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Abstract In this paper, the concept of contraction via the

measure of non-compactness on a Banach space is inves-

tigated by generalizing some results which have been

previously discussed in literatures. Furthermore, to validity

of the theorems and homotopy perturbation method

(HPM), as a technical solution, they are applied on some

nonlinear singular integral equations.

Keywords Measure of non-compactness � Integral
equation � Homotopy perturbation

Introduction and auxiliary facts

Integral equation is an essential branch of sciences that it

has applications in engineering sciences, physical sciences,

etc. Measures of non-compactness used for existence of

solution fractional integral equations [5], singular Volterra

integral equations discussed in [2] and also in [3, 6] Darbo

fixed point theorem was created by measures of non-

compactness. But we consider solvability of the nonlinear

problem with fractional order in the following form:

uðsÞ ¼ gðsÞ þ hðs; uðsÞÞ
Z s

0

ðsm � nmÞa�1

CðaÞ mnm�1kðf ðs; nÞÞuðnÞ dn;

s 2 ½0; 1�; 0\a� 1; m[ 0;

ð1:1Þ

where CðaÞ ¼
R1
0

ta�1e�tdt and h(s, u) is generated by the

superposition operator of H such that ðHuÞðsÞ ¼ hðs; uðsÞÞ;
where u ¼ uðsÞ defined on [0, 1] in [4]. We prove the

existence of some non-decreasing solutions for Eq. (1.1) in

C[0, 1] (set of all continuous functions on [0, 1]). In the

following for ability and validity of the proposed method,

we solve an example of Eq. (1.1) by homotopy perturbation

method.

In this section, we suppose A 6¼ £ and A � E; where

ðE; k � kÞ is a real Banach space. Also ME 6¼ £ is a family

of bounded subsets of E and NE a subfamily consisting of

all relatively compact sets.

Definition 1 [6] A mapping g : ME ! Rþ is a measure

of non-compactness in E if it satisfies the following

conditions:

(10) The family kerg ¼ fA 2 ME : gðAÞ ¼ 0g is none-

mpty and kerg � NE,

(20) A � B ) gðAÞ� gðBÞ,
(30) gð�AÞ ¼ gðAÞ,
(40) gðConvAÞ ¼ gðAÞ;
(50) gðkAþ ð1� kÞBÞ� kgðAÞ þ ð1� kÞgðBÞ for k 2
½0; 1�;
(60) If fAng be a sequence of closed sets from mE such

that Anþ1 � An for n 2 N and if limn�!1 gðAnÞ ¼ 0;

then the set A1 ¼
T1

n¼1 An is nonempty.

Extension of Darbo fixed point theorem

For obtaining the generalization of Darbo fixed point the-

orem (see [1]), we present a new kind of contraction. So

throughout this paper we assume that functions of G;H;/ :
½0;þ1Þ ! ½0;þ1Þ satisfy in these conditions:
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(a) G 2 C½0;þ1Þ and Gð0Þ ¼ 0\GðsÞ; 8s[ 0;

(b) /ðsÞ\HðsÞ; 8s[ 0 and /ð0Þ ¼ Hð0Þ ¼ 0;

(c) /ðsÞ;HðsÞ 2 C½0;þ1Þ;
(d) H is increasing.

Also, letG ¼ fG : G satisfy (a)} and W ¼ fðH;/Þ : H and

/ satisfy (b), (c) and (d)}.

Now, we illustrate the generalized ðH;G;/Þ-contractive
mappings via the measure of non-compactness by the fol-

lowing definition and theorem.

Definition 2 Let m 6¼ £, subset of a Banach space E and

s : m ! m be a mapping. We say that s is a generalized

ðH;G;/Þ-contractive mapping if for any 0\a\b\1
there exist 0\qða; bÞ\1, G 2 G and ðH;/Þ 2 W which

for all A � m and g (arbitrary measure of non-compact-

ness), then

a�GðgðAÞÞ� b ¼) HðGðgðsAÞÞÞ� qða; bÞ/ðGðgðAÞÞÞ: ð2:1Þ

Theorem 1 Let m 6¼ £, bounded, closed, convex and

subset of a Banach space E and s : m ! m be a generalized

ðH;G;/Þ-contractive continuous mapping. Then s has at

least one fixed point in m.

