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Abstract This paper investigates properties of conver-
gence of distances of p-cyclic a-i/-type contractions on the
union of the p subsets of a space X defining probabilistic
metric spaces and Menger spaces. The paper also investi-
gates the characterization of both Cauchy and G-Cauchy
sequences which are convergent, in particular, to best
proximity points. On the other hand, the existence and
uniqueness of fixed points and best proximity points of p-
cyclic o-i-type contractions are also investigated. The
fixed points of the p-composite self-mappings, which are
obtained from the p-cyclic self-mapping restricted to each
of the p subsets in the cyclic disposal, are also investigated
while a generalization and some illustrative examples are
also given.
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Introduction

Fixed point theory in the framework of probabilistic metric
spaces [1-4] is receiving important research attention. See,
for instance, [2—4, 7-13]. In addition, Menger probabilistic
metric spaces are a special case of the wide class of proba-
bilistic metric spaces which are endowed with a triangular
norm [2, 3, 7, 9, 11, 15, 16, 30]. In probabilistic metric
spaces, the deterministic notion of distance is considered to
be probabilistic in the sense that, given any two points x and y
of a metric space, a measure of the distance between them is a
probabilistic metric F,,(f), rather than the deterministic
distance d(x, y), which is interpreted as the probability of the
distance between x and y being less than ¢ (¢ > 0) [3].
Fixed point theorems in complete Menger spaces for
probabilistic concepts of B and C-contractions can be found in
[2] together with a new notion of contraction, referred to as
(¥, C)-contraction. Such a contraction was proved to be
useful for multivalued mappings while it generalizes the
previous concept of C-contraction. On the other hand, 2-cyclic
@p-contractions on intersecting subsets of complete Menger
spaces were discussed in [7] for contractions based on control
¢@-functions. See also [8]. It was found that fixed points are
unique. In addition, ¢-contractions in complete probabilistic
Menger spaces have been also studied in [11] through the use
of altering distances. See also [14, 26]. On the other hand,
probabilistic Banach spaces versus Fixed Point Theory were
discussed in [10]. The concept of probabilistic complete
metric space was adapted to the formalism of Banach spaces
defined with norms being defined by triangular functions and
under a suitable ordering in the considered space. In parallel,
mixed monotone operators in such Banach spaces were dis-
cussed while the existence of coupled minimal and maximal
fixed points for these operators was analyzed and discussed in
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detail. Further extensions to contractive mappings in complete
fuzzy metric spaces using generalized distance distribution
functions have been studied in [8, 9] and references therein.
The concept of altering distances was exploited in a very
general context to derive fixed point results in [14], and
extended later on in [15] to Menger probabilistic metric
spaces. On the other hand, general fixed point theorems have
been very recently obtained in [16] for two new classes of
contractive mappings in Menger probabilistic metric spaces.
The results have been established for «—i contractive map-
pings and for a generalized f3-type one. It has also to be pointed
out that the parallel background literature related to results on
best proximity points and fixed points in cyclic mappings in
metric and Banach spaces as well as topics related to common
fixed points is exhaustive including studies of fixed point
theory and applications in the fuzzy framework. See, for
instance, [5, 6, 13, 17-27,31-37] as well as references therein.

This paper investigates properties of convergence of
distances of p-cyclic contractions on the union of the p
subsets of the abstract set X defining the probabilistic
metric spaces and the Menger spaces as well as the char-
acterization of Cauchy and G-Cauchy sequences which
converge to best proximity points of p-cyclic a-y-type
contractions. The existence and uniqueness of fixed points
and best proximity points of p-cyclic a-y-type contrac-
tions. The fixed points of the p-composite self-mappings,
which are obtained from the cyclic self-mapping restricted
to each of the p subsets in the cyclic disposal, are also
investigated while illustrative examples and a further
generalization are also given.

Denote R;={z€R :z>0}, Ro=R;U{0},
Z+:{Z€Z:Z>O}, Z0+:Z+U{O},
i =1{1,2,...,n}, and denote also by L, the set of distance

distribution functions H : R — [0, 1], [1], which are non-
decreasing and left continuous such that H(0) =0 and

sup H(t) = 1. Let X be a nonempty set and let the proba-
teR

bilistic metric (or distance) F : X x X — L a symmetric
mapping from X x X, where X is an abstract set, to the set
of distance distribution functions L of the form H: R —
[0,1] which are functions of elements F,, for every
(x,y) € XxX. Then, the ordered pair (X,F) is a
probabilistic metric space (PM) [2, 3, 29] if

L. Vx,y e X((Fxy() =1;V1€Ry) & (x=1y))

2. Fiy(t) =F,,(1); ¥x,ye X,V € R
3. Vx, y,zeX th,f2€R+(( Fry(t1)

=Fyi(n) =1) = (Fu(t +12) = 1)) (1.1)

A particular distance distribution function F,, € L is a
probabilistic metric (or distance) which takes values Fy ,(f)
identified with a probability distance density function H :
R — [0, 1] in the set of all the distance distribution func-
tions L.

A Menger PM-space is a triplet (X, F, A), where (X, F)
is a PM-space which satisfies:

Fry(i+0) > A(Fo(h), Foy()); Vxy,z€X,
(1.2)
Vi1, 2 € Roy
under A : [0, 1] x [0, 1] — [0, 1] is a ¢-norm (or triangu-

lar norm) belonging to the set T of #-norms which satisfies
the properties:
1. Ala,1)=a
2. Ala,b) = A(b, a)
3. A(c,d) > A(a,b) if c>a,d>b
4. A(

A(a,b), ¢) = Aa,A(b,c)) (1.3)

A property which follows from the above ones is
A(a,0) =0 for a € [0, 1]. Typical continuous #-norms are
the minimum #-norm defined by Ay/(a,b) = min (a,b), the
product f-norm defined by Ap(a,b) = a.b and the Luka-
siewicz (or nilpotent-minimum) fnorm defined by
Ap(a,b) = max (a+ b — 1, 0) which are related by the
inequalities Ay <Ap < Ay.

The (probabilistic) diameter of a subset A of X is a
function from Ry, to [0,1] defined by Da(z)=

sup inf F,,(¢) and A is probabilistically bounded if D), =

1<z X yEA

sup Dy (z) =1

zeR,

lim D4(z)), probabilistically semibounded if 0<Dj <1
Z—00

and probabilistically unbounded if DZ =0 [1, 2]. The
diameter of a subset A C X in the PM-space (X,F),
induced by a metric space (X, d), refers to maximum real
interval measure, where the argument of the probabilistic
metric is unity, that is,

(DY, can be defined equivalently as

diam A — inf {te R, : (::ng <Fk1y(t) 2 d(x,y) :j)l)lé)q d(x, y)>> = 1} if{ze R, : (Xs;lga <F'x‘y(t) 2d(x,y) :xs,;lel,)q d(x, y))) = 1} #0

o]

otherwise
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Example 1.1 Let X be an abstract nonempty set, (X, F) be
a PM-space and (X, d) be a companion metric space and let

A be a nonempty subset of X with F, (1) = % for

sup, o q d(x,
t<t;, where t':w

, and F,,(t) =1 for t > 1

with some given positive real functions subject to fi(x,y) =
B, a(x,y) = &(zﬁ) eR; and a(x,y)=p(x,y) =1 if
d(x,y) < sup,,ea d(x, y). In this case, diam(A) = #; < oo
being, in particular, infinity if & = f§ (i.e., the probability
one is reached as a limit as ¢ — o0o) or if sup, ., d(x, y) is
arbitrarily large (i.e., if A is unbounded as a subset of the
metric space (X, d)). If sup, ,c, d(x, y) <oo and & > f then
diam(A) < co.

The (probabilistic) distance in-between the subsets A
and B of X defines the argument interval length of zero
probability distance in-between points of two subsets A and
B of X and it is defined as:

=d(A,B) = inf (z €Ror: sup Fyy(z) = 0)

X€A, yeB

(1.5)

Definition 1.1 [7, 8, 16] Let (X,F,A) be a Menger PM-

space. Then:

1. A sequence {x,} in X is said to be convergent to x in X
if, for every ¢, . € R., there exists ny = ng(g, 1) €
Z. such that F, ,(e) > 1 — A, whenever n > ny.

2. A sequence {x,} in X is said to be a Cauchy sequence
if, for every ¢, A € R,, there exists ny = ng(e, 1) €
Zy. such that F, , (¢) > 1 — A, whenever n,m > ny.

3. (X,F,A) is complete if every Cauchy sequence in X is
convergent to a point in X.

4. A sequence {x,} is said to be G-Cauchy if, for every
e e Ry, nlirgo Fy x,.(8) = 1.Ym € Zy,.

5. (X,F,A)is G-complete if every G-Cauchy sequence in
X is convergent in X. O

s Xnt+m

Assertion 1.1 Let (X, F,A) be a Menger PM-space with
A = Ay, Ap or Ap. The following properties hold:

1. {x,} C X convergent = {x,} is Cauchy = {x,} is
G-Cauchy.
2. (X,F,A) G-complete = (X, F,A) is complete

Proof Proof of (i) Step 1 We first prove that {x,}
convergent ={x,} is Cauchy. Since {x,} is convergent
then for every ¢, A€ (0,1) € Ry, there exists ng =
no(e,A) € Zo; such that F, .(¢/2)>1—21/2, Vn,
m(>ng) € Zo;. Then, since F:R — [0,1] is non-de-
creasing, one gets:

qu.,xm< &) >A(F ( XIZX(8/2)7 Fyox 8/2))

>IIlll'1 ( ( x,,x(g/z)v Xm X(S/z))’
Ap (Fy,1(2/2), Fy,x(2/2)),
AL ( Xn s x(8/2)7 Xm X(g/z))

= min(min(Fy, (¢/2), Fy,.(¢/2)),
Fr,x(8/2).Fy, 1(e/2),
max( F, x(¢/2) +Fxmx(€/2) - 1) O)
= Fu,x(¢/2) + Fy,(¢/2) —

= AL ( me(e/Z), Xm X(S/z))

>2(1-2/2)—1=1-2 Va,m(>ny) € Zo,

(1.6)

and then {x,} is a Cauchy. Since the above inequalities
hold for any n,m(>ng) € Zoy, it turns out that
lim inf Fy ., () >1—4, VmeZ,.

