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Abstract In this paper, the concept of contraction via the
measure of non-compactness on a Banach space is inves-
tigated by generalizing some results which have been
previously discussed in literatures. Furthermore, to validity
of the theorems and homotopy perturbation method
(HPM), as a technical solution, they are applied on some
nonlinear singular integral equations.
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Introduction and auxiliary facts

Integral equation is an essential branch of sciences that it
has applications in engineering sciences, physical sciences,
etc. Measures of non-compactness used for existence of
solution fractional integral equations [5], singular Volterra
integral equations discussed in [2] and also in [3, 6] Darbo
fixed point theorem was created by measures of non-
compactness. But we consider solvability of the nonlinear
problem with fractional order in the following form:
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mE"k(f (5, &))u(&) d¢,

where I'(ot) = [, #*"'e~'dt and h(s, u) is generated by the
superposition operator of H such that (Hu)(s) = h(s, u(s)),
where u = u(s) defined on [0, 1] in [4]. We prove the
existence of some non-decreasing solutions for Eq. (1.1) in
C[0, 1] (set of all continuous functions on [0, 1]). In the
following for ability and validity of the proposed method,
we solve an example of Eq. (1.1) by homotopy perturbation
method.

In this section, we suppose A # & and A C E, where
(E,|| - ||) is a real Banach space. Also Mg # & is a family
of bounded subsets of E and 9tg a subfamily consisting of
all relatively compact sets.

Definition 1 [6] A mapping # : Mz — RT is a measure
of non-compactness in E if it satisfies the following
conditions:

(1°) The family kern = {A € Mg : n(A) = 0} is none-
mpty and kerny C Ng,

2% A C B= n(A)<n(B),

3% n(A) = n(A),

(4%) 5(ConvA) = 1(4),

(5% n(ZA+ (1 = A)B) <in(A) + (1 — A)n(B) for i€
[Ov 1]7

(6°) If {A,} be a sequence of closed sets from my such
that A, C A, for n € N and if lim, . n(A,) =0,
then the set Ao, = (), A, is nonempty.

Extension of Darbo fixed point theorem

For obtaining the generalization of Darbo fixed point the-
orem (see [1]), we present a new kind of contraction. So
throughout this paper we assume that functions of G, ®, ¢ :
[0, +00) — [0, 400) satisfy in these conditions:
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(@) G e C[0,4+00) and G(0) = 0<G(s),Vs > 0;
)  ¢(s)<O(s),¥s >0 and ¢(0) = B(0) = 0;
©)  ¢(s),0(s) € C[0, +00);
(d) O is increasing.
Also, let G = {G : G satisfy (a)} and ¥ = {(®
¢ satisfy (b), (c) and (d)}.

Now, we illustrate the generalized (®, G, ¢)-contractive
mappings via the measure of non-compactness by the fol-
lowing definition and theorem.

¢): ®and

Definition 2 Let v # (F, subset of a Banach space E and
T:v— v be a mapping. We say that 7 is a generalized
(@, G, ¢)-contractive mapping if for any 0<a<b<oo
there exist 0<p(a,b)<1, G € G and (®, ) € ¥ which
for all A Cv and 5 (arbitrary measure of non-compact-
ness), then

a<G(n(A)) <b= O(G(n(tA))) < p(a,b)p(G(n(A))).  (2.1)

Theorem 1 Let v+# J, bounded, closed, convex and
subset of a Banach space E and © : v — v be a generalized
(®, G, ¢)-contractive continuous mapping. Then T has at
least one fixed point in v.

Proof Let vg = v, we construct a sequence {v,} where
vop1 = Conv(tv,), for n>0. 1vg=1v CVv=r19,v =
Conv(tvg) C v = vy, therefore by continuing this process,
we have

Vo2V 2D DV DV D v

If 3N € N; G(n(vy)) =0, i.e., n(vy) = 0, then vy is rela-
tively compact. On the other hand, since t(vy) C
Conv(tvy) = vy41 C vy so, 1 is compact. Thus from
Shauder Theorem (see [1]) we conclude that T has a fixed

point. Otherwise we suppose,

G(n(vp)) >0, Vn>1. (2.2)
If
G(n(vny)) <G (Vny11)), (2:3)

for some ny € N, according to (2.2) and (2.3), we can get

0<a = G(n(vy)) < G1(vy)) <GN(viy 1)) = b.