Proof Let m0 ¼ m, we construct a sequence fmng where

mnþ1 ¼ ConvðsmnÞ; for n� 0. sm0 ¼ sm � m ¼ m0; m1 ¼
Convðsm0Þ � m ¼ m0; therefore by continuing this process,

we have

m0 	 m1 	 � � � 	 mn 	 mnþ1 	 � � �

If 9N 2 N; GðgðmNÞÞ ¼ 0, i.e., gðmNÞ ¼ 0, then mN is rela-

tively compact. On the other hand, since sðmNÞ �
ConvðsmNÞ ¼ mNþ1 � mN so, s is compact. Thus from

Shauder Theorem (see [1]) we conclude that s has a fixed

point. Otherwise we suppose,

GðgðmnÞÞ[ 0; 8n� 1: ð2:2Þ

If

Gðgðmn0ÞÞ\Gðgðmn0þ1ÞÞ; ð2:3Þ

for some n0 2 N, according to (2.2) and (2.3), we can get

0\a :¼ Gðgðmn0ÞÞ�Gðgðmn0ÞÞ\Gðgðmn0þ1ÞÞ :¼ b:

By considering s and Definition 2, there exists

0\qða; bÞ\1 such that

HðGðgðmn0þ1ÞÞÞ ¼ HðGðgðconvðsmn0ÞÞÞ ¼ HðGðgðsmn0ÞÞÞ
� qða; bÞ/ðGðgðmn0ÞÞÞ
\qða; bÞHðGðgðmn0ÞÞÞ
\qða; bÞHðGðgðmn0þ1ÞÞÞ;

which implies that qða; bÞ[ 1, and this is a contradiction.

So, we can write,

Gðgðmnþ1ÞÞ�GðgðmnÞÞ;

for all n 2 N, that is, the sequence fGðgðmnÞÞg is non-

increasing and nonnegative, we infer that

lim
n!1

GðgðmnÞÞ ¼ d: ð2:4Þ

Now, if d[ 0, then

0\a :¼ d�GðgðmnÞÞ�Gðgðm0ÞÞ ¼: b; for all n� 0:

By considering s and Definition 2, there exists

0\qða; bÞ\1 such that

HðGðgðmnþ1ÞÞÞ ¼ HðGðgðconvðsmnÞÞÞÞ ¼ HðGðgðsmnÞÞÞ
� qða; bÞ/ðGðgðmnÞÞÞ
\qða; bÞHðGðgðmnÞÞÞ;

ð2:5Þ

from (2.4) and continuity of the H and / in (2.5), we get

HðdÞ ¼ lim
n!1

HðGðgðmnþ1ÞÞÞ ¼ lim
n!1

/ðGðgðmnÞÞÞ ¼ /ðdÞ;

from (b) it is concluded that d ¼ 0 and this is a contra-

diction. So in the above process d ¼ 0 and

lim
n!1

GðgðmnÞÞ ¼ 0:

It follows that

lim
n!1

gðmnÞ ¼ 0:

From mn 	 mnþ1 and smn � mn for n 2 N, as a result of ð60Þ,
we can write

m1 ¼
\1
n¼1

mn 6¼ £;

is a convex closed set, invariant under s and belongs to

Kerg. The proof is completed by Shauder Theorem (see

[1]). h

We consider in the following a result of Theorem 1.

Theorem 2 Let m 6¼ £, bounded, closed, convex and

subset of a Banach space E and s : m ! m be continuous

function and g be a measure of non-compactness, also

9k; 0\k\1;G 2 G and ðH;/Þ 2 W such that

8A � m; HðGðgðsAÞÞÞ� k/ðGðgðAÞÞÞ;

then s has at least one fixed point in m.

Corollary 1 Let m; s and g be as mentioned in Theorem 2

and also 9k; 0\k\1 such that

8A � m; GðgðsAÞÞ� kGðgðAÞÞ, then s has at least one fixed
point in m.
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Proof Put in HðsÞ ¼ s and /ðsÞ ¼ ks for each s 2
½0;þ1Þ and apply Theorem 2. h

Remark 1 Taking G ¼ I in Corollary 1, we obtain the

Darbo fixed point theorem.

Corollary 2 Let m; s and g be as mentioned in Theorem 2

and also 9k; 0\k\1 and G 2 G such that 8A � m;
Z GðgðsAÞÞ

0

f ðnÞdn� k
Z GðgðAÞÞ

0

f ðnÞdn;

where f : ½0;1Þ ! ½0;1Þ is a Lebesgue-integrable, sum-

mable and nonnegative function also for each �[ 0,R �

0
f ðnÞdn[ 0. Then s has at least one fixed point in m.

Proof Let HðsÞ ¼
R s

0
f ðnÞdn and /ðsÞ ¼ kHðsÞ for each

s 2 ½0;þ1Þ and apply Theorem 2. h

Corollary 3 Let m; s and g be as mentioned in Theorem 2

and we suppose that for any 0\a\b\1, there exists

0\qða; bÞ\1 and ðH;/Þ 2 W such that for all A � m,

a� gðAÞ þ /ðgðAÞÞ� b ¼) HðgðsAÞ þ /ðgðsAÞÞÞ
� qða; bÞ/½gðAÞ þ /ðgðAÞÞ�;

where / : Rþ �! Rþ is continuous function with /ð0Þ ¼
0 and /ðsÞ[ 0 for all s[ 0. Then s has at least one fixed

point in m.