Proof of (i) Step 2 We next prove by contradiction that
{xn} is Cauchy = {x,} is G-Cauchy. Assume that {x,} is
Cauchy while it is not G-Cauchy. Then,
hm mfF (&1/2) >1-1 and

Xn s Xnt+m

hm suprmxm(sl)<1 — 24, for some m € Zy;, some

¢ € Ry and some given A= A(g) € (0, 1/2). Since
F.,(t) is non-decreasing in ¢ for all x,y € X, so that
F. y(e1) > Fy y(1/2), then:

1 -2/ > lim infF, .., (e1) > lim inf Fy ., (e1/2) > 1

n—0o00
— ;”7

(1.7)

Vm € Z.. But then A<//2. Then, {x,} is G-Cauchy.

Proof of (ii): Let (X, F, A) be G-complete and let {x,,} C X
be any given Cauchy sequence. Then {x, } is G-Cauchy, from
property (1), and convergent to some x € X since (X, F,A) is
G-complete. Since {x,} is an arbitrary Cauchy sequence
convergent in X, it turns out that (X, F, A) is complete. [

The (¢, A)-topology in a Menger in a PM-space
(X,F,A) is a Hausdorff topology introduced by the family
of neighborhoods N, of a point x € x given by N, =
{N:(e,2) : e€ Ry, 1€ (0,1)} where
Ni(e,2) ={z€X :Fy.(¢) > 1—7}. In this topology, a
function is continuous at xo € X if and only if {f(x,)} —
f(xo) for every convergent sequence {x,} — xo. See [1, 16]
for more details. |

We next denote by ¢(zt) and ¢(z7), respectively, the
right and left limits of ¢(z) as r — z.

Definition 1.2 A function ¢ : R — Ry is said to be a
&,,-function if, for given real constants x,y € Ro;, with
y > x, it satisfies the following conditions:

’r @ Springer



Math Sci (2017) 11:95-111

L. () is strlctly increasing for ¢ € [x, 00)

2. (") =

3. o) is everywhere left-continuous

4. @(t)=0fort € (—o0, x] O

The set of functions @,, is simply denoted by &,. If
@:R— Ry, isin @ then p(x) = p(x7) =0< p(x") =x
and then if ¢ € @y, it is continuous at = 0. Note also that
the particular set of functions @, coincides with the set of
functions @ of [15, 16] which have continuity at cero.
Definition 1.2 will be used in the following to establish the
class of contractions under investigation using functions in
the sets @p and P, where D is the distance in-between
adjacent subsets of the cyclic disposal in X.

Definition 1.3 [16] A function s : Ro; — Ry is said to
be a Y-function if it continuous with ¥(0) =0 and
V" (a,) — 0 when a, — 0 as n — oo.

Main results on best proximity points for p-cyclic
o-iy-type contractions

The definition of a p(>2)-cyclic o-y-type contraction
follows:

Definition 2.1 Let (X,F) be a PM-space and let A; be
nonempty subsets of X,Vi € p such that D = d(A;, Aiy1) is
the common distance in-between adjacent subsets, Vi € p.
Then T : U, Ai — Uie,Ai is a p(>2)-cyclic a-i-type
contraction if T(A;) C A;y1, Vi € p and there exist two

functions o : (UieﬁAi) X (UieﬁA,) x Ry — Ry, and
Y € ¥ satisfying the following inequality:

1
o(x, y, t -1
w3 (o = )

(2.1)
Vi 1) :

V(x,y) € A; X Ajy1, Vi€ p, Vi( > D) € Ry,
K € (0,1), forany given ¢ € @, and any givenreal D > D.

Note that if T : {J;c; Ai — U,e;Ai is p(=2)-cyclic and
if x € A; for some i € p then for any j € p and n € Zy,,
T"PHi%x € Aypyirj = A for some k € p since if n,m € Z.
and n=m(modp) then A, =A, In particular,
Aitnp = Ai, Vi € p, Vn € Zy,.. It can be pointed out that p-
cyclic contractions include the case of cyclic self-map-
pings 7 on X such that X = J;,A;. In this case, {A;};c,
is said to be a cyclic representation of (X,T). On the
other hand, note that is an o-y-type contraction if (2.1)
holds with D =0 for r € R, [16]. The distances in-be-
tween adjacent subsets are assumed to be identical just to
facilitate the exposition by simplifying the contractive

where

’r @ Springer

condition to the form (2.1) so as to make less involved
their associate calculations. Note that the distances in-
between adjacent subsets in non-expansive cyclic self-
mappings are identical in uniformly convex Banach
spaces [27].

An equivalent constraint to (2.1) is now discussed:

Proposition 2.1 The constraint (2.1) is identical to:
Froay (1))

. %(x.y, K\ (1= D) + D)

2(x,y, K= (1=D) + D)+ (Fo} (o(K~' (1= D) + D))~ 1)
(2.2)

V(x,y) €EA; X Ajv1, Vi€p, Vi(>D)€eRy which is also

identical, if o(x,y,t)#0, V(x,y)€A;xA;1, VieEp,
Vi( > D) €R,, to
Frlp(o(0)<1+o7! (x,y, K~'(t— D) + D)

( (2.3)

v(Fo (o(K ™'t =D)+ D))~ 1)

Proof Note that, given K € (0, 1) and D > 0, the function
Bxp: [D,00) — [D,00) defined by ﬁkﬁD(t) =Kt +
(1 = K)D for t € (D, 00) is a strictly increasing, bijective
and bicontinuous function of (then continuous) inverse
Bi'n(t) = K~'(t — D) + D for t € (D, 00), which can be
extended by continuity to =D by defining

p(D) = D.Then, one gets from (2.1) that
FTx‘Ty((P(t)) O((x7y7K71(t_D)+D)
P Fren(o(0) ™y (Fol (oK~ D) + D) — 1)

(2.4)

V(x,y) € A; X Aiy1, Vi € p, Vi( > D) € R, which is iden-
tical to (2.2). Equation (2.3) follows directly from (2.1) if
o (x,y, K~'(t — D) + D) #0. O

Note from (2.2) that, if a(x,y,f)=1 and
o(t) = Y(r) =t, Vx,y € X, Vt € R, then the p-cyclic a-i)-
type contraction 7 : (J;c;Ai — [, Ai becomes a p-cyclic
B-contraction since one gets Fry 7y(f) ZFW(K*I(t - D)
+D), Vx,y € X, Vt € Ry from (2.2) if a(x,y,7) =1 and
¢@(t) = y(r) = t. Thus, a p-cyclic B-contraction is a par-
ticular type of p-cyclic a-i/-type contraction. See [2] for the

case D = 0. Some basic properties of a p-cyclic a-y/-type
contraction are now given:

Proposition 2.2 Let (X,F) be a PM-space. Let T:
Uiy Ai = Uiep Ai be a p-cyclic o-y-type contraction with
A; C X being bounded, Vi € p with D = d(A;, Ai11), Vi €p

and D = maxdiam(A;) being the distance in-between
ep

adjacent subsets, Yi € p. Then, the following properties
hold provided that ¢ € @y for any given D>D:
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L. Frupy(e(t) =1, VY(x,y) €A; xA, Viep, for any given n € Zg,. Since K € (0, 1), K~'(t — D) +

Vi(>D+2D) € R, Vn € Zy,. D>2D +D,p(K'(t—D)+D)> ¢@2D+D) for
2. hm Frury (p(t)) =1, VY(x,y) €AixAy1, Viep, t&(D+2D, o), F:R—[0,1] is non-decreasing and

vl’l S Z(H,.
3. Fx,y((p(t)) = FXLV(T) = O’ V(x,y) S Ai X Ai+|a Vi Eﬁ,
t € (—o0, D), 1 € (—o0, D).