By considering t and Definition 2, there exists
0<p(a,b)<1 such that
O(G(1(vag+1))) = O(G(n(conv(vy))) = O(G(n(Tvny)))

)

<p(a b)p(G(1(vny)))
<p(a,b)O(G(n(vn,)))
( (Vg 1)

<p(a,0)®(G(n(viy+1))),

which implies that p(a,b) > 1, and this is a contradiction.
So, we can write,

’r @ Springer

G(Vl(anrl )) < G(’?(Vn)),

for all n € N, that is, the sequence {G(n(v,))} is non-
increasing and nonnegative, we infer that

Jlim G(n(v,)) = 0. (2.4)
Now, if 6 > 0, then
0<a:=0<G(n(v,)) <G(n(v)) =:b, forall n>0.

By considering t and Definition 2, there exists

0<p(a,b) <1 such that
O(G(n(va11))) = O(G(n(conv(vy)))) = O(G(n(tva)))
< p(a,b)p(G(n(vn)))
<p(a,b)0(G(n(va))),
(2.5)

from (2.4) and continuity of the ® and ¢ in (2.5), we get
0(5) = lim OG(n(v:1))) = lim H(G(()) = $(5),

n—oo

from (b) it is concluded that 6 = 0 and this is a contra-
diction. So in the above process ¢ = 0 and

lim G(yn(v,)) = 0.

It follows that

lim #n(v,) = 0.

n—oo

From v, D v, and tv, C v, for n € N, as a result of (6°),

we can write

= mvn#ga
n=1

is a convex closed set, invariant under T and belongs to
Kern. The proof is completed by Shauder Theorem (see
(1D. O

We consider in the following a result of Theorem 1.

Theorem 2 Let v # (J, bounded, closed, convex and
subset of a Banach space E and ©: v — v be continuous

function and n be a measure of non-compactness, also
32,0<i<1,G € G and (O, ¢) € Y such that

O(G(n(rA))) < 2¢(G(n(A))),

then t has at least one fixed point in v.

VA C v,

Corollary 1 Let v, 7 and n be as mentioned in Theorem 2
J1,0<i<1 such that
)) <2G(n(A)), then t has at least one fixed

and also
VA C v, G(n(tA

point in v.
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Proof Put in ©O(s) =s and ¢(s) =As for each s¢€
[0, +00) and apply Theorem 2. O

Remark 1 Taking G =1 in Corollary 1, we obtain the
Darbo fixed point theorem.

Corollary 2 Let v, T and n be as mentioned in Theorem 2
and also 31,0< /<1 and G € G such that YA C v,

G(n(tA)) G(n(A))
/ FEE<
0

f(&)de,
where f : [0,00) — [0,00) is a Lebesgue-integrable, sum-
mable and nonnegative function also for each ¢ >0,
JoF(&)dE > 0. Then t has at least one fixed point in v.

0

Proof Let ©(s) = [;f(£)d¢ and ¢(s) = 2O(s) for each
s € [0,+00) and apply Theorem 2. O
Corollary 3 Let v, 7 and n be as mentioned in Theorem 2

and we suppose that for any 0 <a<b<oo, there exists
0<p(a,b)<1 and (®, ¢p) € ¥ such that for all A C v,

a<n(A) + ¢(n(A)) <b = O(n(zA) + ¢(n(A)))
< pla,b)¢n(A) + d(n(A))l;

where ¢ : Rt — R" is continuous function with ¢(0) =
0 and ¢(s) > 0 for all s > 0. Then T has at least one fixed
point in v.

Proof Let G(s) =s+ ¢(s) for each s € [0,+00), and
apply Definition 2 and Theorem 1. 0

Remark 2 Theorem 3.1 of [5] is special case of Corollary 3.

