þ ¼ 1, and equivalently, lim
n!1

Fx0;Tx0 u tnð Þð Þ ¼ lim
tn!1

Fx0;Tx0 u tnð Þð Þ ¼ 0. But this would

lead to the contradiction that Fx0; Tx0 tð Þ is not non-de-

creasing. As a result, lim sup
n!1

wn F�1
x0;Tx0

u tnð Þð Þ � 1
� �

\1,

and then

lim
n!1

a�1 Tn1x0; T
n1þ1x0; K

�1 t � Dð Þ þ D
� ��

wn F�1
x0;Tx0

u K�n t � Dð Þ þ Dð Þð Þ � 1
� ��

¼ 0

leading to lim
n!1

FTnx0;Tnþ1 x�1
0 u tð Þð Þ ¼ lim

n!1
FTnx0;Tnþ1x0

u tð Þð Þ ¼ 1; 8t [Dð Þ 2 Rþ from (2.8a).

Since D̂�u Dþð Þ, one concludes for Cases a and b that

lim
n!1

FTnpjx0; Tnpjþ1x0 u Dð Þ þ tð Þ ¼ 1, 8t 2 Rþ with Tnpjx0 2
Aiþj and Tnpjþ1x0 2 Aiþjþ1,8j 2 �p if x0 2 Ai for any given

i 2 �p since diam Aið Þ[ D̂� D, 8i 2 �p. Then, for any given

real e 2 Rþ and k 2 0; 1ð Þ, there is n0 ¼ n0 e; kð Þ 2 Z0þ
such that

FTnpjx0; Tnpjþ1x0 u Dð Þ þ eð Þ[ 1� k; 8n� n0; 8j 2 �p;

since the distance distribution function is non-decreasing

and left-continuous. On the other hand,

FTnpx0;T nþmð Þpþjx0
pmþ jð Þ u Dð Þþ eð Þð Þ

�DM FTnpx0;Tnpþ1x0 u Dð Þþ eð Þ; FTnpþ1x0;Tnpþ2x0

�

u Dð Þþ eð Þ; . . .; FT nþmð Þpþj�1x0;T nþmð Þpþjx0
u Dð Þþ eð Þ

�
[1� k;

ð2:10Þ
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8t [Dð Þ 2 Rþ, 8j 2 �p and, for any given e 2 Rþ and

k 2 0; 1ð Þ, FTnpx0;T nþmð Þpþj x0 pmþ jð Þ u Dð Þ þ eð Þð Þ[ 1� k
for n � n0ð Þ 2 Z0þ, 8m 2 Zþ. Property (1) has been proved.

Property (2) relies on the case when u 2 U0 and
T

i2�p Ai 6¼ ; since D ¼ 0. If u 2 U0 then D ¼ D̂ ¼
u 0ð Þ ¼ 0 so that

FTnx0; Tnþ1x0 eð Þ[ 1� k;
FTnpþjx0;T nþ1ð Þpþjx0

pmþ jð Þ eð Þ[ 1� k;
8n � n0ð Þ 2 Z0þ; 8m 2 Zþ;

ð2:11Þ

and lim
n!1

FTnx0; Tnþ1x0 tð Þ ¼ lim
n!1

FTnpþjx0; T nþmð Þpþjþ1x0
tð Þ ¼ 1,

8t 2 Rþ. Since X;F; Dð Þ is G-complete, then Tnpþjx0f g !
�xiþj 2 cl Aiþj

� �� �
; 8j 2 p� 1 [ 0f g; 8x0 2 Ai: Assume that

�xj 6¼ �xjþk for some j; k 2 �p. Since X;F; DMð Þ is a Menger

PM-space then from (2.10) with D ¼ D̂ ¼ u 0ð Þ ¼ 0:

FTnpþjþ‘x0; Tnpþjþ‘þ1x0 e=kð Þ[ 1� k; 8n � n0ð Þ 2 Z0þ;
lim
n!1

FTnpþjþ‘x0; Tnpþjþ‘þ1x0 e=kð Þ ¼ 1;

ð2:12Þ

for ‘ 2 k � 1 [ 0f g, any e 2 Rþ and any real k 2 0; 1ð Þwhat
implies that lim

n!1
FTnpþjx0; Tnpþjþkx0 tð Þ ¼ 1, 8t 2 Rþ and, from

the first property of (1.1), �xj ¼ �xjþk, a contradiction, and then

�xi ¼ �x, 8i 2 �p. So, the p sequences Tnpþix0f g, 8i 2 �p have a

unique limit point in
T

i2�p Ai provided that such a set is

nonempty and from Assertion 1.1 they are Cauchy and G-

Cauchy sequences and then convergent since X;F; Dð Þ isG-
complete. In addition, for any e 2 Rþ and any real k 2 0; 1ð Þ
there is n01 ¼ n01 e; kð Þ 2 Z0þ such that from (2.2) forD ¼ 0

since Tnx0f g is Cauchy, thenG-Cauchy, and convergent to x,
then lim

n!1
w F�1

Tnx0; x

�
u K�1e=3ð Þð Þ � 1Þ ¼ w 0ð Þ ¼ 1 and

lim
n!1

FTnþ1x0; Tx e=3ð Þ ¼ 1 so that

FTnþ1x0; Tx e=3ð Þ

� a Tnx0; x; K
�1e=3ð Þ

a Tnx0; x; K�1e=3ð Þ þ w F�1
Tnx0; x

u K�1e=3ð Þð Þ � 1
� � ;

8n 2 Z0þð Þ
FTnþ1x0; Tx e=3ð Þ[ 1� k; 8n � n01ð Þ 2 Z0þ

so that for some n0 ¼ n0 e; kð Þ � n01ð Þ 2 Z0þ and for any

arbitrary e 2 Rþ and k 2 0; 1ð Þ using the third and fourth

properties of the triangular norms, one gets:

Fx;Tx eð Þ�min Fx;Tnx0 e=3ð Þ; FTnþ1x0;Tnx0 e=3ð Þ;
�

FTnþ1x0;Tx e=3ð Þ
�
[ 1� k; 8n � n0ð Þ 2 Z0þ;

ð2:13Þ

Thus, Fx;Tx 0þð Þ ¼ 1 so that x ¼ Tx from the property 1

of (1.1). By replacing x ! Tx and Tx ! T2x in (2.13), we

prove x ¼ T2x. Proceeding in the same way, it is proved

that Tix ¼ x, 8i 2 �p. So, x is a limit point of Tnpþix0f g,
8i 2 �p and Tnx0f g which is also a fixed point of T :
S

i2�p Ai !
S

i2�p Ai and Tp :
S

i2�p Ai




Aj !
S

i2�p Ai




Aj,8j 2 �p

if the subsets Ai are closed 8i 2 �p. Hence, Property (2) has

been proved.