Proof Let GðsÞ ¼ sþ /ðsÞ for each s 2 ½0;þ1Þ, and

apply Definition 2 and Theorem 1. h

Remark 2 Theorem 3.1 of [5] is special case of Corollary 3.

An immediate consequence of Corollary 3 is the fol-

lowing form.

Corollary 4 Let m; s and g be as mentioned in Theorem 2

and also 9k; 0\k\1 such that for any nonempty A � m,

gðsAÞ þ /ðgðsAÞÞ� k½gðAÞ þ /ðgðAÞÞ�;

where / : Rþ �! Rþ is continuous function with /ð0Þ ¼
0 and /ðsÞ[ 0 for all s[ 0. Then s has at least one fixed

point in m.

Remark 3

(i) Theorem 3.2 of [5] is a special case of Corollary 4.

(ii) Darbo fixed point theorem is concluded from

Corollary 4 by taking / 
 0.

Corollary 5 Let m; s;G;/;H and g be as mentioned in

Theorem 2 and also for all A � m,

GðgðsAÞÞ\aðGðgðAÞÞÞGðgðAÞÞ;

where a : Rþ �! ½0; 1Þ and aðsnÞ ! 1 ¼) sn ! 0; then s
has at least one fixed point in m.

Proof Let HðsÞ ¼ s and /ðsÞ ¼ aðsÞs for each s 2
½0;þ1Þ and apply Theorem 2. h

Application

We apply Theorem 1 and the above discussion for exis-

tence of solution nonlinear integral equations. Consider

C[0, 1] as a Banach space with the following norm:

jjujj ¼ maxfjuðsÞj : s� 0g;

and suppose that A 6¼ £ be a bounded subset of C[0, 1].

For u 2 A and �� 0, we put in,

Xðu; �Þ : ¼ supfjuðsÞ � uðnÞj : s; n 2 ½0; 1�; js� nj � �g;
XðA; �Þ : ¼ supfXðu; �Þ : u 2 Ag;X0ðAÞ :¼ lim

�!0
XðA; �Þ;

JðuÞ : ¼ supfjuðnÞ � uðsÞj � ½uðnÞ � uðsÞ� : s; n 2 ½0; 1�; s� ng;
JðAÞ : ¼ supfJðuÞ : u 2 Ag:

Thus it is easy that, all of the functions belonging to A are

non-decreasing on [0, 1] if and only if JðAÞ ¼ 0. In the

following we define g on MC½0; 1� by
gðAÞ :¼ X0ðAÞ þ JðAÞ:

According to [7], it is straight forward to show that the

function of g is a measure of non-compactness on C[0, 1].

Now, we investigate Eq. (1.1) by conditions as follows:

ðb1Þ g : ½0; 1� ! Rþ is a continuous, non-decreasing and

nonnegative function on [0, 1];

ðb2Þ h : ½0; 1� � R ! R is continuous function in s and

u such that hð½0; 1� � RþÞ � Rþ and there exists a

continuous and non-decreasing function / : Rþ ! Rþ

with /ð0Þ ¼ 0 and for each s[ 0, /ðsÞ\s such that

jhðs; uÞ � hðs; zÞj �/ðju� zjÞ; 8s 2 ½0; 1�; 8u; z 2 R;

ð3:1Þ

also / is superadditive ð/ðsÞ þ /ðnÞ�/ðsþ nÞ for all

s; n 2 RþÞ;
ðb3Þ In Eq. (1.1) the operator H satisfies any nonnegative

function as u in the condition of JðHuÞ�/ðJðuÞÞ, where
/ is introduced in ðb2Þ;
ðb4Þ f : ½0; 1� � ½0; 1� ! R is continuous and also it is

non-decreasing in terms of variables s and n, separately;
ðb5Þ k : Imf ! Rþ is a continuous and non-decreasing

function on the compact set Imf;

ðb6Þ With assumptions M1 ¼ maxfjgðsÞj : s 2 ½0; 1�g
and M2 ¼ maxfjhðs; 0Þj : s 2 ½0; 1�g; inequality

M1Cðaþ 1Þ þ ð/ðrÞ þM2Þjjkjjr�Cðaþ 1Þr; ð3:2Þ

has a positive solution as r0, where k ¼ jjkjjr0
Cðaþ 1Þ\1.
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Theorem 3 Under conditions ðb1Þ–ðb6Þ, Eq. (1.1) has at
least one non-decreasing solution as u ¼ uðnÞ 2 C½0; 1�.