An immediate consequence of Corollary 3 is the fol-
lowing form.

Corollary 4 Let v, and n be as mentioned in Theorem 2
and also A4,0< A <1 such that for any nonempty A C v,

n(tA) + ¢(n(tA)) < An(A) + ¢(n(A))],

where ¢ : R — R™ is continuous function with ¢(0) =
0 and ¢(s) > 0 for all s > 0. Then 1 has at least one fixed
point in v.

Remark 3

(i) Theorem 3.2 of [5] is a special case of Corollary 4.
(i) Darbo fixed point theorem is concluded from
Corollary 4 by taking ¢ = 0.

Corollary 5 Let v,7,G, ¢, ® and n be as mentioned in
Theorem 2 and also for all A C v,
G(n(zA)) <a(G(n(A)))G(n(A)),

where o : RT — [0, 1) and a(s,) — 1 => 5, — 0, then ©
has at least one fixed point in v.

Proof Let O(s)=s and ¢(s) =a(s)s for each s¢€
[0, +00) and apply Theorem 2. O

Application

We apply Theorem 1 and the above discussion for exis-
tence of solution nonlinear integral equations. Consider
C[0, 1] as a Banach space with the following norm:

||| = max{[u(s)| : s >0},

and suppose that A # & be a bounded subset of C[O0, 1].
For u € A and ¢ >0, we put in,

Q(u,€) : = sup{|u(s) —u(&)| : 5,& € [0,1], |s — & <€},
Q(A,€) : = sup{Q(u,¢e) :u € A}, Qy(A) := liiIéQ(A, €),
(

J(u) = sup{lu(C) — u(s)| — [u(¢) —uls)] =5, € [0, 1], s <&},
J(A) : =sup{J(u) : u € A}.

Thus it is easy that, all of the functions belonging to A are
non-decreasing on [0, 1] if and only if J(A) = 0. In the
following we define 7 on [0, 1] by

n(A) := Qo(A) + J(A).

According to [7], it is straight forward to show that the
function of # is a measure of non-compactness on C[0, 1].
Now, we investigate Eq. (1.1) by conditions as follows:

(by) g:[0,1] — R" is a continuous, non-decreasing and
nonnegative function on [0, 1];

(by) h:[0,1] x R — R is continuous function in s and
u such that A([0,1] x RT) C R" and there exists a
continuous and non-decreasing function ¢ : Rt — R
with ¢(0) = 0 and for each s > 0, ¢(s) <s such that

|h(s,u) — h(s,2)| < p(lu—7z|), Vse[0,1], Vu, z€R,
(3.1)
also ¢ is superadditive (¢(s) + ¢(&) < P(s+ &) for all

s, e RYY;

(b3) In Eq. (1.1) the operator H satisfies any nonnegative
function as u in the condition of J(Hu) < ¢(J(u)), where
¢ is introduced in (b,);

(bs) f:]0,1] x [0,1] — R is continuous and also it is
non-decreasing in terms of variables s and &, separately;
(bs) k: Imf — R* is a continuous and non-decreasing
function on the compact set Imf;

(bg) With assumptions M; = max{|g(s)| : s € [0,1]}
and M, = max{|Aa(s,0)| : s € [0, 1]}, inequality

MT(e+ 1)+ (¢p(r) + Mp)|[k][r <T(a+1)r,  (32)
k
has a positive solution as ry, where 4 = %

’r @ Springer
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Theorem 3  Under conditions (by)—(bs), Eq. (1.1) has at
least one non-decreasing solution as u = u(¢) € C[0,1].