On the other hand, it follows from (1.2) for Menger PM-

spaces and the properties of (1.3) for triangular norms for

the general case that D̂ ¼ u Dþð Þ�D[ 0 since, further-

more, DM x; xð Þ� x for each x 2 0; 1½ �, that
FTnpx0;T nþmð Þpx0 tð Þ�DM FTnpx0;Tnpþ1x0 1�Kð Þtð Þ; FTnpþ1x0;T nþmð Þpx0 Ktð Þ

� �

�DM Fx0;Tx0

1�Kmp

1�K
K�np 1�Kð Þt�Dð ÞþD

� 	
;

�

DM FTnpþ1x0;Tnpþ2x0 K 1�Kð Þtð Þ; FTnpþ2x0;T nþmð Þpx0 K2t
� �� ��

�DM Fx0;Tx0

1�Kmp

1�K
K�np 1�Kð Þt�Dð ÞþD

� 	
;

�

DM Fx0;Tx0

1�Kmp

1�K
K�np�1 K 1�Kð Þt�Dð ÞþD

� 	
;

�

FTnpþ2x0;T nþmð Þpx0 K2t
� ���

¼ DM Fx0;Tx0

1�Kmp

1�K
K�np 1�Kð Þt�Dð ÞþD

� 	
;

�

DM Fx0;Tx0

1�Kmp

1�K
K�np 1�Kð Þt�Dð ÞþD

� 	
;

�

FTnpþ2x0;T nþmð Þpx0 K2t
� ���

�DM Fx0;Tx0

1�Kmp

1�K
K�np 1�Kð Þt�Dð ÞþD

� 	
;

�

DM Fx0;Tx0

1�Kmp

1�K
K�np 1�Kð Þt�Dð ÞþD

� 	
;

�

FT nþmð Þp�1x0;T nþmð Þpx0 Kmp�1t
� ���

�DM Fx0;Tx0

1�Kmp

1�K
K�np 1�Kð Þt�Dð ÞþD

� 	
;

�

DM Fx0;Tx0

1�Kmp

1�K
K�np 1�Kð Þt�Dð ÞþD

� 	
;

�

Fx0;Tx0 K� nþmð Þpþ1 Kmp�1t�D
� �

þD
� ���

¼ DM Fx0;Tx0

1�Kmp

1�K
K�np 1�Kð Þt�Dð ÞþD

� 	
;

�

DM Fx0;Tx0

1�Kmp

1�K
K�np 1�Kð Þt�Dð ÞþD

� 	
;

�

Fx0;Tx0

1�Kmp

1�K
K�np 1�Kð Þt�Dð ÞþD

� 			

�DM Fx0;Tx0

1�Kmp

1�K
K�np 1�Kð Þt�Dð ÞþD

� 	
;

�

Fx0;Tx0

1�Kmp

1�K
K�np 1�Kð Þt�Dð ÞþD

� 		

�Fx0;Tx0

1�Kmp

1�K
K�np 1�Kð Þt�Dð ÞþD

� 	
; 8t 2 Rþ;

8m 2 Z0þ; 8n2 Zþ

ð2:14Þ

Then, one gets for any given t; k \1ð Þ 2 Rþ, some

n0 ¼ n0 t; kð Þ and 8n� n0.
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lim
n!1

FTnpx0;T nþmð Þpx0 tð Þ ¼ Fx0;Tx0 1ð Þ ¼ 1;

FTnpx0; T nþmð Þpx0 tð Þ[ 1� k;
ð2:15Þ

8x0 2
S

i2�p Ai, 8m 2 Zþ since Fx0;Tx0 tð Þ is non-decreasing

with supremum over t 2 Rþ equalizing unity. Thus,

Tnpþjx0f g ! �xiþj 2 cl Aiþj

� �� �
, 8j 2 p� 1 [ 0f g, 8x0 2

Ai, 8i 2 �p. Since D[ 0 then �xi 6¼ �xj, 8i; j 6¼ ið Þ 2 �p. In

addition, either

F�xiþj;TP �xiþj
eð Þ�min F�xiþj;Tnpþjx0 e=4ð Þ; FTnpþjx0;T nþ1ð Þpþjx0

e=4ð Þ;
�

FT nþ1ð Þpþjx0;�xiþj
e=4ð Þ; F�xiþj;Tp �xiþj

e=4ð Þ
�

ð2:16Þ

�min F�xiþj;Tnpþjx0 e=4ð Þ; FTnpþjx0;T nþ1ð Þpþjx0
e=4ð Þ;

�

FT nþ1ð Þpþjx0;�xiþj
e=4ð Þ

�
[ 1� k;

ð2:17:aÞ

8n � n0ð Þ 2 Z0þ, or F�xiþj;TP �xiþj
e=4ð Þ� 1� k, then either

F�xiþj;TP �xiþj
eð Þ� 1� k, 8n � n0ð Þ 2 Z0þ and

1� k�F�xiþj;Tnpþjx0 eð Þ�min F�xiþj;Tp �xiþj
e=4ð Þ;

�

FTnpþjx0;T nþ1ð Þpþjx0
e=4ð Þ; FT nþ1ð Þpþjx0;�xiþj

e=4ð Þ; F�xiþj;Tp �xiþj
e=4ð Þ

�

�min F�xiþj;Tnpþjx0 e=4ð Þ; FTnpþjx0;T nþ1ð Þpþjx0
e=4ð Þ;

�

FT nþ1ð Þpþjx0;�xiþj
e=4ð Þ

�
[ 1� k

ð2:17:bÞ

for some n � n0ð Þ 2 Z0þ, which is a contradiction, or

F�xiþj;TP �xiþj
eð Þ[ 1� k. As a result (2.16) leads, in any case,

to (2.17.a) and F�xiþj;TP �xiþj
eð Þ[ 1� k, 8n � n0ð Þ 2 Z0þ.

Thus, �xj is a fixed point of the composite self-mapping

Tp :
S

i2�p Ai




Aj ! Aj, 8j 2 �p. To prove that the fixed points

of the composite self-mapping are quasi-best proximity

points of the p-cyclic a-w-type contraction

T :
S

i2�p Ai !
S

i2�p Ai, we proceed by contradiction.

Assume that this is not the case, so that there is a pair

�xi; T�xið Þ for some i 2 �p such that there exist e 2 Rþ; k 2
0; 1ð Þ and a sequence nkf g � Z0þ for some n0 ¼
n0 e; kð Þ 2 Z0þ such that, for any j 2 �p, one gets that

limk!1 F
Tnkp �xj; T

nkþ1ð Þp �xj
0þð Þ ¼ 1[ lim sup

k!1
FTnkp �xi; Tnkpþ1 �xi

D̂þ� �
: Since X;F; DMð Þ is a Menger space and, since any

triangular norm is associative and commutative and since

DM x; xð Þ� x, one gets the contradiction:

F�xi; Tp �xi eð Þ� min
j2�p

F�xi; T j �xi

� �
¼ q 1� kð Þ� 1� k ð2:18Þ

for some real q ¼ q e; kð Þ 2 0; 1ð Þ to �xk being a fixed point

of Tp :
S

i2�p Ai




Ak ! Ak for k 2 �p. Property (3) has been

proved. h

Note that if the image of a x; y; tð Þ is extended to be in

clR0þ (i.e., a x; y; tð Þ can take also values at þ1f g), then
the proof of Property (1) of Theorem 2.1 is valid with a

slight extension by considering also the case that

a�1 Tn1x0; T
n1þ1x0; K

�1 t � Dð Þ þ Dð Þ ¼ 0 for some finite

n1 2 Z0þ and 8t [Dð Þ 2 Rþ. Since w 2 W, it is continu-

ous, and then wn1 F�1
x0;Tx0

�
u K�n1 t � Dð Þ þ Dð Þð Þ � 1Þ\1

for any finite n1 2 Zþ so that

a�1 Tn1�1x0; T
n1x0; K

�1 t � Dð Þ þ D
� �

wn1

F�1
x0;Tx0

u K�n1 t � Dð Þ þ Dð Þð Þ � 1
� �

¼ 0; 8t [Dð Þ 2 Rþ:

Then, we could use a similar recursive procedure as that

used for the case up till the n1 � 1ð Þ-iteration, since

Proposition 2.1 remains valid, see Eqs. (2.2) and (2.3), so

that:

F�1
Tn1 x0;Tn1þ1x0

u tð Þð Þ� 1þ a�1 Tn1�1x0; T
n1x0; K

�1 t � Dð Þ
�

þDÞwn1 F�1
x0;Tx0

u K�n1 t � Dð Þ þ Dð Þð Þ � 1
� �

¼ 1:

Note that Theorem 2.1 generalizes some results on fixed

points given in [7, 8, 15, 16, 28] for either non-cyclic self-

mappings or cyclic self-mappings on union of sets which

intersect to quasi-best proximity points and best proximity

points in the case that such sets do not intersect. On the

other hand, a direct consequence of Theorem 2.1 is the

following corollary for the case that u 2 UD. The results

are based on the fact that u D�ð Þ ¼ D and u tð Þ ¼ 0 if t 2
0;D½ � and u 2 UD while it generalizes results on fixed

points for the cases of either non-cyclic self-mappings or

cyclic self-mappings with nonempty intersections of the

involved subsets obtained in [7, 8, 15, 16, 28]:

Corollary 2.1 Let X;F; Dð Þ be a G-complete Menger

PM-space and T :
S

i2�p Ai !
S

i2�p Ai be a p-cyclic a-w-

type contraction satisfying the following conditions:

1. D ¼ d Ai; Aiþ1ð Þ[ 0; 8i 2 �p,
2. T is a-admissible,
3. there exists x0 2

S
i2�p Ai such that a x0; Tx0; tð Þ� 1,

8t 2 Rþ,
4. if xnf g � Xð Þ ! x is a Picard iteration generated as

xnþ1 ¼ Txn, 8n 2 Z0þ with x0 2
S

i2�p Ai, such that

a xn; Txn; tð Þ� 1, 8n 2 Z0þ,8t 2 Rþ then a xn; x; tð Þ
� 1, 8n 2 Z0þ, 8t 2 Rþ.

Then, the following properties hold:

1. If u 2 U0 and
T

i2�p Ai 6¼ ; then Tnx0f g �
S

i2�p Ai and

Tnpþjx0f g � Aiþj are both Cauchy and G-Cauchy

convergent sequences to a limit point x 2
T

i2�p cl Ai,

with cl Ai being the closure of Ai. If Ai are closed for
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i 2 �p then x ¼ Tx ¼ Tpx, that is, it is a fixed point of

the self-mappings T :
S

i2�p Ai !
S

i2�p Ai and

Tp 
 T � Tp�1ð Þ :
S

i2�p Ai




Ak ! Ak, 8k 2 �p, 8x0 2 Ai,

8i 2 �p, 8j 2 p� 1 [ 0f g.
2. If u 2 UD, Ai is closed 8i 2 �p and

T
i2�p Ai ¼ ; then, if

x0 2 Ai for any i 2 �p, there is a limit cycle

�xi; T�xi; . . .; T
p�1�xið Þ, to which the sequence Tnx0f g

converges, with Tp�xi ¼ �xi, �xi 2 Ai, �xiþj ¼ T j�xi 2 Aiþj,

8i 2 �p; 8j 2 p� 1 [ 0f g being a fixed point of the

composite self-mapping Tp :
S

i2�p Ai




Ak ! Ak,8k 2 �p,

and being also a best proximity point of

T :
S

i2�p Ai !
S

i2�p Ai. The subsequence Tnpþjx0f g in

Aiþj converges to xiþj ¼ T jxi, 8j 2 �p if x0 2 Ai for

some i 2 �p. Furthermore,

lim
n!1

FTnpx0; T nþmð Þpx0 eð Þ ¼ Fx0;Tx0 1ð Þ ¼ 1;

FTnpx0; T nþmð Þpx0 eð Þ[ 1� k
ð2:19Þ

FTnpjx0; Tnpjþ1x0 u Dð Þ þ eð Þ[ 1� k;
lim
n!1

FTnpjx0; Tnpjþ1x0 u Dð Þ þ eð Þ ¼ F�xiþj; �xiþjþ1
¼ 1

ð2:20Þ

for any given e 2 Rþ, k 2 0; 1ð Þ \ R and some

n0 ¼ n0 e; kð Þ, 8n � n0ð Þ 2 Z0þ. h

The following result is an extended version of a parallel

result given in [16] for uniqueness of fixed points of (non-

cyclic) self-mappings of a p-cyclic a-w-type contraction on

X. The result is concerned with (a) the uniqueness of best

proximity points of p-cyclic a-w-type contractions, being

corresponding fixed points of the composite self-mappings

restricted to each subset of the cyclic disposal, and (b) their

confluence to a unique fixed point of the p-cyclic a-w-type
contraction if the subsets intersect.

Theorem 2.2 Assume all the hypotheses of Corollary 2.1

and the additional one which follow:

5ð Þ For all x; y 2
S

i2�p clAi; there is z 2
S

i2�p clAi

such that min a x; z; tð Þ; a y; z; tð Þð Þ � 1; 8t [Dð Þ 2
Rþ: Then, there is �xi 2 clAi, such that �xi 2 Ai if Ai is

closed, 8i 2 �p, which is the unique best proximity point of

T :
S

i2�p Ai !
S

i2�p Ai and the unique fixed point of

Tp :
S

i2�p Ai




Ak ! Ak, 8k 2 �p. If u 2 U0 with D ¼ 0 and
T

i2�p Ai is nonempty and closed then there is a unique fixed

point of T :
S

i2�p Ai !
S

i2�p Ai and of the composite self-

mappings Tp :
S

i2�p Ai




Aj ! Aj,8j 2 �p.

Proof Let u 2 clAi, v 2 clAj be best proximity points for

any given i; j 2 �k such that u ¼ Tnpu ¼ Tpu and

v ¼ Tnpv ¼ Tpv, 8n 2 Zþ so that there is z 2
S

i2�p clAi

such that min a u; z; tð Þ; a v; z; tð Þð Þ� 1, 8t [Dð Þ 2 Rþ.

Thus, there exist integers m ¼ m i; u; zð Þ 2 p� 1 [ 0f g
and ‘ ¼ ‘ j; v; zð Þ 2 p� 1 [ 0f g, such that Tpnþmz 2 Aiþ1

and Tpnþ‘z 2 Ajþ1, and since T is a-admissible and

min a x; z; tð Þ; a y; z; tð Þð Þ� 1, 8t [Dð Þ 2 Rþ, one gets:

1

Fu; Tpnþmz u tð Þð Þ � 1� sup
n2Z0þ

a�1 u; Tnpþmz; tð Þ
� �

wnp�1 1

Fu; Tmz u K� npþmð Þ t � Dð Þ þ Dð Þð Þ � 1

� 	
;

8t [Dð Þ 2 Rþ

ð2:21Þ

1

Fv;Tpnþ‘z u tð Þð Þ � 1� a�1 v; z; tð Þwnp�1

1

Fv; T‘z u K� npþ‘ð Þ t � Dð Þ þ Dð Þð Þ � 1

� 	
; 8t [Dð Þ 2 Rþ:

ð2:22Þ

Note that wnp�1 anp�1 t;m; u; zð Þ
� �

! 0 as anp�1 t;m;ð
u; zÞ ¼ 1

Fu;Tmz u K� npþmð Þ t�Dð ÞþDð Þð Þ � 1 ! 0 as n ! 1 for all

t [Dð Þ 2 Rþ which holds since Fu; Tmz u K�np t � Dð Þðð
þDÞÞ ! 1 as n ! 1 for all t [Dð Þ 2 Rþ since

K�np t � Dð Þ þ Dð Þ ! 1 for all t [Dð Þ 2 Rþ as n ! 1
and since u tð Þ[D from (2.21), from the properties u tð Þ ¼
0 for t\D, u Dð Þ�D, and u tð Þ[D for t[D since u :
R ! R0þ is strictly increasing in D;1½ Þ. In the same way,

note that wnp�1 bnp�1 t;m; v; zð Þ
� �

! 0 as bnp�1 t;m; v; zð Þ ¼
1

Fu;Tmz u K� npþmð Þ t�Dð ÞþDð Þð Þ � 1 ! 0 as n ! 1 for all

t [Dð Þ 2 Rþ. As a result:

Fu; Tpnþmz tð Þ ¼ Fv;Tpnþ‘z tð Þ ¼ 1; 8t [Dð Þ 2 Rþ ð2:23Þ

Fu; Tpnþmz tð Þ ¼ Fv;Tpnþ‘z tð Þ ¼ 0; 8t �Dð Þ 2 Rþ ð2:24Þ

with u 2 Ai, v 2 Aj, T
pnþmz 2 Aiþ1, T

pnþ‘z 2 Ajþ1 for any

i; j 2 �p. Thus, if i ¼ j then u; v 2 clAi, ‘ ¼ m and

Tpnþmz 2 clAiþ1. Assume that u 6¼ v are best proximity

points in clAi, then Tu; Tv 2 Aiþ1 are corresponding adja-

cent best proximity points and Tpnþmzf g ! Tu and

Tpnþmzf g ! Tv. Thus, Tu ¼ Tv and u ¼ Tpu ¼ Tpv ¼ v

which contradicts u 6¼ v. Since i 2 �p is arbitrary then the

set of adjacent best proximity points is unique.

In the particular case that D ¼ 0, one gets that u ¼ v is a

unique fixed point of T !
S

i2�p Ai !
S

i2�p Ai, allocated in

the nonempty set
T

i2�p cl Ai, and also a fixed point of each
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restricted composite self-mapping Tp :
S

i2�p Ai




Aj !
Aj,8j 2 �p since Eqs. (2.23) and (2.24) result to be for i ¼ j:

Fu; Tpnþmz tð Þ ¼ Fv;Tpnþmz tð Þ ¼ 1; 8t 2 Rþ ð2:25Þ

h

Example 2.1 Consider real intervals A ¼ �B ¼
z 2 R : z�D=2f g � R so that R; dð Þ is a complete met-

ric space under some metric d : X � X ! R0þ and

D ¼ d A;Bð Þ. The sequence xnf g � A [ B is generated by

2-cyclic self-mapping T on A [ B for some real constant

K 2 0; 1½ Þ and any given initial x0 2 R 
 A [ B, by

xnþ1 ¼ �K xn � 1� Kð Þ D=2ð Þsgn xnð Þ; n 2 Zþ ð2:26Þ

with the extended definition sgn xð Þ ¼ 0 if x ¼ 0 for the

case that D ¼ 0. The above sequence has the two following

subsequences, in A and B if x0 2 A, respectively, in B and A

if x0 2 B:

x2n ¼ T2nx0 ¼ K2nx0 þ 1� K2n
� �

D=2ð Þsgn x0ð Þ; n 2 Zþ;

ð2:27aÞ

x2nþ1 ¼ Tx2n ¼ T2nþ1x0 ¼ �K2nþ1x0

� 1� K2n
� �

D=2ð Þsgn x0ð Þ; n 2 Zþ:
ð2:27bÞ

Note that T : A [ B ! A [ B is a 2-cyclic contraction,

with the metric being the Euclidean norm, since

d xnþ2; xnþ1ð Þ ¼ xnþ2 �xnþ1j ¼ K xn � xnþ1ð Þjj
þ 1� Kð ÞDsgn xnð Þj �Kd xnþ2; xnþ1ð Þ
þ 1� Kð ÞD; n 2 Z0þ;

ð2:28Þ

and it turns out that x2nf g ! D=2, x2nþ1f g ! �D=2 if

x0 2 A and x2nf g ! �D=2, x2nþ1f g ! D=2 if x0 2 B and

x ¼ �D=2 are the unique best proximity points in A and B,

respectively, and unique fixed points of T2 : A ! A and,

respectively, of T2 : B ! B, which are confluent at x ¼ 0 if

D ¼ 0 and then a unique fixed point of T : A [ B ! A [ B

and T 2 : A [ B ! A [ B. Let Dþ
D be the set of all gener-

alized distance distribution functions of elements defined

by HD tð Þ ¼ 0 if t�D and H tð Þ ¼ 1 if t[D. Now, define

u tð Þ ¼ w tð Þ ¼ t, and:

• a probability mapping F : R � R ! Dþ
D , Fx;y tð Þ ¼

gtpþD
gtpþd x;yð Þ if t 2 Rþð Þ[D if x 2 A and y 2 B or x 2 B

and y 2 A; Fx;y tð Þ ¼ gtp

gtpþd x;yð Þ if t 2 Rþð Þ if x; y 2 A or

x; y 2 B; Fx;y tð Þ ¼ 0 if t 2 Rð Þ�D for all

x; yð Þ 2 A� B [ B� A, for any given g; p 2 Rþ
• a weighting function a : R � R � Rþ ! R0þ by

a x; y; tð Þ ¼ dtqþd x;yð Þ
tþkD for some given real constants k 2

0; 1ð � and d� 1.

Note that R;F;DMð Þ is a G-complete generalized

Menger PM-space since the distance distribution function

is a generalized one, [12]. It follows from Proposition 2.1

that

since a�1 xn; Txn; K
�1 t � Dð Þ þ Dð Þ� 1, n 2 Z0þ,

8t [Dð Þ 2 Rþ. Then, note that T is a-admissible and since

d xn; Txnð Þ � D ¼ F�1
xn; Txn

K�1 t � Dð Þ þ D� 1
� �� �

g K�1 t � Dð Þ þ D
� �pþD

� �

¼ F�1
xn; Txn

K�1 t � Dð Þ þ D� 1
� �

g K�1 t � Dð Þ þ D
� �p�

þDÞ; n 2 Z0þ; 8t [Dð Þ 2 Rþ ð2:30Þ

then, from Theorem 2.1, there exists the following limit

1 ¼ lim
n!1

FTxnþ1;Txn tð Þ� lim
n!1

Fx0;Tx0 K�n t � Dð Þ þ Dð Þ

¼ Fx0;Tx0 lim
n!1

K�n t � Dð Þ þ D
� �

¼ Fx0;Tx0 þ1ð Þ ¼ 1;

8t [Dð Þ 2 Rþ ð2:31Þ

FTxnþ1;Txn tð Þ ¼ FT2xn;Txn tð Þ ¼ gtp þ D

gtp þ d T2xn; Txnð Þ

� gtp þ D

gtp þ Dþ K d Txn; xnð Þ � Dð Þ ¼
1

1þ gtp þ Dð Þ �1K d Txn; xnð Þ � Dð Þ

� 1

1þ a�1 xn; Txn; K�1 t � Dð Þ þ Dð Þ gtp þ Dð Þ �1K F�1
xn; Txn

K�1 t � Dð Þ þ Dð Þ � 1
� �

g K�1 t � Dð Þ þ Dð ÞpþDð Þ

� 1

1þ F�1
xn; Txn

K�1 t � Dð Þ þ Dð Þ � 1
� � �Fxn;Txn K�1 t � Dð Þ þ D

� �
; n 2 Z0þ; 8t [Dð Þ 2 Rþ

ð2:29Þ
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so that x ¼ �D=2 are also best proximity points in the

probabilistic sense. In addition, FT2nx0; T2 nþmð Þx0 tð Þ[ 1� k
and FT2nx0; T2 nþmð Þþ1x0

t þ Dð Þ[ 1� k, 8k 2 0; 1ð Þ \ R and

8t 2 Rþ from Theorem 2.1[(2.10) and (2.15)] and T2nx0
� �

and T2nþ1x0
� �

are Cauchy, G-Cauchy and convergent to

�x, respectively. Note that for D ¼ 0 and A \ B ¼ 0f g
then x ¼ 0 is the unique fixed point from Theorem 2.2

since R;F;DMð Þ is a G-complete Menger PM-space.