4. Fx,y((P(D+)) :Fx,)'(b) =0; V(x,y) €A; x
Ay, Yiep ifD =D,F,.,(p(D")") =F.,(D")
=1; VY(x,y) €A x Ay, Viep ifD=
D,Fyy(@(D")) = Fey(D) = 1;

V(x,y) €A; X Ajy1, Yiep ifD>D

where D = ¢ (DV) = h%l @(t) and F.y(D") = lim
t—DT

1—Dt
tlirg Fx.y((P (t))

Proof Since A; and A;;; are bounded then the maximum
distance in-between any two points of adjacent subsets is

not larger than D +2D. Then, lim F,,(s) = max

iep

maX;ex;, (UGA;+1Fz,(u((p(t)) = I,V(X, y) € Ai X AH—I’ Vie pv if

t € (D+ 2D, o), since the distance distribution function

F :R —[0,1] is non-decreasing and left-continuous, and

T(A,) CA; with D= d(A,‘7 Ai-H)’ Vi e p. Then,

F,(p(K"'(t=D) + D)) = Fey(@(K~'(t— D) + D))
=1 fort€ (D+ 2D, co) so that

v(Fol(o(K (1= D) + D)) —1)

=y(0) = € (D+2D, o)
since €(,1), K'\t-D)+D>2D+D and
¢ (K '(t—D)+ D) > ¢(2D+ D) Vt(>D+2D)€R,,

since ¢ : R — Ry, is strictly increasing and left-contin-
uous in (D, o), F : R — [0, 1] is non-decreasing and left
continuous and (0) =0. Thus, from Proposition 2.1
[Eq. 2.3)], Fron(e(r) = FTxlTv((p(t)) =1 for re(D+
2D, oo). Again, since €(0,1), K'(t-—D)+
D>2D+Dand ¢ (K '(t— D) + D) > ¢(2D + D), since
@ : R — Ry, is strictly increasing and left-continuous in
(D, ), if ¢ € ®p(Definitions 2.1 and 1.2), F : R — [0, 1]
is non-decreasing and left continuous and (0) = 0, then
one gets for r € (D + 2D, c0), that:

:fo{nr(¢(K71(f*

v (Fiin (0(K™' (1= D) + D)) = 1) =4 (0) = 0

Fror (¢ (K™'(t — D) + D))

so that, again one gets from Proposition 2.1 [Eq. (2.3)],
Fryry(@(0)=Fp\ py(e(1) =1 for t € (D+2D, o).
Now, proceed by complete induction by assuming that
Froy (0 (1)) = F;,,I)C_T,,),((p(t)) =1 for t € (D+ 2D, x)

D) + D))

left  continuous and (0)=0, one has for
t€(D+2D, 00), T"x CAirn =A; and T"y C Ajjpy1 =
Ajyy for a unique integer j = j(i) € p— 1 U {0} fulfilling
n=gp+j—i>i for some q =¢q(i) € Z, and the given
i € p that:

Friry (¢ (K~ (t — D) + D))
= Frlny (0 (K™ (1= D) + D)) = 15
+

¥ (Frkm, (0(K™'(t = D) + D)) = 1) = $(0) = 0.

Then, from Proposition 2.1 [Eq. (2.3)], Fru1 x, T" 'y
(p(1)) = F;,,ijmy((p(t)) =1 for t€(D+2D, x).
Hence, the proofs of Properties (1) and (2) follow by
complete induction.

Properties (3)—(5) follow directly from the definitions of
the sets @5 for ©=¢(r), being equivalent to
t=t(t)=arg(zeR : ¢(z7) =1 for 7 € (¢(D), D))
which is point-wise unique for any t € (¢ (D), D), zero
for t € Ro- if &5 and, left-continuous and strictly
increasing for #(€ R) > D. O

It turns out that Proposition 2.2 holds, in particular, for
@ € ®&p. The a-admissibility of o-iy-type contractions is
defined to state layer on the main result:

Definitions 2.2 Let (X, F) a PM-space. Then:

1. an o-y-type contraction 7 : X — X is a-admissible for
a given function o : X X X x Ry — Rg [16] if

Vx,y € X, Vt
ER.[(a(r,y,1) > 1) =

2. a p-cyclic a-y-type contraction 7T : |

(T, Ty, 1) 2 1)),

icp A - UzEp

is a-admissible for a given function o : (UieﬁAi) X

(UieﬁAi) % R, — Ry, if

v<x7y) eAi ><Ai+17 Vi €p, vt
€ R [(a(x,y,1) 2 1) = ((Tx, Ty, 1) 2 1)].

O

Definitions 2.3 7 : J,.,Ai — U, Ai be a o — y-type p-

cyclic mapping, ¢ € @, and € ¥. Then:

1. the pair (x,Tx) € (clA;, clA;+1), where cl(.) stands for
the closure of the (.)-set, for any given i € p is a pair of
quasi-best proximity points if Fez(D +¢) >1—2
for any given ¢ € Ry and F, 7y (D) = Fyn(D™) = 0.

’r @ Springer
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Each of them is a quasi-best proximity point in the
corresponding subset A;.

2. A quasi-best proximity point is a best proximity point
if Fyro(D +¢)>1— 4 for any given ¢ € R, and
A€ (0, 1). O

Remarks 2.1 Since ¢ € ®p; then D = @(D")>D. If
¢ € ®p, then D = (D) = D and, if the pair (x, Tx) is a
pair of quasi-best proximity points, then Fyr (D)=
Fir(o(DT)) =0and F, 1 (D") = 1 [see also the two first
properties of Proposition 2.2 (iv)].

If ¢@ecd,; with D=¢pD")>D
Fyry ([) +8) > 1 — /1 for arbitrarily small positive real
constants ¢ and A so that FxﬁTx(ﬁJ’) =1 and Fy7(D) =
F.7.(D™) = 0 but it is not guaranteed that F, 7.(D") = 1,
then, it is not guaranteed in this case that (x, 7x) is a pair of
best proximity points if ¢ is not continuous at D. O

then

The most important of the main results of this paper
follows below:

Theorem 2.1 Let (X,F, A) be a G-complete PM-space
and let T : |,.,Ai — .., Ai be a p-cyclic a-y-type con-

traction with ¢ € @, for some D(€ R) > D satisfying the
following conditions:

icp icp

1. D=d(A;, Aiy1) > 0 and diam(A;) > D — D, Vi € p,

2. T is a-admissible,

3. there exists xo € U,
vVt € Ry,

4. if {x,}(C X) — x is a Picard iteration generated as
Xnr1 = Txn, Yn € Zoy with xo € Uieﬁ A;, such that
o(xy, Txn, 1) >1, Vn € Zy,, Vie R, then
o(xy, x, 1) >1,Yn € Zp, Vi € R,

A; such that a(xg, Txo, t) > 1,

Then, the following properties hold:

L Fpasy s ((m + ) (@(D) +2) > 1 = 7,
Vi( > D) € Ry, Vj € p for any given real constants
e € Ry and A€ (0,1), some ng =ng(e, 1) € Z, and
Vn(>ng) € Zoy, Ym € Ly, and

FT”xo,T““xo((p (t))
1
> )
v (Foln, (9(K (1= D) + D) — 1)

2. If o€ ®and (), Ai # 0 then

hm FT”xo T”*lxo( ) = hm FTnp«HxO Tn+m)]7+]+lx0 (t) = 17

n—oo n—oo

vt € R,.
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3. IfA;is closed, Vi € p and

Furthermore, {T"xo} C \J;c,Ai and {T""xo} C Awyj
are both Cauchy and G-Cauchy convergent sequences
to a limit point x € ﬂieﬁ clA;. If the subsets A; are
closed for i € p then x = Tx = T"x, that is, it is a fixed
point of the self-mappings T : e, Ai — Ui, Ai and

TP(ETOTP71)2U< A|Ap — Ag, VkEﬁ, Vxo € A;,

iep

Viep,Vjep—1U{0}.

iep

A; = ( then if xy € A;
there is a

icp
for any i€p then limit  cycle
(xi, Tx;, ..., TP7'%;), to which the sequence {T"xo}
converges, with TPx; = X;, X; € A;, Xij = Tix; € Aigj,
Viep,Vjep—1U{0} being a fixed point of the
composite self-mappings (of domain and image
restricted to each of the subsets)
TP : UieﬁA,- Ay — A Vk € p, and it is also a quasi-

best proximity point (in particular, a best proximity
point if ¢ € Op = ®pp) of T : Uy Ai = Uiy Aie The
{TanrjX()} in Ai+j

Xipj = T/x;Vj € p if xo € A; for some i € p. Further-

subsequence converges to

more:

lim Frupy pomny, (&) = Fyy 1y (00) = 1,

n—0o0
FT””X() T(n+m pXO( ) > 1 - l

FT"I’fXU Tup;‘+IX0(qD(D) ) >1- )v,
im Fruiy, gmwisiy, (@(D) + &) = F

‘f. .lf. .
00 i+ Xitj+1

=1

for any given ¢€ Ry, 1€ (0, 1) and for some
ny = no(b‘, )), Vn( Zl’l()) €Zy..

Proof Letxy € Uieﬁ A; such that the condition (3) holds.
Since T : J;c;Ai = Uiy Ai is a p-cyclic o-y-type con-
Xo € Uieﬁ A;, o(xg, Txo, 1) >1,
Xp1 = Txy = T xg # x,, V0 € Zoy, Vt € R and T is a-

traction,

admissible, assume that ot(xj, Tx;, t) >1,
Vjenu{0} € Zoy, Vi e Ry. Since
a(xy, Ty, 1) > 1= a(Tx,, Txp1, t) >1, Vi€ R,, then

oc(xj, Tx;, t) >1,Vjen+1U{0} € Zo,, Vt € R,. Then,
a(xj, T, 1) >1, VjenU{0}€Zy, VieR, =
a(xj, Txj, 1) >1, Vj € n+1U {0} € Zoy, V1 € Ry. It has
been proved by complete induction that a(x,, Tx,, ) >1,
Vne€Zy., VieR,; provided that a(xg, Txo, 1) >1,
Vr € R;.Then o(xn, Ty, t) € [1, +00) and
o (X, Txny 1) €(0, 1],  VneZo, VteRy if

a(xo, Txg, t) > 1,¥t € R;. On the other hand, since ¢ €
@, and since T : Ulep UlepA is a p-cyclic a-y-type
contraction, ¢ is strictly increasing in (D, co) with
@(D) = D>D > O(see Definitions 2.1 and 1.2) and then
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there exists 7(> D)€ Ry such that Fy 7 (t) >0,
Vi( > D) € R,.. Since the distance distribution function is
non-decreasing and left-continuous and K~! > 1, then
Fry 15 (0(K~'(t = D) + D)) > Fyy 13, () > 0and 0 < F !