Proof We define operators G and © on C[0, 1] by the
formulas

I A G <0 A—
(Gu)(s) = [) T mé k(f(S7
() (s) = g(s) + h(s, u(&))(Gu)(s)-
Firstly, we prove that G is self-map on C[0, 1]. Suppose

€ > 0 is given and let u € C[0, 1] and sy, 5, € [0, 1] (with-
out loss of generality) let s, > s; and |S2 — 51| <e. Then,

)u(&)d¢,

((Gu)(s2) — (Gu)(s1)] = ‘ / m&"k(f (52, €))u(&)dé
_ O” % me k(f (s, é))u(é)dé‘

- /xz (ng _ ém)a—l
1o ()
) (SE" _ gvm)at—l

- 22 mEm(f (s, é))u(é)df‘

mE"k(f (52, &))u(E)dE

v T

N /0 % mEk(F (51, €))u(£)de

B “% e k(f (51, E))u(E) df‘

i / 5’" e 1, D)

_ 0“ % mE"k(f (s, é))u(é)dé‘

. / % mE" (52, €)) — k(F (51, &) () |dé
“SZ%mé'”"\k(f(sl,é))\lu(é)\dﬁ
0-“|<s;"—é’"> ) Lot Nl

Therefore, if we put

Qyor(€,.) = sup{|k(f(s, &) — k(F(s',&))| : 5,5, € € [0, 1]and|s — 5| <€},

then we have

(Gu)(s2) — (Gu)(s1)]

||M‘|Qk0f(67.) /52 m _ zmyo—1 m—1 3z
ST WS
1 e
+ RONA ( =) mE™ g
k oL— m myot— m—
||MHH ||/ [ ém 1 (52 _é ) l]I’VZé ldé
< ||u\|Qkof(67-)_ [l [l (55 = s7)*
- I'(2) o I'(2) o
[lulll[k]] [(s3' = s1)" | si" 55"
I'(2) o o o
[l |uor(es ) | 2AullllKI] o e
S Tt Tty )

@ Springer

Obviously, from the uniform continuity of the function kof
on the set [0, 1] x [0, 1] we can get Qyor(e,.) — 0 ase — 0.
Thus Gu € C[0, 1], and consequently, tu € C[0, 1]. Also,
we have

ssm_*mll
(G0 < [ e me st ez

kIl (% o gmyat sme1 g < K
SW/O(S — )T mE A< £ T
(3.3)
for all s € [0, 1]. Therefore,
|(zu) ()] < lg(s)] + (s, w) | Gu(&)]
[ 11
<My [[h(s, u) = hs, 0)l + (s, ) s 275
<My -+ (@) + 01 L
Hence,
el <ty + (@l -+ ) L L

Thus, if ||u|| < ry we conclude the following estimation by
assumption (bg)

Wi _
Ta+1) "

|lzull <My + (¢(ro) + M2)

Consequently, the operator T maps the ball B,, C C[0, 1]
into itself. To prove continuity of = on B,,, let {u,} be a
sequence in B,, such that u, — u. We have to show that
tu, — 7u. In fact, Vs € [0, 1], we have

S(gm — gm oa—1
(o) = %méw(f@ 9)

N /o - 1_"(if))

|(Gun)(s) — (Gu un(£)dE

m&"k(f (s, &))u(&)dE

L (s, )ll@) — (@),

thus
|||
16y = Gl < = o =
As,
| (1) (5) — (zu0) (5)| = |1 (, 14 (5) ) (Gt ) (5) — (s, u(5) ) (Ge) ()
<I|h(s,un(s))(Gun) (s) — h(s,u(s))(Guy) (s)|
+|h(s,u(s))(Guy)(s) —h(s,u(s)) (Gu)(s)|
<|A(s,ua(s)) —h(s,u(s))|( Gun)(s|+|h(svu(5))\|(0un)(S)—(Gu)(S)I
<bun(o)-uts)) ;f“)) g™ k(f (5,€)) lun (D)0

O+ [ e (5.0 &) - (D
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It follows that rollk|| rol |k||
< _Tolixll
H H QA €) <Q(g,€) + p,, (h,€) CES)) + ¢(Q(A, ) T(a+ 1)
(et — | < p(llutn — ull) =73 el r0Quot(e,.) | 2rol k]| .

+(<1>(||MH)+M)F(OHL

)Ilun ul].

So 7 is continuous on B,,. we introduce,

B ={u€ B, :u(s) >0, forsel0,1]}CB,.