Main results on best proximity points
for generalized p-cyclic a-w-type contractions

We generalize the concept of p � 2ð Þ-cyclic a-w-type
contractions as follows:

Definition 3.1 Let X;Fð Þ be a PM-space and let Ai be

nonempty subsets of X,8i 2 �p such that D ¼ d Ai; Aiþ1ð Þ is
the distance in-between adjacent subsets, 8i 2 �p. Then, T :
S

i2�p Ai !
S

i2�p Ai is a generalized p � 2ð Þ-cyclic a-w-type

contraction if T Aið Þ 	 Aiþ1, 8i 2 �p and there exist two

functions a :
S

i2�p Ai

� �
�

S
i2�p Ai

� �
� Rþ ! R0þ and

w 2 W satisfying the following inequality:

a x;y; tð Þ 1

FTx;Ty u Ktþ 1�Kð ÞDð Þð Þ � 1

� 	
� w0 x;y;Tx; Ty;u tð Þð Þ

ð3:1Þ

where

w0 x; y; Tx; Ty;u tð Þð Þ ¼ max w
1

Fx; y u tð Þð Þ � 1

� 	
;

�

w
1

Fx; Tx u tð Þð Þ � 1

� 	
; w

1

Fy; Ty u tð Þð Þ � 1

� 	
;

w
1

Fx; Ty 2u tð Þð Þ � 1

� 	
; w

1

Fy; Tx 2u tð Þð Þ � 1

� 		
;

ð3:2Þ

8 x; yð Þ 2 Ai � Aiþ1, 8i 2 �p, 8t [Dð Þ 2 Rþ, where K 2
0; 1ð Þ and u 2 UDD̂. h

An extension of Proposition 2.1 which can be proved

under similar arguments follows:

Proposition 3.1 The constraint (3.1), subject to (3.2), is

identical to:

8 x; yð Þ 2 Ai � Aiþ1, 8i 2 �p, 8t [Dð Þ 2 Rþ which is also

identical, if a x; y; tð Þ 6¼ 0, 8 x; yð Þ 2 Ai � Aiþ1, 8i 2 �p,

8t [Dð Þ 2 Rþ, to

F�1
Tx;Ty u tð Þð Þ� 1þ a�1 x; y; K�1 t � Dð Þ þ D

� �

w0 x; y; Tx; Ty; u K�1 t � Dð Þ þ D
� �

� 1
� � ð3:4Þ

Proposition 3.2 Let X;Fð Þ be a PM-space and let T :S
i2�p Ai !

S
i2�p Ai be a generalized p-cyclic a-w-type

contraction with Ai � X being bounded with D ¼
d Ai; Aiþ1ð Þ and �D ¼ max

i2�p
diam Aið Þ,8i 2 �p being the dis-

tance in-between adjacent subsets, 8i 2 �p. If u 2 UDD̂, then

Proposition 2.2 holds.

Proof It is direct since if X;Fð Þ be a PM-space, T :
S

i2�p Ai !
S

i2�p Ai is a generalized p-cyclic a-w-type con-

traction with Ai � X being bounded, D ¼ d Ai; Aiþ1ð Þ and
�D ¼ max

i2�p
diam Aið Þ being the distance in-between adjacent

subsets, 8i 2 �p and u 2 UDD̂, then:

F�1
x;y u K�1 t � Dð Þ þ D

� �� �
¼ Fx;y u K�1 t � Dð Þ þ D

� �� �
¼ 1

F�1
x;Tx u K�1 t � Dð Þ þ D

� �� �
¼ Fx;Tx u K�1 t � Dð Þ þ D

� �� �
¼ 1

F�1
y;Ty u K�1 t � Dð Þ þ D

� �� �
¼ Fy;Ty u K�1 t � Dð Þ þ D

� �� �
¼ 1

F�1
x;Ty 2u K�1 t � Dð Þ þ D

� �� �
¼ Fx;Tx 2u K�1 t � Dð Þ þ D

� �� �
¼ 1

F�1
y;Tx 2u K�1 t � Dð Þ þ D

� �� �
¼ Fy;Ty 2u K�1 t � Dð Þ þ D

� �� �
¼ 1

ð3:5Þ

for t 2 Dþ 2 �D; 1ð Þ so that it follows in a similar way as

in the proof of Proposition 2.2 that

w0 x; y; Tx; Ty;u K�1 t � Dð Þ þ D
� �� �

¼ w0 x; y; Tx; Ty; 0ð Þ
¼ 0

ð3:6Þ

for t 2 Dþ 2 �D; 1ð Þ since K 2 0; 1ð Þ, the distance dis-

tribution function F : R ! 0; 1½ � is non-decreasing and

left-continuous, T Aið Þ 	 T Aiþ1ð Þ, 8i 2 �p,

K�1 t � Dð Þ þ D[ 2 �Dþ D, and

2u K�1 t�Dð Þ þD
� �

[u K�1 t�Dð Þ þD
� �

[u 2 �DþDð Þ
ð3:7Þ

since u tð Þ is strictly increasing. h

FTx;Ty u tð Þð Þ� a x; y; K�1 t � Dð Þ þ Dð Þ
a x; y; K�1 t � Dð Þ þ Dð Þ þ w0 x; y; Tx; Ty; u K�1 t � Dð Þ þ Dð Þ � 1ð Þ ; ð3:3Þ
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The a-admissibility property has the same sense as in the

case of a-w-type contractions and cyclic contractions, that

is:

Definitions 3.2 If X;Fð Þ a PM-space then an a-w-type
generalized contraction T : X ! X (respectively, a gener-

alized p-cyclic a-w-type contraction T :
S

i2�p Ai !
S

i2�p Ai)

is a-admissible if a : X � X � Rþ ! clR0þ satisfies Defi-

nition 2.2 (1) (respectively, Definition 2.2 (2)). h

Parallel results to those in Theorem 2.1 and Corollary

2.1 are stated in the following compacted result:

Theorem 3.1 Let X;F; Dð Þ be a G-complete PM-space

and let T :
S

i2�p Ai !
S

i2�p Ai be a generalized p-cyclic a-

w-type contraction satisfying the following conditions:

1. D ¼ d Ai; Aiþ1ð Þ[ 0 and diam Aið Þ[ D̂� D, 8i 2 �p,

2. T is a-admissible,
3. there exists x0 2

S
i2�p Ai such that a x0; Tx0; tð Þ� 1,

8t 2 Rþ,
4. if xnf g � Xð Þ ! x is a convergent sequence generated

by the Picard iteration xnþ1 ¼ Txn, 8n 2 Z0þ for a

given initial condition x0 2
S

i2�p Ai, such that

a xn; Txn; tð Þ� 1,8n 2 Z0þ,8t 2 Rþ then

a xn; x; tð Þ� 1, 8n 2 Z0þ, 8t 2 Rþ.

Then, the following properties hold:

1. If u 2 UDD̂ for some D̂ �Dð Þ 2 R0þ
2. If u 2 U0 and

T
i2�p Ai 6¼ ; then Tnx0f g �

S
i2�p Ai and

Tnpþjx0f g � Aiþj are both Cauchy and G-Cauchy

convergent sequences to a limit point x 2
T

i2�p cl Ai.