X0, Txo

(p(K~'(t = D) + D)) — 1< + 00, Vt( > D) € R;. Now,
note that o !(x,, Tx,, t) € (0, 1] since o(x,, Txy, 1)
€1, ); VneZy VteR,. Thus, if o' (T"x,

T"xo, K~1(t — D) + D) € (0,
R. and, furthermore,
Case a lim info™!

>0, Vt(>D) e Ry
then one gets from (2.3) that

F;xz T2 (@ (1) S 1+ o' (xo, Txo, K '(tr—D) + D)
W (Foln (0(& (1= D) + D)) ~ 1)

<1+9(F,ln (o(K (0= D) + D)) 1),
Vi( > D) € Ry,

1]; Vn € Zy,, Vt( > D) €

(T"xo, T""'xo, K~'(t — D) + D)

(2.5)
equivalently,
ot (@K~ (t = D)+ D)) <1
+ U (Fyln (0(K (1= D) + D)) — 1), (2.6)

Vi(> D) e R}

and replacing in (2.5) xg — Txg, Txp — T?x, with the use
of (2.6) leads to:
P

Hori (@ 0) <1+ 0(Frl o (0 (K1 = D) + D)) — 1)
<1+ y? ( Folr (@(K2(t = D) + D)) — 1), Vi(> D) e R,
(2.7)
and proceeding recursively in the same way:
Fry g (@ (1) <1+ w( i 1o, (@(K7'(t = D) + D)) — 1)
<1+ 92 (Frlay o, (0(K 2= D) + D)) — 1)

<t+y( M«p(r"(r—m +D) 1),

vi(>D)eR,, VneZ,,
(2.8a)
equivalently,
1
Frugy i (@ (1)) 2 )
L 0" (ol (0(K (= D) + D)) ~ 1)
Vi(>D)eR,, VneZ,
(2.8b)

Since K~!' >1 and ¢ € @ then
+D) = D) + D)

li K™ (t—D
Jim (K™"(t = D)

+oo, lim (K "(t — = 400, Vt( > D)
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€ R; and hm o (@(K™"(t = D) + D)) = 1, Vi( > D)
eR.. Thus,
fim ¥ (Flny (oK =D) + D) 1) =0, o
Vt( > D) eR;,

since  lim y" g o (@(K ™" (t = D) + D)) — 1) =
11m A (t) = 0 if {t,} — 0. Then, hm FT% ity (@ (1))

= 1,w( > D) € R, from (2.8b).

Case b lim o' (T"xg, T"'xy, K~'(t — D) + D) =0,
Vi(> D) € Ry
We first prove that lim sup " ( o (@K™ (t=D)

n—o0

+D)) —1)<oo, Vt( > D) € R;. The above condition is
identical to lim sup /" (F L (o(ty)) — 1) <oo with t, =

X0, TXQ

n—o0
t,(t) =K "(t — D) + D and, since K<1, K" — oo as
n — oo and ¢@(¢) is strictly increasing then {#,} — oo and
o(t,) — 0o as n — oo. Assume that this is not the case so
that lim sup y/" ( o, ol (@) — 1) = co. Then, since the

n—oo
function ¥ : Roy — Ry is everywhere continuous in its
definition domain it can only diverge at infinity and then

Jim FXOlTXU(go(t,Z)) =o0, and  equivalently,  lim

n—o0
Fxo,Txo(q)(tn)) = tli_r)rgc Fi 10 (@(t,)) = 0. But this would
lead to the contradiction that Fy, 1y, (#) is not non-de-

creasing. As a result, lim sup /" (FXOITXO( (tn)) — l) <00,

n—oo
and then
lim (¢~ (T"x0, 7" *'x0, K~'(t = D) + D)
n—oo
V' (Folng (oK™t =D) + D))~ 1)) =
leading to hm Frogr Xy (@(t) = Hm Frog poeiy,

—

(p(1)) = 1, Vi =°D) € R, from (2.8a).
Since D> ¢(D™), one concludes for Cases a and b that
lim Fruy, pisig, (@(D) + 1) = 1, Vi € Ry with T"ixg €

n—oo
Aisjand T xg € Ajj41,Vj € p if xg € A; for any given
i € p since diam(A;) > D — D, Vi € p. Then, for any given
real ¢ € R, and A€ (0,1), there is ng =np(e, 4) € Zoy
such that

Frmgy, rwe 1 (@(D) +

since the distance distribution function is non-decreasing
and left-continuous. On the other hand,

Frunyy, rompein, ((Pm +) (@(D) + £))
>Ay (F Tooxg, T+ (@(D) + &), oy poviag,
(Q(D) +8)s-s Frompo sy ooy (9(D) +8)) > 1 — s
(2.10)

e)>1—1, VYn>ny, VjEDp,

Y
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Vi(> D) e Ry, Vj €p and, for any given ¢ € R, and
1€ (O,1), Fragpers ol(pm+)(@(D) +2) > 14
forn(>ny) € Zo., Vm € Z.. Property (1) has been proved.

Property (2) relies on the case when ¢ € ®&p and

Niey Ai # 0 since D=0. If ¢ € @, then D=D=
¢(0) = 0 so that

FT”XO.,T”“JCO(‘O’) >1-— /l,

FTupf/'xO_’T(n+l)p+_/x()((pm +]) 8) >1-— /1, (21 1)
Yn(>ny) € Loy, VmeZ,,
and lim FT"X(), Tr+lx, ([) = lim FT"I’HX(]. TOrtmp+i+ (t) = 1,
n—o0 n—oo :

vt € R.. Since (X, F, A) is G-complete, then {T"x} —
% (€ cl(Aiy)), Vi € p—1 U {0}, Vxo € A;. Assume that
Xj # Xy for some j,k € p. Since (X, F, Ay) is a Menger
PM-space then from (2.10) with D = D = ¢(0) = 0:

FTzzp+j+/xO Tnp+/+/+le (C/k> > 1 — l,
hIIl FTnp+j+/xO Trpti++H x (8/]() = 1

n—oo

Vn(>no) € Zoy;

(2.12)

for¢ € k —1U {0},any ¢ € R, andanyreal 1 € (0, 1) what
implies that I}LTC Frusigy, roveivig, (1) = 1, Vt € Ry and, from
the first property of (1.1), X; = X1, a contradiction, and then
%; = X, Vi € p. So, the p sequences {T"*ixq}, Vi € p have a
unique limit point in ﬂieﬁ A; provided that such a set is
nonempty and from Assertion 1.1 they are Cauchy and G-
Cauchy sequences and then convergent since (X, F, A) is G-
complete. In addition, for any ¢ € R, and any real 1 € (0, 1)
there is ng; = ng (¢, 1) € Zo, such that from (2.2) for D = 0
since { T”xo} is Cauchy, then G-Cauchy, and convergent to x,

then hm lﬁ(FT,,XO . (K7 '¢/3)) —1)=y(0) =1 and
lim FTn+le" 7(&/3) = 1 so that

Frniy, (&/3)
(T xo, x, K_18/3) _
a(T"xo, x, K'2/3) + v (Frl, (o(K12/3) — 1)
VH(E Z0+)
Frucig, 1e(e/3) >

v

=7 Vn(>no) € Zoy
so that for some ng = ng(e, A)( >no1) € Zo+ and for any
arbitrary ¢ € Ry and 1 € (0, 1) using the third and fourth
properties of the triangular norms, one gets:

Fir(e) > min(Fx‘Tnxo(s/3)7 Frusiy, iy, (8/3),

2.13
FT"*‘xo7Tx(8/3) ) >1—17, Vn(>no) € Zoy, ( )

Thus, Fy7:(07) = 1 so that x = Tx from the property 1

of (1.1). By replacing x — Tx and Tx — T?x in (2.13), we
prove x = T?x. Proceeding in the same way, it is proved

Y4
ﬁ @ Springer

that Tx = x, Vi € p. So, x is a limit point of {7 xy},
Viep and {T"xo} which is also a fixed point of T :

UieﬁAi - UieﬁAi and 77 : UieﬁAi Aj — UieﬁA
if the subsets A; are closed Vi € p. Hence, Property (2) has
been proved.