Proof We define operators G and s on C[0, 1] by the

formulas

ðGuÞðsÞ ¼
Z s

0

ðsm � nmÞa�1

CðaÞ mnm�1kðf ðs; nÞÞuðnÞ dn;

ðsuÞðsÞ ¼ gðsÞ þ hðs; uðnÞÞðGuÞðsÞ:

Firstly, we prove that G is self-map on C[0, 1]. Suppose

�[ 0 is given and let u 2 C½0; 1� and s1; s2 2 ½0; 1� (with-
out loss of generality) let s2 � s1 and js2 � s1j � �: Then,

jðGuÞðs2Þ � ðGuÞðs1Þj ¼
����
Z s2

0

ðsm2 � nmÞa�1

CðaÞ mnm�1kðf ðs2; nÞÞuðnÞdn

�
Z s1

0

ðsm1 � nmÞa�1

CðaÞ mnm�1kðf ðs1; nÞÞuðnÞdn
����

�
����
Z s2

0

ðsm2 � nmÞa�1

CðaÞ mnm�1kðf ðs2; nÞÞuðnÞdn

�
Z s2

0

ðsm2 � nmÞa�1

CðaÞ mnm�1kðf ðs1; nÞÞuðnÞdn
����

þ
����
Z s2

0

ðsm2 � nmÞa�1

CðaÞ mnm�1kðf ðs1; nÞÞuðnÞdn

�
Z s1

0

ðsm2 � nmÞa�1

CðaÞ mnm�1kðf ðs1; nÞÞuðnÞdn
����

þ j
Z s1

0

ðsm2 � nmÞa�1

CðaÞ mnm�1kðf ðs1; nÞÞuðnÞdn

�
Z s1

0

ðsm1 � nmÞa�1

CðaÞ mnm�1kðf ðs1; nÞÞuðnÞdn
����

�
Z s2

0

ðsm2 � nmÞa�1

CðaÞ mnm�1jkðf ðs2; nÞÞ � kðf ðs1; nÞÞjjuðnÞjdn

þ
Z s2

s1

ðsm2 � nmÞa�1

CðaÞ mnm�1jkðf ðs1; nÞÞjjuðnÞjdn

þ
Z s1

0

jðsm2 � nmÞa�1 � ðsm1 � nmÞa�1j
CðaÞ mnm�1jkðf ðs1; nÞÞjjuðnÞjdn:

Therefore, if we put

Xkofð�; :Þ ¼ supfjkðf ðs; nÞÞ � kðf ðs0; nÞÞj : s; s0; n 2 ½0; 1�andjs� s0j � �g;

then we have

jðGuÞðs2Þ � ðGuÞðs1Þj

� jjujjXkof ð�; :Þ
CðaÞ

Z s2

0

ðsm2 � nmÞa�1
mnm�1dn

þ jjujjjjkjj
CðaÞ

Z s2

s1

ðsm2 � nmÞa�1
mnm�1dn

þ jjujjjjkjj
CðaÞ

Z s1

0

½ðsm1 � nmÞa�1 � ðsm2 � nmÞa�1�mnm�1dn

� jjujjXkofð�; :Þ
CðaÞ

sma2
a

þ jjujjjjkjj
CðaÞ

ðsm2 � sm1 Þ
a

a

þ jjujjjjkjj
CðaÞ

ðsm2 � sm1 Þ
a

a
þ sma1

a
� sma2

a

� �

� jjujjXkofð�; :Þ
Cðaþ 1Þ þ 2jjujjjjkjj

Cðaþ 1Þ ðs
m
2 � sm1 Þ

a:

Obviously, from the uniform continuity of the function kof

on the set ½0; 1� � ½0; 1� we can get Xkofð�; :Þ ! 0 as � ! 0.

Thus Gu 2 C½0; 1�, and consequently, su 2 C½0; 1�. Also,
we have

jðGuÞðsÞj �
Z s

0

ðsm � nmÞa�1

CðaÞ mnm�1jkðf ðs; nÞÞjjuðnÞjdn

� jjkjjjjujj
CðaÞ

Z s

0

ðsm � nmÞa�1
mnm�1dn� jjkjjjjujj

Cðaþ 1Þ
ð3:3Þ

for all s 2 ½0; 1�. Therefore,

jðsuÞðsÞj � jgðsÞj þ jhðs; uÞjjGuðnÞj

�M1 þ ½jhðs; uÞ � hðs; 0Þj þ jhðs; 0Þj� jjkjjjjujj
Cðaþ 1Þ

�M1 þ ð/ðjjujjÞ þM2Þ
jjkjjjjujj
Cðaþ 1Þ :

Hence,

jjsujj �M1 þ ð/ðjjujjÞ þM2Þ
jjkjjjjujj
Cðaþ 1Þ :

Thus, if jjujj � r0 we conclude the following estimation by

assumption ðb6Þ

jjsujj �M1 þ ð/ðr0Þ þM2Þ
jjkjjr0

Cðaþ 1Þ � r0:

Consequently, the operator s maps the ball Br0 � C½0; 1�
into itself. To prove continuity of s on Br0 , let fung be a

sequence in Br0 such that un ! u. We have to show that

sun ! su: In fact, 8s 2 ½0; 1�, we have

jðGunÞðsÞ � ðGuÞðsÞj ¼
����
Z s

0

ðsm � nmÞa�1

CðaÞ mnm�1kðf ðs; nÞÞunðnÞdn

�
Z s

0

ðsm � nmÞa�1

CðaÞ mnm�1kðf ðs; nÞÞuðnÞdn
����

�
Z s

0

ðsm � nmÞa�1

CðaÞ mnm�1jkðf ðs; nÞÞjjunðnÞ � uðnÞjdn;

thus

jjGun � Gujj � jjkjj
Cðaþ 1Þ jjun � ujj:

As,

jðsunÞðsÞ�ðsuÞðsÞj¼jhðs;unðsÞÞðGunÞðsÞ�hðs;uðsÞÞðGuÞðsÞj
�jhðs;unðsÞÞðGunÞðsÞ�hðs;uðsÞÞðGunÞðsÞj
þjhðs;uðsÞÞðGunÞðsÞ�hðs;uðsÞÞðGuÞðsÞj
�jhðs;unðsÞÞ�hðs;uðsÞÞjjðGunÞðsÞjþjhðs;uðsÞÞjjðGunÞðsÞ�ðGuÞðsÞj

�/ðjunðsÞ�uðsÞjÞ
Z s

0

ðsm�nmÞa�1

CðaÞ mnm�1jkðf ðs;nÞÞjjunðnÞjdn

þð/ðjuðsÞjÞþM2Þ
Z s

0

ðsm�nmÞa�1

CðaÞ mnm�1jkðf ðs;nÞÞjjunðnÞ�uðnÞjdn:
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It follows that

jjsun � sujj �/ðjjun � ujjÞ jjkjj
Cðaþ 1Þ jjunjj

þ ð/ðjjujjÞ þM2Þ
jjkjj

Cðaþ 1Þ jjun � ujj:

So s is continuous on Br0 . we introduce,

B�
r0

¼ fu 2 Br0 : uðsÞ� 0; for s 2 ½0; 1�gjBr0 :

Obviously B�
r0

6¼ £ is bounded, closed and convex. By

assumptions ðb1Þ; ðb2Þ and ðb5Þ, if uðsÞ� 0 then ðsuÞðsÞ� 0

for all s 2 ½0; 1�. Thus s projects B�
r0

into itself. Moreover s

is continuous on B�
r0
. Let A 6¼ £ be a subset of B�

r0
, also

�[ 0 and

s1; s2 2 ½0; 1�; js2 � s1j � �:

For simplicity, we suppose that s2 � s1. So we get

jðsuÞðs2Þ � ðsuÞðs1Þj
¼ jgðs2Þ þ hðs2; uðs2ÞÞðGuÞðs2Þ � gðs1Þ � hðs1; uðs1ÞÞðGuÞðs1Þj
� jgðs2Þ � gðs1Þj þ jhðs2; uðs2ÞÞðGuÞðs2Þ � hðs1; uðs2ÞÞðGuÞðs2Þj
þ jhðs1; uðs2ÞÞðGuÞðs2Þ � hðs1; uðs1ÞÞðGuÞðs2Þj
þ jhðs1; uðs1ÞÞðGuÞðs2Þ � hðs1; uðs1ÞÞðGuÞðs1Þj
� jgðs2Þ � gðs1Þj þ jhðs2; uðs2ÞÞ � hðs1; uðs2ÞÞjjðGuÞðs2Þj
þ jhðs1; uðs2ÞÞ � hðs1; uðs1ÞÞjjðGuÞðs2Þj
þ jhðs1; uðs1ÞÞjjðGuÞðs2Þ � ðGuÞðs1Þj

�Xðg; �Þ þ qr0ðh; �Þ
jjujjjjkjj
Cðaþ 1Þ þ /ðjuðs2Þ � uðs1ÞjÞ

jjujjjjkjj
Cðaþ 1Þ

þ ð/ðjjujjÞ þM2Þ
jjujjXkofð�; :Þ
Cðaþ 1Þ þ 2jjujjjjkjj

Cðaþ 1Þ ðs
m
2 � sm1 Þ

a
� �

;

where we denoted

qr0ðh; �Þ ¼ supfjhðs; uÞ � hðs0; uÞj : s; s0

2 ½0; 1�; u 2 ½0; r0�; js� s0j � �g:

According to mean value theorem (jsm2 � sm1 j
a �

majs2 � s1ja) in the last inequality, we conclude that,

jðsuÞðs2Þ � ðsuÞðs1Þj

�Xðg; �Þ þ qr0ðh; �Þ
jjujjjjkjj
Cðaþ 1Þ þ /ðjuðs2Þ � uðs1ÞjÞ

jjujjjjkjj
Cðaþ 1Þ

þ ð/ðjjujjÞ þM2Þ
jjujjXkofð�; :Þ
Cðaþ 1Þ þ 2jjujjjjkjj

Cðaþ 1Þ ðm�Þ
a

� �
:

Hence,

Xðsu; �Þ�Xðg; �Þ þ qr0ðh; �Þ
r0jjkjj

Cðaþ 1Þ þ /ðXðu; �ÞÞ r0jjkjj
Cðaþ 1Þ

þ ð/ðr0Þ þM2Þ
r0Xkofð�; :Þ
Cðaþ 1Þ þ 2r0jjkjj

Cðaþ 1Þ ðm�Þ
a

� �
:

By computing supremum on A, we can write

XðsA; �Þ�Xðg; �Þ þ qr0ðh; �Þ
r0jjkjj

Cðaþ 1Þ þ /ðXðA; �ÞÞ r0jjkjj
Cðaþ 1Þ

þ ð/ðr0Þ þM2Þ
r0Xkofð�; :Þ
Cðaþ 1Þ þ 2r0jjkjj

Cðaþ 1Þ ðm�Þ
a

� �
:

Since g is continuous on [0, 1] and also, h and kof are

uniform continuous on ½0; 1� � ½0; r0� and ½0; 1� � ½0; 1�;
respectively, so when � ! 0 then Xðg; �Þ ! 0;

qr0ðh; �Þ ! 0, Xkofð�; :Þ ! 0 and also in the following, we

have

X0ðsAÞ�
r0jjkjj

Cðaþ 1Þ/ðX0ðAÞÞ: ð3:4Þ

Suppose u 2 A and s1; s2 2 ½0; 1� such that s1\s2; thus

jðsuÞðs2Þ�ðsuÞðs1Þj�½ðsuÞðs2Þ�ðsuÞðs1Þ�
¼jgðs2Þþhðs2;uðs2ÞÞðGuÞðs2Þ�gðs1Þ�hðs1;uðs1ÞÞðGuÞðs1Þj
�½gðs2Þþhðs2;uðs2ÞÞðGuÞðs2Þ�gðs1Þ�hðs1;uðs1ÞÞðGuÞðs1Þ�
�fjgðs2Þ�gðs1Þj�½gðs2Þ�gðs1Þ�gþjhðs2;uðs2ÞÞðGuÞðs2Þ
�hðs1;uðs1ÞÞðGuÞðs2Þjþjhðs1;uðs1ÞÞðGuÞðs2Þ�hðs1;uðs1ÞÞðGuÞðs1Þj
�f½hðs2;uðs2ÞÞðGuÞðs2Þ�hðs1;uðs1ÞÞðGuÞðs2Þ�
þ½hðs1;uðs1ÞÞðGuÞðs2Þ�hðs1;uðs1ÞÞðGuÞðs1Þ�
�fjhðs2;uðs2ÞÞ�hðs1;uðs1ÞÞj�½hðs2;uðs2ÞÞ�hðs1;uðs1ÞÞ�gðGuÞðs2Þ
þhðs1;uðs1ÞÞfjðGuÞðs2Þ�ðGuÞðs1Þj�½ðGuÞðs2Þ�ðGuÞðs1Þ�g

�JðHuÞ r0jjkjj
Cðaþ1Þ:

Also we conclude that,

JðsuÞ�/ðJðuÞÞ r0jjkjj
Cðaþ 1Þ ;

and consequently,

JðsAÞ� r0jjkjj
Cðaþ 1Þ/ðJðAÞÞ: ð3:5Þ

From (3.4) and (3.5) and the definition of g, we get

gðsAÞ ¼ X0ðsAÞ þ JðsAÞ� r0jjkjj
Cðaþ 1Þ/ðX0ðAÞÞ þ

r0jjkjj
Cðaþ 1Þ/ðJðAÞÞ

� r0jjkjj
Cðaþ 1Þ ð/ðX0ðAÞÞ þ /ðJðAÞÞÞ� r0jjkjj

Cðaþ 1Þ ð/ðX0ðAÞ þ JðAÞÞÞ

� k/ðgðAÞÞ:

By the above inequality and because
r0jjkjj
Cðaþ1Þ\1, with

applying Theorem 1 for in the case of GðsÞ ¼ HðsÞ ¼ 1,

we complete the proof. Also, such a solution is non-de-

creasing in Remark 3 and the definition of l, was given in

Sect. 2. h

Corollary 6 Let the conditions of Theorem 3 be satisfied,

then some of the integral equations with fractional order

have at least one solution in C[0, 1], such as in the case of

(i, ii, iii):
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(i) for m ¼ 1,

uðsÞ ¼ gðsÞ þ hðs; uðsÞÞ
Z s

0

ðs� nÞa�1

CðaÞ kðf ðs; nÞÞuðnÞ dn;

(ii) for m ¼ 1 and hðs; uðsÞÞ ¼ 1;

uðsÞ ¼ gðsÞ þ
Z s

0

ðs� nÞa�1

CðaÞ kðf ðs; nÞÞuðnÞ dn;

(iii) for m ¼ 1; k ¼ I; hðs; uðsÞÞ ¼ 1 and gðsÞ ¼ 0;

uðsÞ ¼
Z s

0

ðs� nÞa�1

CðaÞ f ðs; nÞuðnÞ dn:

Now, we consider an example by applying Theorem 3.