Obviously B, # (J is bounded, closed and convex. By
assumptions (by), (b2) and (bs), if u(s) > 0 then (tu)(s) >0
for all s € [0, 1]. Thus 7 projects B/ into itself. Moreover t
is continuous on B Let A # (J be a subset of B, also
€ > 0 and

S1, 8§ € [07 1], |S2 —S1| <e.

For simplicity, we suppose that s, > 5. So we get

(eu)(s2) — (e

= Jg(s2) + h(s2,u(52)) (Gu)(s2) — g(s1) — h{sv,u(s0)) (Gu) 1)
< [gls2) — (s0)| + s, s2)) (G s2) — (s, u(52))(Gu) 5
(s, us2)) (G s2) — (s, u(50))(Ga) 52

£ Ih(on 50 (Gu)(52) — s, u(s1)) (G 51

< [gls2) — g(s0)| + (s, uls2)) — (st u(s2)||(G) )

£ (o1 (52)) — s, (s1) (G )

£ (o s)I1(G)(s2) — (Ga) o)

<0z () Blator) — ) s

+ @) + ) |1 o Tl o — sy,

where we denoted

pro(ha 6) = Sup{|h(svu) - h(S/, u)' : Svsl

€ [0,1],u € [0,r0], |s — 5’| <€}
According to value theorem

mean (|s3 — 5" <

m*|sy — s1|") in the last inequality, we conclude that,
|(tu)(s2) — (zu) (s1)]

u
<Q(g,€) +p,(he€) e

Tt 1) " Ps2) =

]| Dot (e, -) | 2[ullllk]] 4
T(x+1) +1"(a+1)(m6)}

T (@) +Mz>[

Hence,

rol k||
I'(e+1)
roQuof (€, )
I'(e+1)

+ 9@ ) b

2ro][K| 2
Tla+ 1) (me) }

Qtu, €) <Q(g, €) + py, (hy €)

+ (¢(ro) + M2) {

By computing supremum on A, we can write

Since g is continuous on [0, 1] and also, # and kof are
uniform continuous on [0, 1] x [0,ry] and [0,1] x [0,1],
respectively, so when e€—0 then Qg,e)—0,
Pry(hy€) — 0, Qor(€,.) — 0 and also in the following, we
have

ro [k

Q(74) < m

D(Qo(A)). (3-4)

Suppose u € A and sy, s, € [0, 1] such that s; <s;, thus

|(zee)(52) — (zu) (s1)| = [(ze) (52) — (zue) (s1)]

=|g(s2) +h(s2,u(s52))(Gu)(s2) —&(s1) = h(s1,u(s1))(Gu)(s1)|
—[g(s2) +h(s2,u(s2)) (Gu)(s2) — g(51) —h(s1,u(s1)) (Gu) (s1)]
<{lg(s2) —g(s1)—lg(s2) —g(s1)]} +|h(s2,u(s2)) (Gu)(s2)
—h(s1,u(s1))(Gu)(s2)| +|h(si,u(s1))(Gu)(s2) —h(si,u(s1))(Gu)(s1)]|
—{[(s2,u(s2))(Gu)(s2) — h(s1,u(s1)) (Gu)(s2)]
+[A(s1,u(s1))(Gu)(s2) —h(s1,u(s1))(Gu)(s1)]
<{|h(s2,u(s2)) = h(st,u(s1))] = [(s2,u(s2)) = A(s1,u(s1))]} (Gu)(s2)
+h(st,u(s1)){1(Gu)(s2) = (Gu)(s1)| = [(Gu)(s2) — (Gu)(s1)]}

rol k]|

F(a+1)

<J(Hu)

Also we conclude that,

rol [l

J(wu) < ¢(J(M))m,

and consequently,

rol K]

J(zA) < m

P(J(4)). (3-5)

From (3.4) and (3.5) and the definition of 7, we get

ro k]l
I(e+1)

(¢(Q(4)) + $(J(4))) <

HO) + s

rol K]
oy 1) @(Q() +7(4))