On the other hand, it follows from (1.2) for Menger PM-
spaces and the properties of (1.3) for triangular norms for
the general case that D = @(D")>D > 0 since, further-
more, Ay (x,x) >x for each x € [0, 1], that

ANj€Ep

FT"”)C()‘T( le, >AM(FTr'x0 T+ 'xo((I*K)) Frup g, T w(.(Kt))
l—K'"p _
>AM( X0, Txg( = K)t—D)+D>,
AM(FT [H»l,c() Tnp+2 ’C() (1 —K)t) FT”/“xo T(n+m)p X0 (K l)))
>AM( X0, Txu(lliK —np I()[*D)‘FD)7
1-K" K"
( X0, Txo( 1-K - ] (17 ) D)+D)7
FT’”X(\ Tt )lX()(K )))
1-K —np
*AM( xOT,\g(l_KK ]((] K)I_D)+ )7
1—K™
o (Fu (S K= - D) D).
FTI+7X0T ”VO(K t)))
1—K™
> 2T pemwp
AM( X0, TXU( 1-K K ((1 +D)7
1 — K"
I el
AM( X0, TX()( 1-K K (( +D)7
FT(nw)pleO_’ Tlntmpx, (Kmp_ ! l) ) )
1—K"
>AM( ’COT-W(l_K ((1_ t_ +D>7
1—K™
AM( X0, Txo( 1—[(— p((l_K)t—D)+D
FxOATxO (K—(n+m)1)+l (Kmp—lt _ ) +D) ))
1= K" .
_AM x0, Txo 1-K K ((I—K)Z—D)+D s
1= K" )
AM( xOTAO(l*KK p((l K)
1-K"
waTxo( l_K K np((l )))
1K™
>AM( x0,Txo <ﬁ[(_”ﬁ<<l D)+D),
1—Km
FXO,TXO(ﬁK ”P((l— t— +D >
1— K™
>Fx0,Txo< T—% K™(1-K)t—D)+D |; VteRy,
VmeZys, Ynel,
(2.14)

Then, one gets for any given #, A(<1) € Ry, some
ng = no(t, 1) and Vn > ng.
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Wm Fropy, o, (1) = Fr, i (00) = 1;
n—00

FT”I).X().T(H+M),)X() ([) > ] - l,

Vxy € U
with supremum over t € R, equalizing unity. Thus,
{TYxg} — )Z,-H(E cl(A,vH)), Viep—1U {0}, Vxo€
A;, Viep. Since D >0 then X; # X%, Vi,j(#1i) €p. In
addition, either

(2.15)

iepAis Ym € L., since Fy, 1y, (t) is non-decreasing

Fay s (&) 2 min(Fo g (2/4), Frg g (/4),

Frosmi s, (6/4), Foy s, (6/4) ) (2.16)

> min(Fy, g (5/4), Fraong piesives, (/4),

(2.17.a)
Frusisigy 5., (6/4) ) >1-4,

Vn(>ng) € Zoy, or Fy rrg, (¢/4)<1—/, then either

Fy, 15, (&) <1 —2,Yn(>no) € Zoy and

1 — A > F,, pwiiy, (€) > min (Ff‘.ﬂ.p,;,.ﬂ(s/4),
Frovssg iy (6/4), Froovwisg s, (8/4), Feyimvs, (/4))
> min (F iy Tting (8/4)5 Fmsixg posmiin (6/4),

Frucmiig 5., (6/4) ) >1-2
(2.17.b)

for some n(>ny) € Zo., which is a contradiction, or
Fy. rrx,,(¢) > 1 — A As a result (2.16) leads, in any case,
to (2.17.a) and Fy, rre, (e) > 1 — 4, Vn(>ng) € Zo,.
Thus, X; is a fixed point of the composite self-mapping
TP - UieﬁAi A; — A}, Vj € p. To prove that the fixed points
of the composite self-mapping are quasi-best proximity
points of the p-cyclic  o--type  contraction
T : Uiy Ai = Uy Ais we  proceed by  contradiction.
Assume that this is not the case, so that there is a pair
(%, Tx;) for some i € p such that there exist e € Ry, 1 €
(0, 1) and a sequence {mx} C Zoy for some ny=
no(e, 1) € Zo, such that, for any j € p, one gets that

limg_o F (07) = 1> limsup Fruog, puosis,

TP %, T(nkﬂ)pf
7 J k—00

(ﬁ*). Since (X, F, Ay) is a Menger space and, since any
triangular norm is associative and commutative and since
Ap(x,x) > x, one gets the contradiction:

Fy, 15, (8) > min(Fg 7i5) = q(1 =) >1 -2 (2.18)
Jep

for some real ¢ = ¢g(¢, 1) € (0,1) to X being a fixed point
of T : Uy A
proved. O

Ay — Ay for k € p. Property (3) has been

Note that if the image of a(x, y, ) is extended to be in
clRo; (i.e., o(x, y, 1) can take also values at {+o00}), then
the proof of Property (1) of Theorem 2.1 is valid with a
slight extension by considering also the case that
o' (T"xg, T"xg, K~ (t — D) + D) = 0 for some finite
ny € Zy; and Vt( > D) € R... Since € P, it is continu-

ous, and then ™ (F;)}TXO (p(K™™(t—D) + D)) —1)<o0
for any finite n; € Z, so that
o' (1" 'x0, T"x0, K~ (t — D) + D)y"

(F;O}Tm(@(z(—"l (t—D) + D)) — 1) =0, Vi(>D)cR,.

Then, we could use a similar recursive procedure as that
used for the case up till the (n; — 1)-iteration, since
Proposition 2.1 remains valid, see Eqgs. (2.2) and (2.3), so
that:

(@) <1+o ' (T" 'x0, T"x0, K~' (1 — D)

—1
T x, T+ xy

+ D" (Flny (0K (1= D) + D)) = 1) = 1.

Note that Theorem 2.1 generalizes some results on fixed
points given in [7, 8, 15, 16, 28] for either non-cyclic self-
mappings or cyclic self-mappings on union of sets which
intersect to quasi-best proximity points and best proximity
points in the case that such sets do not intersect. On the
other hand, a direct consequence of Theorem 2.1 is the
following corollary for the case that ¢ € ®p. The results
are based on the fact that ¢(D~) =D and ¢(1) =0 if r €
[0,D] and ¢ € ®p while it generalizes results on fixed
points for the cases of either non-cyclic self-mappings or
cyclic self-mappings with nonempty intersections of the
involved subsets obtained in [7, 8, 15, 16, 28]:

Corollary 2.1 Ler (X,F, A) be a G-complete Menger
PM-space and T : J;c,Ai — U, Ai be a p-cyclic o-i-
type contraction satisfying the following conditions:

1. Dzd(A,, Ai+1) >07

2. T is a-admissible,

3. there exists xo € |J
Vi€ R,,

4. if {x,}(C X) — x is a Picard iteration generated as
Xpr1 = Tx,, Vn € Loy with xy € Uieﬁ A;, such that
o(xy, Txn, t) > 1, Vn € Zo NVt € Ry then o(x,, x, t)
>1,VneZy,, Vi € R,.

Vi € p,

iep Ai such that a(xg, Txo, t) > 1,

Then, the following properties hold:

L. Ifo € ®yand (., Ai # O then {T"xo} C e, Ai and
{T""ixo} C Aiyj are both Cauchy and G-Cauchy
convergent sequences to a limit point x € ﬂieﬁ clA,,
with clA; being the closure of A;. If A; are closed for

Y
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i € pthen x = Tx = TPx, that is, it is a fixed point of
the  self-mappings T : UieﬁAi — UieﬁAi and

TP(E T o Tpfl) : UieﬁAi A — A, Yk €p, Vxg € A;,
Viep,Vjep—1U{0}.

2. Ifp € @p, A is closed Vi € p and ﬂieﬁ A; = 0 then, if
X0 €A; for any i€p, there is a limit cycle
(xXi, Tx;, ..., TP7'%;), to which the sequence {T"xo}

converges, with TPx; = X;, X; € A;, X = T/X; € Aij,
Viep,Vjep—1U{0} being a fixed point of the

composite self-mapping TP : UieﬁAi A — ALYk € p,
and being also a best proximity point of
T : Uiy Ai = Uiep Air The subsequence {T™*xo} in
Aiyj converges to Xy = Tix;, Vj € p if xo €A; for

some i € p. Furthermore,

lim FTnpxU‘ TOrtmp xy (3) = FX(],TX() (OO) = 1,
n—oo ’

(2.19)
FTanO"T(ner)pr(g) >1—41

FT’I”ij,T”f’j*lXo((P(D) =+ 8) >1-— /1,
lim FT””jX(),T"I’f+1X0(qD(D) =+ 8) = Fjiﬂ’fiﬂ.“ =1

(2.20)

for any given ¢€R,, A€ (0, )NR and some
ng = no(s, }), Vn( Zi’lo) €Zy.. O

The following result is an extended version of a parallel
result given in [16] for uniqueness of fixed points of (non-
cyclic) self-mappings of a p-cyclic a-f/-type contraction on
X. The result is concerned with (a) the uniqueness of best
proximity points of p-cyclic a-i/-type contractions, being
corresponding fixed points of the composite self-mappings
restricted to each subset of the cyclic disposal, and (b) their
confluence to a unique fixed point of the p-cyclic a-y/-type
contraction if the subsets intersect.