Example 4 Suppose, integral equation with singular ker-

nel and fractional order is given in the following form,

uðsÞ ¼ 1

5
s3 þ 2suðsÞ

5ð1þ sÞ

Z s

0

2n

Cð1
2
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � n2

p 1

8
ðsþ nÞ þ 1

4

� �
uðnÞ dn;

ð3:6Þ

where s 2 ½0; 1�. In this example, we have gðsÞ ¼ 1
5
s3 and

this function satisfies assumption (b1) and M1 ¼ 1
5
: Here

f ðs; nÞ ¼ 1
4

ffiffiffiffiffiffiffiffiffiffiffi
sþ n

p
and this function satisfies assumption

ðb4Þ. Let k : ½0;
ffiffi
2

p

4
� ! Rþ be given by kðzÞ ¼ 2z2 þ 1

4
, then

k satisfying assumption ðb5Þ with jjkjj ¼ 1
2
. Moreover, the

function hðs; uÞ ¼ 2su

5ð1þ sÞ satisfies hypothesis ðb2Þ with

assumption /ðsÞ ¼ 1

5
s;

jhðs; uÞ � hðs; zÞj � 1

5
ju� zj ¼ /ðju� zjÞ; 8u; z 2 R ; s 2 ½0; 1�;

also h satisfies in ðb3Þ. In fact, by choosing an arbitrary

nonnegative function u 2 C½0; 1� and s1; s2 2 ½0; 1�
( s1 � s2), we can write

jðHuÞðs2Þ � ðHuÞðs1Þj � ½ðHuÞðs2Þ � ðHuÞðs1Þ�
¼ jhðs2; uðs2ÞÞ � hðs1; uðs1ÞÞj � ½hðs2; uðs2ÞÞ � hðs1; uðs1ÞÞ�

¼ 2s2uðs2Þ
5ð1þ s2Þ

� 2s1uðs1Þ
5ð1þ s1Þ

����
����� 2s2uðs2Þ

5ð1þ s2Þ
� 2s1uðs1Þ
5ð1þ s1Þ

� �

� 2s2uðs2Þ
5ð1þ s2Þ

� 2s2uðs1Þ
5ð1þ s2Þ

����
����þ 2s2uðs1Þ

5ð1þ s2Þ
� 2s1uðs1Þ
5ð1þ s1Þ

����
����

� 2s2uðs2Þ
5ð1þ s2Þ

� 2s2uðs1Þ
5ð1þ s2Þ

þ 2s2uðs1Þ
5ð1þ s2Þ

� 2s1uðs1Þ
5ð1þ s1Þ

� �

� 2s2

5ð1þ s2Þ
juðs2Þ � uðs1Þj þ

2s2

5ð1þ s2Þ
� 2s1

5ð1þ s1Þ

����
����uðs1Þ

� 2s2

5ð1þ s2Þ
½uðs2Þ � uðs1Þ� �

2s2

5ð1þ s2Þ
� 2s1

5ð1þ s1Þ

� �
uðs1Þ

� 2s2

5ð1þ s2Þ
fjuðs2Þ � uðs1Þj � ½uðs2Þ � uðs1Þ�g

� 2s2

5ð1þ s2Þ
JðuÞ� 1

5
JðuÞ ¼ /ðJðuÞÞ:

According to the example, (3.2) converts to this form,

1

5
C

3

2

� �
þ 1

10
r2 �C

3

2

� �
r;

and r0 ¼ 1 is as a positive solution of it. Also,

k ¼ jjkjjr0

C
3

2

� � ¼ 1ffiffiffi
p

p \1:

Thus, Theorem 3 guarantees that Eq. (3.6) has a non-de-

creasing solution.

Homotopy perturbation method (HPM) for solving
functional I.E.

In this section, we solve functional integral Eq. (3.6) by

using (HPM). In [10], perturbation method which depends

on a small parameter can be led to imprecise solution by

choosing unsuitable small parameter. But homotopy per-

turbation method introduced in [9], by an important con-

cept of topology it can convert a nonlinear problem to a

finite number of linear problems without dependence to the

small parameter, this independence is very important. For

introducing homotopy perturbation method according to

the above-mentioned references, we consider the nonlinear

problem:

MðuÞ � gðsÞ ¼ 0; s 2 D

K u;
o u

o n

� �
¼ 0; n 2 !;

ð4:1Þ

where M and K are differential and boundary operators,

respectively, also g(s) is a known analytic function and ! is

the boundary of the domain D. we assume operator M is

divided into linear and nonlinear operators such as ‘ and @ .