7(tA) = Qo(1A) +J(1A) <
rol K|

“T(a+1)

<7¢((n(A)).

d(J(A))

By the above inequality and because r’“i‘f‘l‘ <1, with

applying Theorem 1 for in the case of G(s) = O(s) =1,
we complete the proof. Also, such a solution is non-de-
creasing in Remark 3 and the definition of u, was given in
Sect. 2. O

Corollary 6 Let the conditions of Theorem 3 be satisfied,
then some of the integral equations with fractional order
have at least one solution in C[0, 1], such as in the case of
(i, ii, iii):

@ Springer
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i) form=1,

u(s) = g(s) + h(s, u(s)) /S (="

T KV de,

(ii) form=1 and h(s,u(s)) =1,
s [
uls) = )+ [

(i) form=1,k=1h(s,u(s)) =1 and g(s) =0,

k(f(s, €))u() de,

_ S(S— é)oc—] S .
o) = [ S e ue) e

Now, we consider an example by applying Theorem 3.

Example 4 Suppose, integral equation with singular ker-
nel and fractional order is given in the following form,

1y 2su(s) [° 2¢ 1 R
u(s) =35 +5(1 +s)/0 N {g(s+§)+ﬂu(€)dé7

(3.6)

where s € [0,1]. In this example, we have g(s) =1s® and
this function satisfies assumption (b1) and M; = é Here
f(s,&) =1+/s+ & and this function satisfies assumption
(by). Let k : [0, g] — R* be given by k(z) = 2z% + 1, then
k satisfying assumption (bs) with ||k|| = 1. Moreover, the

function h(s,u) =

satisfies hypothesis (b;) with

W
2
-
177
+ |
12
NP

assumption ¢(s) = —s,

N | —

1
[i(s,u) = h(s,2)| < slu—z2| = d(lu—zl), Vu,zeR,se[01],

also h satisfies in (b3). In fact, by choosing an arbitrary
nonnegative function u € C[0,1] and s1,s; € [0, 1]
(51 <s7), we can write

|(Hu)(s2) — (Hu)(s1)| — [(Hu)(s2) — (Hu)(s1)]

= |h(s2, u(s2)) — h(si, u(s1))| = [A(s2,u(s2)) — h(sy, u(s1))]
2sou(s2)  2siu(sy) |:2.§‘2M(S2) 2s1u(sy) ]

5(14+s5) 51 +s1) S(14+s2) 5(1+s1)
< ‘ 2s50u(s2)  2sou(s1) 250u(s1)  2siu(s)
- 5(1+€2) 5(1+Y2) 5(1—|—S‘2) 5(1—|—S‘1)
3 |:2Szu(&‘2) _ 2sou(s1) | 2sou(s1) 2s1u(s1)}
514+s2) 5(14+s2) 5(1+s2) 5(1+s)
25, 25 251
S 501 4oy M) Tl ‘5(1 Ts) st
2S2 2S2 2S1
_ 75(1 ) [u(s2) —u(s)] — |:5(1 ) — S0+ s])} u(sy)
< iy o) = (o) = o) = (o)}
< et ) < 2 I() = BUW).

- 5(1 +Sz)

’r @ Springer

According to the example, (3.2) converts to this form,

13\ 1 3
_T(Z)+—=r<r(=
5 (2)+10r— (2)“

and ry = 1 is as a positive solution of it. Also,

k 1
Wllro _ 1,

3\ Vr
r(=z
)
Thus, Theorem 3 guarantees that Eq. (3.6) has a non-de-
creasing solution.

i:

Homotopy perturbation method (HPM) for solving
functional LE.