Theorem 2.2 Assume all the hypotheses of Corollary 2.1
and the additional one which follow:

(5) Forallx,y € U,clAi, thereisze [, clA;

such that min (a(x,z,7), a(y,z,7)) >1, Vit (>D) €
R.. Then, there is X; € clA;, such that x; € A; if A; is
closed, Yi € p, which is the unique best proximity point of
T: UieﬁA,- — UieﬁAi and the unique fixed point of

17 UieﬁAi Ap — Ag, VkGﬁ If (NS @&y with D =0 and

ﬂieﬁAi is nonempty and closed then there is a unique fixed
point of T : U, Ai — U, Ai and of the composite self-

mappings TP : J;c, Ai|A; — ApYj € p.
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Proof Let u € clA;, v € clA; be best proximity points for
any given i,j€k such that u=T"u=T’u and
v=T"y=TPv, Vn € Z, so that there is z € Uieﬁ clA;

such that min (o(u,z, 1), a(v,z,t)) > 1, Vt( > D) € Ry.
Thus, there exist integers m = m(i,u,z) € p — 1 U {0}
and ¢ =((j,v,z) € p— 1U{0}, such that TP"""z € A;,,
and TP’z € Aj;y, and since T is o-admissible and

min (a(x,z,t), a(y,z,t)) > 1, ¥t( > D) € R, one gets:
1

1< sup [o M (u, TPzt
Fomr(0() [ )

neZo,

lpnpfl ( 1 o 1)
FurloK P —D)+D)) )’

Vi(> D) € Ry

(2.21)
l -1 np—1
Fopmdlp() [ S% 0V
1 1 . -
<FV<T£Z(QD(K7("’7M>(Z—D)+D)) - )7 {( > D) € R,.
(2.22)

Note that "~ (a,,p,l(t,m,u,z)) — 0 as aup1(t,m,
—1 — 0 as n — oo for all

_ 1
,2) = F & W DITD))
t(> D) € Ry which holds since F, n (@(K"P(t — D)
+D)) -1 as n—oo for all #(>D)eR; since
(K" (t—D)+ D) — oo for all #{( >D) €R, as n — oo
and since ¢(¢) > D from (2.21), from the properties ¢(7) =
0 for t<D, (D) >D, and ¢(t) > D for t > D since ¢ :
R — Ry, is strictly increasing in [D, o0). In the same way,
note that """ (bnp,l (t,m,v, z)) — 0 as byp—1(t,m,v,z) =

—1 —-0 as n—oo for all

I
Fy pmz(¢(K=(w¥m (1—D)+D))
t( > D) € R;. As a result:

Fu, Tpn+mz(t) - FV, T/”’*[z(t) = 1,
Fu’ Ter»an(t) == FV, Tpnﬂ,‘z(t) - 0,

V(> D) € Ry
Vi(<D) e Ry

(2.23)
(2.24)

with u € A;, v € A;, TPz € Ay, TPz € Ajyy for any
i,jep. Thus, if i=j then u,ve€clA;, {=m and
TPtz € clA;, 1. Assume that u # v are best proximity
points in clA;, then Tu,Tv € A;;, are corresponding adja-
cent best proximity points and {7P"*"z} — Tu and
{TP"t"z} — Tv. Thus, Tu=Tv and u =TPu=T'v=v
which contradicts u # v. Since i € p is arbitrary then the
set of adjacent best proximity points is unique.

In the particular case that D = 0, one gets thatu = vis a
unique fixed point of T — J;c, Ai — U;c, A, allocated in
the nonempty set [ iep CLAi, and also a fixed point of each
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restricted composite self-mapping 17 : J,.,Ai|l4; —

A;Nj € p since Eqs. (2.23) and (2.24) result to be for i =

i€ep

Fy poing(t) = Fy gonimz(£) = 1, V1 € Ry (2.25)

O

Example 2.1 Consider real intervals A= —-B=
{z€R : z>D/2} C R so that (R,d) is a complete met-
ric space under some metric d:X XX — Rgy and
D = d(A, B). The sequence {x,} C AU B is generated by
2-cyclic self-mapping T on AU B for some real constant
K € [0, 1) and any given initial x, € R=A U B, by

Xnt1 = —Kx, — (1 —K)(D/2)sgn(x,), neZ, (2.26)

with the extended definition sgn(x) =0 if x =0 for the
case that D = 0. The above sequence has the two following
subsequences, in A and B if xy € A, respectively, in B and A
if xy € B:

Xop = Tan() = Kzn)C() + (1 — KZn) (D/2)sgn(x0), ne Z+,
(2.27a)
g’ +D
Fro 75 (t) = Frop o () =
Txpy1,T> n( ) T2x,,T> ,,( ) gt[, ¥ d(sz’” Tx,,)
g’ +D 3 1

D = 0 and then a unique fixed pointof 7 : AUB —AUB
and T?>: AUB — AUB. Let D} be the set of all gener-
alized distance distribution functions of elements defined
by Hp(t) =0 if t<D and H(r) = 1 if t > D. Now, define
o(t) = y(r) =t and:

e a probability mapping F:RXR — D}, F. (1) =

g’+D
g +d(xy)

and y € A; Foy (1) = iy if f(€Ry) if x,y €A or
x,yE€B; F.(t)=0 if (eR)<D for all
(x,y) € A x BUB x A, for any given g,p € R}

e a weighting function o: RxR xR, — Ry, by

ift(tecRy)>DifxcAand ycBorxeB

o(x,y,1) = W%“;(D”) for some given real constants A €
(0, 1] and 6> 1.

Note that (R,F,Ay) is a G-complete generalized
Menger PM-space since the distance distribution function
is a generalized one, [12]. It follows from Proposition 2.1
that

> =
~ g” + D+ K (d(Tx,,x,) — D)

Y

1+ (gt? + D) 'K (d(Tx,,x,) — D)
1

L+ o) (3, T, K- (1= D) + D) (g + D) 'K (F!
1
I+ (F;,,‘ITXW(K‘I(FD) + D) - 1)

Xny Txy

v

>F,, 1, (K (t— D) + D),

(K-t = D) + D)~ 1) (g(K~'( = D) + DY'+D)

neZy., Vi(>D)eR,

(2.29)

_ __ 2n+1 _ 2n+1
Xon1 = Txoy =T xg = =K "X

(1 - K)(D/2)sem(xo). (2:27)

n€Z+

Note that T : AUB — AU B is a 2-cyclic contraction,
with the metric being the Euclidean norm, since

d(xn+27 Xn+1) = |xn+2 —xn+1| = |K(-xn - xn+1)
+(1 — K)Dsgn(x,)| < Kd(xps2, Xns1) (2.28)
+(1 —K)D, ne 2oy,

and it turns out that {xp,} — D/2, {x2,11} — —D/2 if
xo € A and {x2,} — —D/2, {x24+1} — D/2 if xp € B and
x = £D/2 are the unique best proximity points in A and B,
respectively, and unique fixed points of 72 : A — A and,
respectively, of T2 : B — B, which are confluent at x = 0 if

since o !'(x,,Tx,, K" (t—D) + D)<1, né€Zy,
Vi( > D) € R.. Then, note that T is a-admissible and since

dn, i) =D = (Fylpy (K™t =D) + D= 1))
(g(k™'(t — D) + D)’+D)

_ (Fx‘n_‘Tan‘l(t—D) +D- 1) (¢e(k~'(t - D) + D)

+D), neZo, Vi(>D)ER, (2.30)

then, from Theorem 2.1, there exists the following limit

1 = lim FTxn+],Tx,,(t) > lim Fxo,TXO (Kin(l‘ — D) + D)

= L'xy,Txo (nlggo Kﬁn(t - D) + D) - FX07T¥0(+OO) =1,
Vi( > D) € Ry (2.31)

’r @ Springer
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so that x = £D/2 are also best proximity points in the
probabilistic sense. In addition, Fra ramm,, (f) > 1 — 4
and Fpo poemey (t+D) > 1—4, VA€ (0,1)NR and
Vvt € R, from Theorem 2.1[(2.10) and (2.15)] and {T?"xo }
and {T?*"*'xo} are Cauchy, G-Cauchy and convergent to
+x, respectively. Note that for D=0 and ANB = {0}
then x = 0 is the unique fixed point from Theorem 2.2
since (R, F,Ay) is a G-complete Menger PM-space.

Main results on best proximity points
for generalized p-cyclic «-i/-type contractions

We generalize the concept of p(>2)-cyclic o-y-type
contractions as follows:

Definition 3.1 Let (X,F) be a PM-space and let A; be
nonempty subsets of X,Vi € p such that D = d(A;, A;41) is
the distance in-between adjacent subsets, Vi € p. Then, T :
UzEpA'
contraction if T(A;) C A;yy, Vi € p and there exist two

functions o : (Ulep ) (UIGPA ) x R, — Ry and
Y € ¥ satistying the following inequality:

Uiep A is a generalized p( > 2)-cyclic o--type

1
t
oy, )<Fn,ry<(p<1<r+<1 =

— 1) <o (x,y, Tx, Ty, (1))

K)D))
(3.1)

where

V(3. T, Ty, (1)) = max (w (m - 1),

emtom ) emom )

*”(mzq; )¢z 1))
(3.2)

V(x,y) € A; X Ay, Vi € p, Vi( > D) € Ry which is also
identical, if o(x,y,t) #0, V(x,y) € A; X Ajyy, Vi€ p,
Vi(> D) € R4, to

Frin (@) <1+ o7 (x,y, K~'(t = D) + D)
Yo (x, v, Tx, Ty, o(K~'(t = D) + D) ~ 1)

Proposition 3.2 Let (X,F) be a PM-space and let T :

UieﬁA UlepA be a generalized p-cyclic o-y-type

contraction with A; CX being bounded with D =
d(A;, Ajy1) and D = maxdiam(A;),Vi € p being the dis-
ep

(3.4)

tance in-between adjacent subsets, Vi € p. If ¢ € pp, then
Proposition 2.2 holds.