If Ai are closed for i 2 �p then x ¼ Tx ¼ Tpx, that is, it

is a fixed point of the self-mappings T :
S

i2�p Ai !
S

i2�p Ai and Tp 
 T � Tp�1ð Þ :
S

i2�p Ai




Ak ! Ak,

8k 2 �p, 8x0 2 Ai, 8i 2 �p, 8j 2 p� 1 [ 0f g.
3. If Ai is closed, 8i 2 �p and

T
i2�p Ai ¼ ; then if x0 2 Ai

for any i 2 �p then there is a limit cycle

�xi; T�xi; . . .; T
p�1�xið Þ, to which the sequence Tnx0f g

converges, with Tp�xi ¼ �xi, �xi 2 Ai, �xiþj ¼ T j�xi 2 Aiþj,

8i 2 �p; 8j 2 p� 1 [ 0f g being a fixed point of the

composite self-mapping Tp :
S

i2�p Ai




Ak ! Ak, 8k 2 �p,

and also a quasi-best proximity point of

T :
S

i2�p Ai !
S

i2�p Ai. The subsequence Tnpþjx0f g in

Aiþj converges to xiþj ¼ T jxi, 8j 2 �p if x0 2 Ai for any

given i 2 �p. Furthermore,

lim
n!1

FTnpx0;T nþmð Þpx0 eð Þ ¼ Fx0;Tx0 1ð Þ ¼ 1; FTnpx0;T nþmð Þpx0 eð Þ[ 1� k

FTnpjx0;Tnpjþ1x0 u Dð Þ þ eð Þ[1� k;

lim
n!1

FTnpjx0;Tnpjþ1x0 u Dð Þ þ eð Þ ¼ F�xiþj;�xiþjþ1
¼ 1;

for any given e 2 Rþ, k 2 0; 1ð Þ and some n0 ¼ n0
e; kð Þ, 8n � n0ð Þ 2 Z0þ.
The following further properties hold if condition (1) is

relaxed to D ¼ d Ai; Aiþ1ð Þ[ 0, 8i 2 �p and Condi-

tions 2–4 still hold:

4. If u 2 UD,
T

i2�p Ai 6¼ ; then Tnx0f g �
S

i2�p Ai and

Tnpþjx0f g � Aiþj are both Cauchy and G-Cauchy

convergent sequences to a limit point x 2
T

i2�p cl Ai,

with cl Ai being the closure of Ai. If Ai are closed for

i 2 �p then x ¼ Tx ¼ Tpx, that is, it is a fixed point of

the self-mappings T :
S

i2�p Ai !
S

i2�p Ai and

Tp 
 T � Tp�1ð Þ :
S

i2�p Ai




Ak ! Ak, 8k 2 �p, 8x0 2 Ai,

8i 2 �p, 8j 2 p� 1 [ 0f g.
5. If u 2 UD, Ai is closed 8i 2 �p and

T
i2�p Ai ¼ ; then, if

x0 2 Ai for any i 2 �p, there is a limit cycle

�xi; T�xi; . . .; T
p�1�xið Þ, to which the sequence Tnx0f g

converges, with Tp�xi ¼ �xi, �xi 2 Ai, �xiþj ¼ T j�xi 2 Aiþj,

8i 2 �p; 8j 2 p� 1 [ 0f g being a fixed point of the

composite self-mapping Tp :
S

i2�p Ai




Ak ! Ak, 8k 2 �p,

and being also a best proximity point of

T :
S

i2�p Ai !
S

i2�p Ai. The subsequence Tnpþjx0f g in

Aiþj converges to xiþj ¼ T jxi, 8j 2 �p if x0 2 Ai for

some i 2 �p. Furthermore:

lim
n!1

FTnpx0;T nþmð Þpx0 eð Þ ¼ Fx0;Tx0 1ð Þ ¼ 1;

FTnpx0; T nþmð Þpx0 eð Þ[ 1� k
ð3:8Þ

FTnpjx0; Tnpjþ1x0 u Dð Þ þ eð Þ[ 1� k;
lim
n!1

FTnpjx0; Tnpjþ1x0 u Dð Þ þ eð Þ ¼ F�xiþj;�xiþjþ1
¼ 1 ð3:9Þ

for any given e 2 Rþ, k 2 0; 1ð Þ and some n0 ¼ n0 e; kð Þ,
8n � n0ð Þ 2 Z0þ. h

Proof Since T :
S

i2�p Ai !
S

i2�p Ai is a p-cyclic a-w-type

generalized contraction, x0 2
S

i2�p Ai, a x0; Tx0; tð Þ� 1, it

is proved by complete induction as in Theorem 2.1 that

a xn; Txn; tð Þ� 1, 8n 2 Z0þ, 8t 2 Rþ since u 2 UDD̂, u is

strictly increasing in D; 1ð Þ with u Dð Þ ¼ D̂�D[ 0 and

then there exists such that min Fx0;Tx0 u tð Þð Þ; FTx0;T2x0

�

u tð Þð Þ; Fx0;T2x0 u tð Þð ÞÞ[ 0, 8t [Dð Þ 2 Rþ. Since the dis-

tance distribution function is non-decreasing and left-con-

tinuous and K�1 [ 1,

min Fx0;Tx0 u tð Þð Þ; FTx0;T2x0 u tð Þð Þ; Fx0;T2x0 u tð Þð Þ
� �

�min Fx0;Tx0 u tð Þð Þ; FTx0;T2x0 u tð Þð Þ; Fx0;T2x0 u tð Þð Þ
� �

[ 0

ð3:10Þ
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with t0 ¼ K�1 t � Dð Þ þ D, 8t [Dð Þ 2 Rþ and taking

inverses in (3.10):

0�w0 x0; Tx0; Tx0; T
2x0;u tð Þ

� �
\þ1; 8t [Dð Þ 2 Rþ

ð3:11Þ

The cases a–c of the proof of Theorem 2.1 are re-ad-

dressed via the changes:

wn F�1
x0;Tx0

u K�nþ1 t � Dð Þ þ D
� �� �

� 1
� �

! wn
0 x0 ; Tx0; Tx0; T

2x0;u K�nþ1 t � Dð Þ þ D
� �� �

ð3:12Þ

w0 Tn�1x0; T
nx0; T

nx0 ; T
nþ1x0 ;u tð Þ

� �

¼ max w
1

FTn�1x0;Tnx0 u tð Þð Þ � 1

� 	
;

�
w

1

FTn�1x0;Tnx0 u tð Þð Þ � 1

� 	
;

� w
1

FTnx0;Tnþ1x0 u tð Þð Þ � 1

� 	
; w

1

FTn�1x0;Tnþ1x0 2u tð Þð Þ � 1

� 	
;

w
1

FTnx0;Tnx0 2u tð Þð Þ � 1

� 		

¼ max w
1

FTn�1x0;Tnx0 u tð Þð Þ � 1

� 	
;

�
w

1

FTnx0;Tnþ1x0 u tð Þð Þ � 1

� 	
;

w
1

FTn�1x0;Tnþ1x0 2u tð Þð Þ � 1

� 		
;

ð3:13Þ

8n 2 Zþ, 8t [Dð Þ 2 Rþ, from (3.2), and also

w0 x0; Tx0; T
2x0;u tð Þ

� �
¼ max w

1

Fx0;Tx0 u tð Þð Þ � 1

� 	
;

�

w
1

FTx0;T2x0 u tð Þð Þ � 1

� 	
; w

1

Fx0;T2x0 2u tð Þð Þ � 1

� 		

ð3:14Þ

since

w
1

FTnx0;Tnx0 2u tð Þð Þ � 1

� 	
¼ w

1

FTx0;Tx0 2u tð Þð Þ � 1

� 	

¼ w 0ð Þ ¼ 0; 8t 2 R0þ

ð3:15Þ

since Fx;x tð Þ ¼ 1, 8t 2 Rþ, since X;Fð Þ is a probabilistic

metric space, and u : R ! R0þ is nonzero, 8t 2 Rþ for all

x 2 X can be removed from the evaluation of the maximum

in (3.13). Equations (2.8a)–(2.8b) are changed to:

F�1
Tnx0;Tnþ1x0

u tð Þð Þ� 1þ w0 Tn�1x0 ; T
nx0 ; T

nþ1x0;
�

u K�1 t � Dð Þ þ D
� �� �

� 1
�

� 1þ wn
0 x0 ; Tx0 ; T

2x0;u K�nþ1 t � Dð Þ þ D
� �� �

;

8t [Dð Þ 2 Rþ; 8n 2 Zþ

ð3:16aÞ

using (3.2) with x ¼ Tn�1x0, y ¼ Tx ¼ Tnx0, 8n 2 Zþ,
equivalently,

FTnx0;Tnþ1x0 u tð Þð Þ

� 1

1þ wn
0 x0 ; Tx0 ; T2x0;u K�nþ1 t � Dð Þ þ Dð Þð Þ ;

8t [Dð Þ 2 Rþ; 8n 2 Zþ

ð3:16bÞ

Since K�1 [ 1, lim
t!1

u tð Þ ¼ 1 then lim
n!þ1

K�nþ1ð
t � Dð Þ þ DÞ ¼ þ1 and lim

n!1
u K�nþ1 t � Dð Þ þ Dð Þ

¼ þ1, 8t [Dð Þ 2 Rþ, lim
n!1

F�1
x0;Tx0

u K�nþ1 t � Dð Þðð
þDÞÞ ¼ 1, 8t [Dð Þ 2 Rþ. Thus, from (3.15),

lim
n!1

wn
0 x0; Tx0; T

2x0;u K�nþ1 t � Dð Þ þ D
� �� �

¼ 0;

8t [Dð Þ 2 Rþ

ð3:17Þ

since

Fx0; Tx0 u K�nþ1 t � Dð Þ þ D
� �� �

! 1;

Fx0; T2x0 u K�nþ1 t � Dð Þ þ D
� �� �

! 1;

FT2x0; Tx0 u K�nþ1 t � Dð Þ þ D
� �� �

! 1

ð3:18aÞ

wn F�1
x0;Tx0

u K�nþ1 t � Dð Þ þ D
� �� �

� 1
� �

! 0;

wn F�1
x0;T2x0

u K�nþ1 t � Dð Þ þ D
� �� �

� 1
� �

! 0;

wn F�1
T2x0;Tx0

u K�nþ1 t � Dð Þ þ D
� �� �

� 1
� �

! 0

ð3:18bÞ

as n ! 1, 8t [Dð Þ 2 Rþ, since wn tnð Þ ! 0 if tnf g ! 0.

Since D̂ ¼ u Dþð Þ, one has from Eqs. (3.16a) and (3.16b)

that lim
n!1

FTnpjx0; Tnpjþ1x0 u Dð Þ þ tð Þ ¼ 1, 8t 2 Rþ with

Tnpjx0 2 Aiþj and Tnpjþ1x0 2 Aiþjþ1, 8j 2 �p if x0 2 Ai for

any given i 2 �p since diam Aið Þ[ D̂� D, 8i 2 �p. Then, for

any given real constants e 2 Rþ and k 2 0; 1ð Þ, there is

some n0 ¼ n0 e; kð Þ 2 Z0þ such that FTnpjx0; Tnpjþ1x0

u Dð Þ þ eð Þ[ 1� k, 8n� n0, 8j 2 �p since the distance

distribution function is non-decreasing and left-continuous.

Thus, (2.10), for 8t [Dð Þ 2 Rþ, (2.11), for D ¼ D̂

¼ u 0ð Þ ¼ 0, and (2.12), for ‘ 2 k � 1 [ 0f g, and (2.13 )

obtained in the proof of Theorem 2.1 also hold, for any

e 2 Rþ and k 2 0; 1ð Þ, 8j 2 �p, 8n � n0ð Þ 2 Z0þ,8m 2 Zþ
and some n0 ¼ n0 e; kð Þ 2 Z0þ. Then, the p sequences

Tnpþix0f g, 8i 2 �p have a unique limit point in
T

i2�p Ai

provided that such a set is nonempty and closed (otherwise,

it is allocated in the intersection of the corresponding

closures) and, from Assertion 1.1, they are both Cauchy

and G-Cauchy sequences. The limit point is also proved to
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be a fixed point of T :
S

i2�p Ai !
S

i2�p Ai and of

Tp :
S

i2�p Ai




Aj ! Aj,8j 2 �p. Hence, Property (2) has been

proved. Property (3) is proved from the still valid formulas

(2.14)–(2.18). Properties (4) and (5) follow from their still

applicable counterparts of Corollary 2.1 for the cases when

u 2 UDD̂,
T

i2�p Ai 6¼ ; and, respectively, u 2 UD,Ai is

closed,8i 2 �p and
T

i2�p Ai ¼ ;. h

Theorem 3.2 Let X;F; Dð Þ a G-complete PM-space and

let T :
S

i2�p Ai !
S

i2�p Ai be a p-cyclic a-w-type general-

ized contraction satisfying the following conditions:

1. D ¼ d Ai; Aiþ1ð Þ[ 0; 8i 2 �p,

2. T is a-admissible,
3. there exists x0 2

S
i2�p Ai such that a x0; Tx0; tð Þ� 1,

8t 2 Rþ,
4. if xnf g � Xð Þ ! x is a sequence generated as

xnþ1 ¼ Txn, such that

a xn; Txn; tð Þ� 1,8n 2 Z0þ,8t 2 Rþ then

a xn; x; tð Þ� 1, 8n 2 Z0þ,8t 2 Rþ.
5. For all x; y 2

S
i2�p clAi, there is z 2

S
i2�p clAi such that

min a x; Tkz; t
� �

; a y; Tkz; t
� �� �

� 1, 8t [Dð Þ 2 Rþ for

some k ¼ k i; jð Þ 2 p� 1 [ 0f g if x 2 clAi, y 2 clAj for

any given i; j 2 �p.

Then, there is �xi 2 clAi, such that �xi 2 Ai if Ai is closed,

8i 2 �p, which is the unique best proximity point of T :
S

i2�p Ai !
S

i2�p Ai and the unique fixed point of

Tp :
S

i2�p Ai




Ak ! Ak,8k 2 �p. If, in addition, u 2 U0 with

D ¼ 0 and
T

i2�p Ai is nonempty and closed then there is a

unique fixed point of T :
S

i2�p Ai !
S

i2�p Ai and the com-

posite self-mappings Tp :
S

i2�p Ai




Ak ! Ak, 8k 2 �p.

Proof Let u 2 clAi, v 2 clAj be best proximity points for

any given i; j 2 �k such that u ¼ Tnpu ¼ Tpu and

v ¼ Tnpv ¼ Tpv, 8n 2 Zþ so that there is z 2
S

i2�p clAi

such that min a u; z; tð Þ; a v; z; tð Þð Þ� 1, 8t [Dð Þ 2 Rþ.

Thus, note that Tpnþkz 62 clAi [ clAj and Tkþ1z 62 Al if z 2
Al for any ‘ 2 �p if D[ 0.