So, we can write Eq. (4.1) to this form,

‘ðuÞ þ @ðuÞ � gðsÞ ¼ 0: ð4:2Þ

Homotopy perturbation Hðm; pÞ can be written as follows

[9]:

H : D� ½0; 1� �! R;

Hðv; pÞ ¼ ð1� pÞ½‘ðvÞ � ‘ðv0Þ� þ p½MðvÞ � gðsÞ� ¼ 0;

ð4:3Þ

where p is an embedding parameter, v is an approximation

of u and v0 is an initial approximation of u. Of course some

kinds of modifications of homotopy perturbation method

can be seen in [8, 11]. We solve nonlinear integral Eq. (3.6)

by Eq. (4.3). Let us consider Eq. (3.6) to the following

form,
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uðsÞ ¼ 1

5
s3 þ uðsÞ

Z s

0

4sn 1
8
ðsþ nÞ þ 1

4

� 	
5

ffiffiffi
p

p
ð1þ sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � n2

p uðnÞ dn;

ð4:4Þ

the general form of Eq. (4.4) is as follows:

uðsÞ � uðsÞ
Z s

0

kðs; nÞuðnÞ dn ¼ 1

5
s3; ð4:5Þ

according to the nonlinear Eq. (4.1), we can write,

MðuðsÞÞ ¼ gðsÞ; gðsÞ ¼ 1

5
s3: ð4:6Þ

In the homotopy perturbation (4.3) we approximate solu-

tion of Eq. (4.5) in terms of power series of p,

v ¼ v0 þ pv1 þ p2v2 þ � � � ¼
X1
i¼0

pivi: ð4:7Þ

Also in Eq. (4.3), we choose linear and nonlinear operators

to these forms,

‘ðvÞ ¼ v;MðmÞ ¼ vðsÞ � vðsÞ
Z s

0

kðs; nÞvðnÞ dn; gðsÞ ¼ 1

5
s3:

So, we can write,

Hðv; pÞ ¼ ð1� pÞðv� v0Þ

þ p vðsÞ � vðsÞ
Z s

0

kðs; nÞvðnÞdn� 1

5
s3

� �
¼ 0;

ð4:8Þ

by substituting Eq. (4.7) in the homotopy formula Eq. (4.8),

we have

pv1 þ p2v2 þ � � � þ pv0 � pv0ðsÞ
Z s

0

kðs; nÞv0ðnÞ dn

� p2v0ðsÞ
Z s

0

kðs; nÞv1ðnÞ dn

� p2v1ðsÞ
Z s

0

kðs; nÞv0ðnÞ dnþ � � � � p
1

5
s3 ¼ 0;

ð4:9Þ

with ordering the above relations in terms of p powers, we

have

p1 : ðv1 þ v0 � v0ðsÞ
Z s

0

k s; nÞv0ðnÞ dn�
1

5
s3

� �
;

p2 : ðv2 � v0ðsÞ
Z s

0

kðs; nÞv1ðnÞ dn� v1ðsÞ
Z s

0

kðs; nÞv0ðnÞ dnÞ;

p3 : � � �

By considering to Eq. (4.9), we put in the coefficients of

p powers equal to zero and by suitable choosing initial

guess v0ðsÞ, we obtain

v0ðsÞ ¼
1

5
s3;

v1ðsÞ ¼ v0ðsÞ
Z s

0

kðs; nÞv0ðnÞ dn;

v2ðsÞ ¼ v0ðsÞ
Z s

0

kðs; nÞv1ðnÞ dn� v1ðsÞ
Z s

0

kðs; nÞv0ðnÞ dn;

ð4:10Þ

where kðs; nÞ is given by Eq. (4.4), therefore,

v1ðsÞ ¼
4s4

125
ffiffiffi
p

p
ð1þ sÞ

Z s

0

1
8
ðsþ nÞ þ 1

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � n2

p n4 dn ¼ s8ð128sþ 45pð2þ sÞÞ
ð240Þð250Þ

ffiffiffi
p

p
ð1þ sÞ :

By taking two terms of Eq. (4.7) into account, we can

approximate the solution of Eq. (4.4) as follows:

vðsÞ ¼ 1

5
s3 þ s8ð128sþ 45pð2þ sÞÞ

240� 250
ffiffiffi
p

p
ð1þ sÞ : ð4:11Þ

By substituting (4.11) in Eq. (4.4) and comparing both

sides of it, we reach absolute errors in points (see Table 1).

Conclusion

In this paper, we try to introduce a mixed plan of pure and

applied mathematics, where measure of non-compactness

on a Banach space is used for the generalization of Darbo

fixed point theorem for existence of solution singular

integral equations with fractional order. Also, by homotopy

perturbation method we obtain an approximation of a

solution with high accuracy.

Table 1 Absolute errors for

Eq. (4.4) by HPM
t Absolute errors

0.0 0.0

0.1 5.9�10�18

0.2 4.8�10�14

0.3 9.3�10�12

0.4 3.9�10�10

0.5 7.0�10�9

0.6 7.5�10�8

0.7 5.5�10�7

0.8 3.1�10�6

0.9 1.4�10�5

1.0 5.7�10�5
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