Proof Tt is direct since if (X,F) be a PM-space, T :
UieﬁA,- — UieﬁA,- is a generalized p-cyclic o-/-type con-
traction with A; C X being bounded, D = d(A;, A;11) and
D= nllea};x diam(A;) being the distance in-between adjacent

subsets, Vi € p and ¢ € @5, then:

Fei(o(K™!(t = D) + D)) = Fey(¢(K™'(t = D) + D)) =1
Foro(K (1~ D)) = m(qo(K (t—D) + D)) =1
Fyy(o(K! f—D) +D)) Fyry(@(K~'(t—D) + D)) =1
F.7,(20(K™'(t = D) + D)) = Fere(20(K '(t— D) + D)) =1
F,3.20(K"'(t = D) + D)) = F,r;(2¢(K (1 — D) + D)) =1
(3.5)

for t € (D + 2D, o) so that it follows in a similar way as
in the proof of Proposition 2.2 that

— D) + D)) = yy(x,y, Tx, Ty,0)

(3.6)

for 1 € (D + 2D, oo) since K € (0, 1), the distance dis-
tribution function F: R — [0,1] is non-decreasing and
left-continuous, T(A;) CT(Ain1)s Vi € p,

—1 ~
V(x,y) € A; X Aip1, Vi€ p, ¥i(>D) €R., where Ke K (r=D)+D>2D+D, and
(0,1) and ¢ € ®p. O
20 (K~Y(t—D)+D K Y(t—D)+D 2D+D
An extension of Proposition 2.1 which can be proved (/2( (t )+ ) = (P( (e )+ ) > ¢(2D+D)
under similar arguments follows: (3.7)
Proposition 3.1 The constraint (3.1), subject to (3.2), is ~ Since (1) is strictly increasing. U
identical to:
OC()C,y, Kﬁl(t_D) + D)
F t)) > 33
(@) 2 G K= D) + D) + Wi v, Tx. Ty, @K1t~ D) + D) — 1)’ G3)

’r @ Springer
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The a-admissibility property has the same sense as in the
case of a-y/-type contractions and cyclic contractions, that
is:

Definitions 3.2 If (X,F) a PM-space then an o-y/-type
generalized contraction 7 : X — X (respectively, a gener-
alized p-cyclic a-if-type contraction T : U, Ai — Uje, Ai)
is a-admissible if o : X x X x Ry — cIRq, satisfies Defi-
nition 2.2 (1) (respectively, Definition 2.2 (2)). Cd

Parallel results to those in Theorem 2.1 and Corollary
2.1 are stated in the following compacted result:

Theorem 3.1 Ler (X,F, A) be a G-complete PM-space
and let T : UieﬁAi — UieﬁAi be a generalized p-cyclic o-
Y-type contraction satisfying the following conditions:

1. D=d(A;, Aip1) > 0 and diam(A;) > D — D, Vi € p,

2. T is a-admissible,

3. there exists xo €
vVt € Ry,

4. if {x,}(C X) — x is a convergent sequence generated
by the Picard iteration x,1 = Tx,, Yn € Zy. for a
given initial condition Xxy € Uiep A;, such that
o(Xn, Txy, t) > 1,¥0 € Zo; ¥t € Ry then
o(xy, x, 1) >1,Vn € Zoy, Vt € R,

icp Ai such that o(xg, Txo, 1) >1,

Then, the following properties hold:

1. If ¢ € ®pp for some D(>D) € Ry,

2. Ifp € ®yand ﬂieﬁ Ai # 0 then {T"xo} C UieﬁAi and
{T""xo} C Aiyj are both Cauchy and G-Cauchy
convergent sequences to a limit point x € ﬂieﬁ clA;.
If A; are closed for i € p then x = Tx = T’x, that is, it
is a fixed point of the self-mappings T : UieﬁAi —

Uiep Ai TP(=ToTr): Uiep Ai|Ak — As,

Vkep,Vxo €A, Viep, Vjep—1U{0}.
3. IfA;is closed, Vi € pand (., Ai = 0 then if xo € A;

and

icp
for any i€p then there is a limit cycle
(xi, Tx;, ..., T"7'%;), to which the sequence {T"xo}

converges, with TPx; = X;, X; € A;, Xij = Tix; € Ay,
Viep,Vjep—1U{0} being a fixed point of the
composite self-mapping TP : UieﬁAi Ay — Ag, Vk € p,
and also a quasi-best proximity point of
T : Uiy Ai = UiepAir The subsequence {T""*xo} in
Ayyj converges to xi; = T'x;, Vj € p if xo € A; for any
given i € p. Furthermore,

lin; Frup sy pnimpgy (8) = Fy 1% (00) = 1, Frupy pasming, (€) > 1= 4

n—

FT”"’XOAT"W“XU((P(D) + 8) >1-— /1,
nlinolo FT”/’/.¥07T”"’+]):0 ((p(D) + 8) = Ffi+j~ii+j+l = 17

for any given ¢ € Ry, 1€ (0, 1) and some ny = ngy
(&, 1), Yn(>ng) € Zo+.

The following further properties hold if condition (1) is
relaxed to D =d(A;, Aiy1) >0, Viep and Condi-
tions 2—4 still hold:

4. If ¢ € Pp, N, Ai # 0 then {T"xo} C U, Ai and
{T"""ixo} C Aiyj are both Cauchy and G-Cauchy
convergent sequences to a limit point x € ﬂieﬁ clA,,

with clA; being the closure of A;. If A; are closed for

i € p then x = Tx = TPx, that is, it is a fixed point of

the  self-mappings T :U;c,Ai — Ui, A and

TP(=ToTr ) Ui, AilAk — Ar, Yk €p, Vxo € A,

Viep,Vjep—1U{0}.
5. Ifp € ®p, A; is closed Vi € p and
there

A; = 0 then, if
Xo €A; for any ié€p, is a limit cycle
(Xi, TX;,...,TP7'x;), to which the sequence {T"xo}
converges, with TPX; = X;, Xi € A;, Xij = T'X; € Aiyj,
Viep,Vj€p—1U{0} being a fixed point of the

iep

composite self-mapping TP : UiEﬁAi Ay — Ay, Yk € P,
and being also a best proximity point of
T :UicpyAi = UicpAir The subsequence {T""x0} in
Ay converges to xi;=T/'x;, Yj€p if xo €A; for
some i € p. Furthermore:

lim FT"l’xO,T("*mll’xo () = Fy 1 (00) =1,

o (3.8)
FTupr_’T(ni»m)pXO (8) > 1 - /’{
FTllpj.XO’Tn])j+1XU((P(D) =+ 8) > 1— }u, (3 9)
lim FT"”jX()sT"’”lXU((P(D) + 8) = Ffi+j-fi+j+1 =1 ’

n—oo

for any given e € Ry, A € (0, 1) and some ny = ny(e, 1),

Vn(>ny) € Zo-. O

p
generalized contraction, xy € UieﬁAi’ a(xg, Txo, 1) >1, it

Proof Since T : UieﬁAi — Ui Ai is a p-cyclic a-i)-type

is proved by complete induction as in Theorem 2.1 that
o(xn, Txy, t) >1, Vn € Zoy, Vt € Ry since ¢ € Ppp, @ is
strictly increasing in (D, oo) with ¢(D) =D >D > 0 and
then there exists such that min(Fy 7y (@(2)), Fry 12
(@(1)), Fy120(@(2))) >0, Vt( > D) € R.. Since the dis-
tance distribution function is non-decreasing and left-con-
tinuous and K~! > 1,

min(FXOA,Txo((/)(t))v FTxo,szo((P(t))v Fxo,TZxo((P(t)))
2 min(FxoyTxo((p(t))v FTXO,TZXQ((P(t))a Fxo,szo((P(t))) >0

(3.10)

Y
ﬁ @ Springer
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with ¢ =K~ !(t —
inverses in (3.10):

D) + D, Vt(>D) e R; and taking

Oglpo(X(),TX(),TX(),TZXO,(,D(I))< + o0, Vt( >D) € R+
(3.11)

The cases a—c of the proof of Theorem 2.1 are re-ad-
dressed via the changes:

0 (Ful (oK1t~ D) + D)) — 1)
— Yp (xo, Txo, Txo, T*xo, (K_”‘H (t—D) + D))
(3.12)

Yo (T 'x0, T"x0, T"x0, T" ' x0, (1))

= (0 ) e )
) B e R
Wemremm 1))

(v (o ) )
oo )

Vn € Z., Vi( > D) € R, from (3.2), and also

Yo (x0, Txo, T?x0, @(t)) = max (lp (W - 1) ,

‘”(mQ’ ‘”(WQ)

(3.13)

(3.14)
since
1 1
Wermmaom ) = )
= [p(()) = Vt € R0+
(3.15)

since Fy.(r) =1, Vr € Ry, since (X, F) is a probabilistic
metric space, and ¢ : R — Ry, is nonzero, V¢ € R, for all
x € X can be removed from the evaluation of the maximum
in (3.13). Equations (2.8a)—(2.8b) are changed to:
Fr vy (@(0) S 14 o (T" "0, T'x0, T"'x0
(¢(k7'(t=D)+D)) - 1)
<1+ Wg(an Txo, T2X0, (P(K_n+l(t -
Vi(>D)eR,, VnelZ,

D) + D)),

(3.16a)

Y4
ﬁ @ Springer

using (3.2) with x = " o, y=Tx=T"xy, Vn € Z,,
equivalently,

Frug o1, (0(2))
- 1
1+ yg(x0, Txo, T*x0, p(K—"*1(t — D) + D))’
Vi(>D)eR;, VneZ,
(3.16b)
Since K !>1, tlim ¢(t) = oo then hm ( —ntl
(t—D) + D) = +oo and lim (K~ DY + D)
= +oo, Vi(>D)€Ry,lim Fxo,rxo (p(K~"*'(t — D)
+D)) =1, ¥#( > D) € R;. Thus, from (3.15),
lim y§ (xo, Txo, T°x0, (K "' (t — D) + D)) =0,
V(> D) € Ry
(3.17)
since
Fy. 1 (@(K "M (t = D) + D)) — 1,
Fo 120 (@(K""'(t = D) + D)) — 1, (3.18a)
Fray 1o (0(K""'(t = D)+ D)) — 1
V' (Foln (0(K" (1= D)+ D)) = 1) =0,
V' (Fo e (9 (K™ (1= D) + D)) = 1) =0,
V' (Fihym (0(K "1t = D)+ D) = 1) =0
(3.18b)

as n — oo, Vt( > D) € Ry, since y"(t,) — 0 if {¢,} — 0.