In this section, we solve functional integral Eq. (3.6) by
using (HPM). In [10], perturbation method which depends
on a small parameter can be led to imprecise solution by
choosing unsuitable small parameter. But homotopy per-
turbation method introduced in [9], by an important con-
cept of topology it can convert a nonlinear problem to a
finite number of linear problems without dependence to the
small parameter, this independence is very important. For
introducing homotopy perturbation method according to
the above-mentioned references, we consider the nonlinear
problem:

M(u)—g(s) =0, seD
4.1
A<u,@>=o, nev, (4-1)
on

where M and A are differential and boundary operators,
respectively, also g(s) is a known analytic function and Y is
the boundary of the domain D. we assume operator M is
divided into linear and nonlinear operators such as £ and N .
So, we can write Eq. (4.1) to this form,

0(u) + R(u) — g(s) = 0. (4.2)

Homotopy perturbation H(v,p) can be written as follows

[9]:

H:D x[0,1] — R,

H(v,p) = (1 —p)[t(v) — £(vo)] + p[M(v) — g(5)] = 0,
(4.3)

where p is an embedding parameter, v is an approximation
of u and vy is an initial approximation of u. Of course some
kinds of modifications of homotopy perturbation method
can be seen in [8, 11]. We solve nonlinear integral Eq. (3.6)
by Eq. (4.3). Let us consider Eq. (3.6) to the following
form,
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4sé(L(s+ &) +9)

14 /S
=-s+ dé,
ub) =5 ) 0 5y/m(1+s)\V/s2— fzu(é) :
(4.4)
the general form of Eq. (4.4) is as follows:
$ 1
u(s) — u(s)/o k(s,&u(&)dé = §s3, (4.5)
according to the nonlinear Eq. (4.1), we can write,
1
M(u(s)) = g(s); g(s) =<5 (4.6)

5

In the homotopy perturbation (4.3) we approximate solu-
tion of Eq. (4.5) in terms of power series of p,

00
V:V0+le +P2V2+"' :Z[)ivi. (47)
i=0

Also in Eq. (4.3), we choose linear and nonlinear operators
to these forms,

£05) = . M05) = v(s) = ¥(5) | k(5. (D) 86 = 55

So, we can write,
H(v,p) = (1 —=p)(v—vo)

wplis) o) [k em@ae—te] 0. Y

by substituting Eq. (4.7) in the homotopy formula Eq. (4.8),
we have

PV + PPV + - 4 pyo — pyo(s) /Osk(s, Evo(&) dé
=) [ s @) az

—pvils) /Oxk(& Evo(&)dé+--- —p%s3 =0,
(4.9)

with ordering the above relations in terms of p powers, we
have

P (91 4 vo — vols) /0 k(s, Evo(é)dé — éﬁ),

P02l [ k(s () dE — wi(s) | ks amioac

p3:...

By considering to Eq. (4.9), we put in the coefficients of
p powers equal to zero and by suitable choosing initial
guess vy(s), we obtain

Table 1 Absolute errors for

Eq. (4.4) by HPM t Absolute errors

0.0 0.0

0.1 5.9x10718
0.2 4.8x10714
0.3 9.3x10712
0.4 3.9x1071°
0.5 7.0x107°
0.6 7.5x1078
0.7 5.5x1077
0.8 3.1x107°
0.9 1.4x107°
1.0 5.7x107°

1
vo(s) = §s3,

v1(s) = vos) /0 k(s, E)vo(&) dé,

v2(s) = vols) / k(s 1 (&) dE — i () / k(s E)vol&) dE,
(4.10)

where k(s, &) is given by Eq. (4.4), therefore,

s8(128s + 457(2 + )

4% ‘Yé(s+f)+%£4dy
T (240)(250)/7(1 +5)

") =35m0 ) Jo /e

By taking two terms of Eq. (4.7) into account, we can
approximate the solution of Eq. (4.4) as follows:

15 %1285+ 457(2 + 5))
V) =55 w250 R 1)

(4.11)

By substituting (4.11) in Eq. (4.4) and comparing both
sides of it, we reach absolute errors in points (see Table 1).

Conclusion

In this paper, we try to introduce a mixed plan of pure and
applied mathematics, where measure of non-compactness
on a Banach space is used for the generalization of Darbo
fixed point theorem for existence of solution singular
integral equations with fractional order. Also, by homotopy
perturbation method we obtain an approximation of a
solution with high accuracy.

Y
ﬁ @ Springer
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