Note that wnp�1 anp�1 kð Þ
� �

! 0 as anp�1 t; k;ð u; zÞ ¼
1

Fu;Tmz u K� npþkð Þ t�Dð ÞþDð Þð Þ � 1 ! 0 as n ! 1 for all

t [Dð Þ 2 Rþ which holds since Fu; Tmz u K�np t � Dð Þðð
þDÞÞ ! 1 as n ! 1 for all 8t [Dð Þ 2 Rþ since

K�np t � Dð Þ þ Dð Þ ! 1 for all t [Dð Þ 2 Rþ as n ! 1
and since u tð Þ[D from (2.21), from the properties u tð Þ ¼
0 for t\D, u Dð Þ�D, and u tð Þ[D for 8t [Dð Þ 2 Rþ
since u : R0þ ! R0þ is strictly increasing in D;1½ Þ. As a
result, Fu; Tpnþmz tð Þ ¼ Fv; Tpnþ‘z tð Þ ¼ 1, 8t [Dð Þ 2 Rþ. Let

u; v 2 clAi be best proximity points for any given i 2 �k

such that u ¼ Tpu and v ¼ Tpv. Then, one gets from (3.19)

to (3.20) that, if a u; v; tð Þ� 1 for any t 2 Rþ then since and

since T is a-admissible and min a x; Tkz; t
� �

; a y; Tk
��

z; tÞÞ� 1,

1

FTnpu;Tnpv u tð Þð Þ � 1¼ 1

FTpu;Tpv u tð Þð Þ � 1¼ 1

Fu; v u tð Þð Þ � 1

� sup
n2Z0þ

a�1 u;Tnpþkz; t
� �� �

wnp�1
0 u;Tkz;Tu; Tkþ1v;

�

u K�np t�Dð Þ þDð ÞÞ; 8t [Dð Þ 2 Rþ:

ð3:19Þ

Note also that

lim sup
n!1

wnp�1
0 u; z;Tu; Tkz;u K�np t�Dð ÞþDð Þ

� �

¼max lim sup
n!1

w
1

Fu; z u t0n
� �� � � 1

 !"

lim sup
n!1

w
1

Fu;Tu u t0n
� �� �� 1

 !

; lim sup
n!1

w
1

Fz;Tz u t0n
� �� �� 1

 !

;

lim sup
n!1

w
1

Fu;Tz 2u t0n
� �� �� 1

 !

; lim sup
n!1

w
1

FTz;Tu 2u t0n
� �� �� 1

 !#

�max lim sup
n!1

w
1

Fu; z u t0n
� �� � � 1

 !"

lim sup
n!1

w
1

Fu;Tu u t0n
� �� � � 1

 !

; lim sup
n!1

w
1

Fz;Tz u t0n
� �� � � 1

 !

;

lim sup
n!1

w
1

Fu;Tz 2u t0n
� �� �� 1

 !

; lim sup
n!1

w
1

FTz;Tu 2u t0n
� �� �� 1

 !#

�max lim sup
n!1

w
1

Fu; z u t0n
� �� �� 1

 !

lim sup
n!1

w
1

Fu;Tu u t0n
� �� �� 1

 !

;

"

lim sup
n!1

w
1

Fz;Tz u t0n
� �� �� 1

 !##

¼w 0ð Þ ¼ 0; 8t [Dð Þ 2 Rþ

ð3:20Þ

where t0n ¼ t0n tð Þ ¼ K�np t � Dð Þ þ D since

Fu; Tz 2u t0n
� �� �

�DM Fu;z u t0n
� �� �

; FTz;z u t0n
� �� �� �

�min Fu;z u t0n
� �� �

; FTz;z u t0n
� �� �� �

ð3:21Þ

FTu; Tz 2u t0n
� �� �

�DM Fu;Tu u t0n
� �� �

; FTz;u u t0n
� �� �� �

�min Fu;Tu u t0n
� �� �

; FTz;u u t0n
� �� �� �

ð3:22Þ

and, in the same way,

lim sup
n!1

wnp�1
0 v; z; Tv; Tkz;u K�np t � Dð Þ þ Dð Þ

� �
¼ 0;

8t [Dð Þ 2 Rþ ð3:23Þ

so that t0n ! þ1 as n ! 1, 8t [Dð Þ 2 Rþ.Then, it fol-
lows from (3.19) and (3.20) that

Fu; Tpnþkz tð Þ ¼ Fv;Tpnþkz tð Þ ¼ 1; 8t [Dð Þ 2 Rþ ð3:24Þ

Fu; Tpnþkz tð Þ ¼ Fv;Tpnþkz tð Þ ¼ 0; 8t �Dð Þ 2 Rþ ð3:25Þ
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since wnp�1 anp�1 t; k; u; zð Þ
� �

! 0 as anp�1 t; k; u; zð Þ ¼
1

F
u;Tkz u K� npþkð Þ t�Dð ÞþDð Þð Þ � 1 ! 0 as n ! 1 for all

t [Dð Þ 2 Rþ which holds since Fu; Tkz u K�np t � Dð Þðð
þDÞÞ ! 1 as n ! 1 for all 8t [Dð Þ 2 Rþ since

K�np t � Dð Þ þ Dð Þ ! 1 for all t [Dð Þ 2 Rþ as n ! 1
and since u tð Þ[D from (2.21), from the properties u tð Þ ¼
0 for t\D, u Dð Þ�D, and u tð Þ[D for t[D since u :
R ! R0þ is strictly increasing in D;1½ Þ. The same con-

clusion arises by replacing u by v. Thus,

Fu; v u tð Þð Þ ¼ FTpu; Tpv u tð Þð Þ ¼ 1, 8t 2 Rþ and then u ¼ v is

a unique fixed point of Tp :
S

j2�p Aj




Ai ! Ai for any arbi-

trary given i 2 �p, u 2 clAi and Tu 2 clAiþ1 are unique

adjacent best proximity points. If the intersection of the

closures of the subsets Ai is nonempty then the unique

adjacent best proximity points coincide in a unique fixed

point which follows in the same way as its counterpart in

the proof of Theorem 2.2. h

Example 3.1 Example 2.1 is revisited under the constraint

(3.1) subject to (3.2) with the same distance distribution

function and identical a x; y; tð Þ with u tð Þ ¼ w tð Þ ¼ t and

making x ! x0, y ! Tx0, Ty ! Tx20 for any arbitrary

x0 2 R, we get x2n ¼ T2nx0
� �

! x, x2nþ1 ¼ T2nþ1x0
� �

!
�x with x ¼ D if x0 2 A and x ¼ �D if x0 2 B, where

w0 x0; Tx0; Tx0; T
2x0; t

� �
¼ max w

1

Fx0; Tx0 tð Þ � 1

� 	�
;

w
1

FTx0; T2x0 tð Þ � 1

� 	
;w

1

Fx0; T2x0 2tð Þ � 1

� 	
;

w
1

FTx0; Tx0 2tð Þ � 1

� 		
; 8t [Dð Þ 2 Rþ

ð3:26Þ

w0 Tnx0; T
nþ1x0; T

nþ1x0; T
nþ2x0; t

� �

¼ max w
1

FTnx0; Tnþ1x0 tð Þ � 1

� 	�
;w

1

FTnþ1x0; Tnþ2x0 tð Þ � 1

� 	
;

w
1

FTnx0; Tnþ2x0 2tð Þ � 1

� 	
; w

1

FTnþ1x0; Tnþ1x0 2tð Þ � 1

� 		
;

8n 2 Z0þ; 8t [Dð Þ 2 Rþ

ð3:27Þ

Since Tnx0f g; Tnþ2x0
� �

! �x and Tnþ1x0
� �

! 
x,

lim
n!1

w0 Tnx0; T
nþ1x0; T

nþ1x0; T
nþ2x0; tð Þ ¼ 0

8t 2 Rþð Þ[D, since

lim
n!1

FTnx0; Tnþ1x0 tð Þ ¼ lim
n!1

FTnþ1x0; Tnþ2x0 tð Þ

¼ lim
n!1

FTnþ1x0; Tnþ2x0 t0ð Þ ¼ lim
n!1

FTnþ1x0; Tnþ1x0 t0ð Þ ¼ 1;

8t [Dð Þ 2 Rþ; 8t0 2 Rþ ð3:28Þ
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