Since D = ¢@(D"), one has from Egs. (3.16a) and (3.16b)

that  lim Fruy pwiviyg, (@(D) +1) =1, Vi€ Ry with
[o¢]

n—
T"ixg € Aiy; and T xy € Aijiy, Vj € p if xo € A; for
any given i € p since diam(4;) > D — D, Vi € p. Then, for
any given real constants ¢ € R, and 1 € (0, 1), there is
some 1y =no(e,A) € Zoy such that  Frujy gy,
(p(D)+¢)>1—1A, ¥Yn>ny, Vj€p since the distance
distribution function is non-decreasing and left-continuous.
Thus, (2.10), for V¢(> D)€ R., (2.11), for D=D
=(0) =0, and (2.12), for £ € k— 1 U {0}, and (2.13 )
obtained in the proof of Theorem 2.1 also hold, for any
¢e€ Ry and 1€ (0,1), Vj€p, Vn(>ny) € Loy, Ym € Ly
and some ny =ng(e, 1) € Zo;. Then, the p sequences
{T"*ixy}, Vi € p have a unique limit point in ()

lEp

provided that such a set is nonempty and closed (otherw1se,
it is allocated in the intersection of the corresponding
closures) and, from Assertion 1.1, they are both Cauchy
and G-Cauchy sequences. The limit point is also proved to
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be a fixed point of T:[J and of

zEpA - U
77 : Ui, AilAj — A;jVj € p. Hence, Property (2) has been
proved. Property (3) is proved from the still valid formulas
(2.14)—(2.18). Properties (4) and (5) follow from their still
applicable counterparts of Corollary 2.1 for the cases when
Q€ Dy, ﬂlepA # () and, respectively, ¢ € @p,A; is
closed,Vi € p and ), = 0. O

t€p

lEp
Theorem 3.2 Let (X, F, A) a G-complete PM-space and
let T: e, Ai — Ui, Ai be a p-cyclic a-yy-type general-
ized contraction satisfying the following conditions:

1. D:d(A,, Ai—H) >0,
. T is o-admissible,

3. there exists xo € |J

Vi € p,

A; such that a(xg, Txo, t) > 1,

iep
VteR,,

4. if {x,}(CX)—x is a sequence generated as
X1 = Txp, such that

o(Xn, Txy, 1) > 1,¥0 € Zo, YVt € Ry then
o(xy, x, 1) >1,Vn € Zo ¥Vt € Ry

5. Forallx,y € Uleﬁ clA;, there is z € | ;. 5 ClA; such that
min (o(x, Tz, 1), o(y, T*z,1)) > 1, Vi( > D) € R, for

some k =k(i,j) € p— 1 U{0} if x € clA;, y € clA; for

any given i,j € p.

Then, there is X; € clA;, such that x; € A; if A; is closed,
Vi € p, which is the unique best proximity point of 7 :

UIEP UlEP A and the
TP : UieﬁAi A — A Vk € p. If, in addition, ¢ € @, with
D =0 and ﬂiEﬁA,- is nonempty and closed then there is a

unique fixed point of

unique fixed point of 7 : |J;c,A; — U, Ai and the com-
posite self-mappings 77 : Uie,aAi Ap — Ax, Yk € p.

Proof Letu € clA;, v € clA; be best proximity points for
any given i,j€k such that u=T"u=T’u and
v=T"y=TPFy, Vne€Z, so that there is z € U,eﬁ clA;
such that min(a(u,z,1), a(v,z,7)) > 1, Vi( > D) € R;.
Thus, note that 77"z & clA; U clA; and Tz ¢ A if z €
A;forany £ € pif D > 0.

Note that Y~ (a,,_1(k)) — 0 as ay,_i(t,k, u,z) =

-1 —-0 as n—oo for all

For &G 7D)
t(> D) € Ry which holds since F, n (@(K "P(t — D)
+D)) — 1 as n— oo for all Vi(>D)e Ry since
(K" (t—D)+ D) — oo for all #( > D) €R; as n — oo
and since ¢(¢) > D from (2.21), from the properties ¢(7) =
0 for t<D, ¢(D)>D, and ¢(t) > D for Vi( > D) € R,
since @ : Ro; — Ry is strictly increasing in [D, c0). As a
result, Fy gmin (1) = F, poure,(t) = 1, Vt( > D) € Ry, Let
u,v € clA; be best proximity points for any given i € k

such that # = TPu and v = TPv. Then, one gets from (3.19)
to (3.20) that, if a:(u, v, ) > 1 for any ¢t € R, then since and

since T is «-admissible and min (oc(x, Tkz,t), oc(y, T*
z,1)>1,
! . ! PN N
Froy, oy (1)) Frou, v (0(t)) Fuyv(o(1))
< Slg) a2 TPtk 0] '™ l(u Tz, Tu, Ty,
n€Zy,
@(K™™(t—D)+D)), Vi(>D)eR,.
(3.19)

Note also that
lim sup Y&~ (u,z7 Tu, T*z, (K™ (t — D) + D))

n—oo

= max [WL?%W N 1)
hr’rlljclp l//(W_ 1) ' llﬂilplp(m_ 1>7

. 1 i 1
ooy ) e o)
<max {Hm S“P‘”(F(:W» . 1)

. 1 i l

lim sup w(ﬂm(ﬁv(f’n)) B 1) ’l’Tailp‘//(Fz.Tz(W,’J) B 1>7

) 1

lmpw(w 1)

< max {hln{ggw(m‘ 1) l‘fli‘p“’<m_ 1)’
) 1

im (5 oy )| =00 -

0, Vt(>D)ecRy

(3.20)
where 1, =1 (t) = K~"7(t — D) + D since
Fur20(t)) 2 Au(Fuz(0 (1)), Fre(o(1)))
> nin(F(0(£)). Fr..(0(0})) B21)
Frur(20(6,)) 2 Aw (Fur (@ (1)), Freu((2,)))
>min(Fuu(@(2,)), Fru(o(,))) (3.22)

and, in the same way,

lim sup yg" ' (v, 2, Tv, T"z, (K~ (t — D) + D)) =0,

n—oo

V(> D) € R} (3.23)

so that #, — 400 as n — oo, V#( > D) € R;.Then, it fol-
lows from (3.19) and (3.20) that

Fy gy (t) = F, pmin(t) = 1, Vt( > D) € Ry
FLt,Tl’"+kz(t) - FV,TP”+kZ(t) - O, Vt( SD) E R+

Y
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since wnp*l(anp,l(t,k,u,z))ao as app—1(t,k,u,z) =

—1—0 as n—oo for all

F, e (@(K~("*0) (1—D)+D))
t(> D) € R, which holds since F, v ,(¢(K~"(t — D)
+D)) — 1 as n—oo for all Vi >D)eR, since
(K" (t—D)+ D) — oo for all #{( >D) €R, as n— o0
and since ¢(¢) > D from (2.21), from the properties ¢(7) =
0 for t<D, ¢(D)>D, and ¢(r) > D for t > D since ¢ :
R — Ry, is strictly increasing in [D, c0). The same con-
clusion arises by replacing u by v. Thus,
Fuv(@(t)) = Frou,mv(@(t)) = 1,Vr € Ry and then u = v is
a unique fixed point of 77 : | J,c,A;j|A; — A; for any arbi-
trary given i € p, u € clA; and Tu € clA;;; are unique
adjacent best proximity points. If the intersection of the
closures of the subsets A; is nonempty then the unique
adjacent best proximity points coincide in a unique fixed

point which follows in the same way as its counterpart in
the proof of Theorem 2.2. O

Example 3.1 Example 2.1 is revisited under the constraint
(3.1) subject to (3.2) with the same distance distribution
function and identical «(x,y,t) with @(¢) = ¥(f) = and
making x — xo, y — Txo, Ty — Tx} for any arbitrary
xo € R, we get {x2, = T%xo} — x, {x241 = T xo} —
—x with x =D if xy € A and x = —D if xy € B, where

1
l//o X0, TX(), TX(), TZX(),I = max <lﬁ < — 1) R
( ) Fxo,Txo(t)

1 1
AL, Y R
FTxo,szo (t) Fx[),szo (Zt)

1
lp(—l)), Vt(>D) €R
FTXO:TXO (2t) ( ) "
l,bo (TnXO7 Tn+lxo7 Tn+lx0’ Tn+2xo7 I)

1 1
) (—— fl)ﬂp(i 71>
( (FT”x(),T”“xg(t) FT"“JL(),T”*sz(t)

1 1
1), (s — 1)),
lp (FT”X(). Tn+2x, (Zt) ) lp <FT”+1x0, Tt xo (2t) >)
Vl’lGZ0+, Vt(>D) €R+

(3.26)

(3.27)

Since {T"xo}, {T""*x0} — £x and {T""'xo} — Fx,
lim o (T"x0, T" xo, T" 1 xg, T 2x0,1) =0

n—oo

Vi(e Ry) > D, since

lim FT"XQ,T"+IX0 (t) = lim FT”*'XQ,T”“}CO(I)

n—oo n—oo

= lim FT"HXO. T +2x, (t/) lim FT”“xo‘ Tr+lx, (t/) = 1,

n—oo n—oo

Vi(>D)eR,, V/eR, (3.28)
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