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Abstract This paper derives a new family of Burr-type

distributions as new Burr distribution. This particular

skewed distribution that can be used quite effectively in

analyzing lifetime data. It is observed that the new distri-

bution has modified unimodal hazard function. Various

properties of the new Burr distribution, such that moments,

quantile functions, hazard function, and Shannon’s entropy

are obtained. The exact form of the probability density

function and moments of ith-order statistics in a sample of

size n from new Burr distribution are derived. Estimation

of parameters and change-point of hazard function by the

maximum likelihood method are discussed. Change-point

of hazard function is usually of great interest in medical or

industrial applications. The flexibility of the new model is

illustrated with an application to a real data set. In addition,

a goodness-of-fit test statistic based on the Rényi Kull-

back–Leibler information is used.

Keywords Burr distributions � Change-point � Goodness-
of-fit � Modified unimodal hazard function � Lifetime data

analysis � Rényi Entropy
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Introduction

Burr [2] developed the system of Burr distributions. The

Burr system of distributions includes 12 types of cumula-

tive distribution functions which yield a variety of density

shapes. The attractiveness of this relatively unknown

family of distributions for model fitting is that it combines

a simple mathematical expression for cumulative fre-

quency function with coverage in the skewness–kurtosis

plane. Many standard theoretical distributions, including

the Weibull, exponential, logistic, generalized logistic,

Gompertz, normal, extreme value, and uniform distribu-

tions, are special cases or limiting cases of the Burr system

of distributions (see [11]). Family of Burr-type distribu-

tions is a very popular distribution family for modelling

lifetime data and for modelling phenomenon with mono-

tone and unimodal failure rates (see, for example, [13, 18]).

Analogous to the Pearson system of distributions, the

Burr distributions are solutions to a differential equation,

which has the form:

dy

dx
¼ yð1� yÞgðx; yÞ; ð1:1Þ

where y equal to F(x) and g(x, y) must be positive for y in

the unit interval and x in the support of F(x). Different

functional forms of g(x, y) result in different solutions F(x),

which define the families of the Burr system. For example,

Burr II distribution is obtained when gðx; yÞ ¼ gðxÞ
¼ ke�xð1þe�xÞk�1

ð1þe�xÞk�1
.

In this paper, we derive a new distribution of Burr-type

distributions which is more flexible by replacing g(x, y)

with gðxÞ ¼ 3px2e�x3 ð1þe�x3 Þp�1

ð1þe�x3 Þp�1
, (p[ 0). We refer to this new

distribution as the new Burr distribution. If g(x, y) is taken
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to be g(x), then the solution of the differential Eq. 1.1 is

given by

FðxÞ ¼ ðe�GðxÞ þ 1Þ�1; ð1:2Þ

where GðxÞ ¼
R
gðxÞdx.

Hence, cdf and pdf of new Burr distribution are,

respectively, given by

Fðx; pÞ ¼ ð1þ e�x3Þ�p;�1\x\1; ðp[ 0Þ; ð1:3Þ

and

f ðx; pÞ ¼ 3px2e�x3ð1þ e�x3Þ�p�1;�1\x\1: ð1:4Þ

If the location parameter l and the scale parameter r are

introduced in the equation 1.3, we have

Fðx; l; r; pÞ ¼ ð1þ e�ðx�l
r Þ3Þ�p;�1\x\1; ðp; r[ 0; l 2 RÞ

ð1:5Þ

and

f ðx; l; r; pÞ ¼ 3p

r
x� l
r

� �2
e�

x�l
rð Þ3 1þ e�

x�l
rð Þ3

� ��p�1

:

ð1:6Þ

Hence, Eq. 1.5 is three parameter new Burr distribution.

Hazard function associated with the new Burr distribution

is

hðx; l; r; pÞ ¼
3p
r

x�l
r

� �2
e�

x�l
rð Þ3 1þ e�

x�l
rð Þ3

� ��p�1

1� 1þ e�
x�l
rð Þ3

� ��p :

ð1:7Þ

The shapes of density and hazard functions of the new Burr

distribution for different values of shape parameter p are

illustrated in Fig. 1.

New Burr distribution has unimodal and bimodal pdfs.

None of the 12 types of Burr distributions has this feature.

Data that exhibit bimodal behavior arises in many different

disciplines. In medicine, urine mercury excretion has two

peaks, see, for example, [5]. In material characterization, a

study conducted by [4], grain size distribution data reveals

a bimodal structure. In meteorology, [19] indicated that,

water vapor in tropics, commonly have bimodal distribu-

tions. To see more applications of bimodal distributions,

see [7–9, 16].

The reminder of the paper is organized as follows:

properties of the new Burr distribution, such that moments,

quantile functions, hazard function, Shannon’s entropy,

and distribution of its order statistics are discussed in Sects.

2, 3, and 4. In Sect. 5, estimation of parameters and

change-point of hazard function by the maximum likeli-

hood method are discussed, and in Sect. 6, we establish a

goodness-of-fit test statistic based on the Rényi Kullback–

Leibler information for testing new Burr model. Finally, in

Sect. 7, we present an illustrative example. Section 8

provides conclusions.

Properties of the new Burr distribution

New Burr distribution has unimodal and bimodal pdfs. The

modes of distribution are provided by differentiating the

density of new Burr distribution in 1.6 with respect to x:

f
0 ðx;l;r;pÞ¼3

x�l
r

� �3
1�pe�

x�l
rð Þ3

� �
�2 1þe�

x�l
rð Þ3

� �
:

ð2:1Þ

The derivative f
0 ðx;l;r;pÞ exists every where, hence crit-

ical point(s) satisfy equation f
0 ðx;l;r;pÞ¼0. In 2.1, set

l¼0 and r¼1, because location and scale parameters will

not affect the distribution shape. Thus, equation

f
0 ðx;l;r;pÞ¼0 simplifies to

3x3ð1� pe�x3Þ � 2ð1þ e�x3Þ ¼ 0: ð2:2Þ

Analytical solution of 2.2 is not possible. Numerical

approximation of modes using the midpoint method is

applied to study the modes. The distance between the two
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Fig. 1 Graphs of density and

hazard functions of the new

Burr distribution for different

values of shape parameter p
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modes is demonstrated in Table 1. From Table 1, it is

observed that when p increases, the distance between two

modes decreases, and for 0\p\1, when p decreases,

value of pdf in the second mode decreases to zero and pdf

will be almost unimodal, and for p ¼ 1, values of pdf in

two modes are the same but for p[ 1, and when p in-

creases, value of pdf in the first mode decreases to zero and

pdf will be almost unimodal. Hence, the new Burr distri-

bution can be used to analyse different kinds of lifetime

data sets with unimodal and bimodal shapes of pdf.

The new Burr distribution has modified unimodal (uni-

modal followed by increasing) hazard function, and when

p increases, hazard function will be almost increasing.

The main purpose in this paper is to describe and fit the

data sets with non-monotonic hazard function, such as the

bathtub, unimodal and modified unimodal hazard function.

Many modifications of important lifetime distributions

have achieved the above purpose, but unfortunately, the

number of parameters has increased, the forms of survival

and hazard functions have been complicated, and estima-

tion problems have risen. More over some of the modifi-

cations do not have a closed form for their cdfs. However,

this new distribution with one parameter and simple form

of cdf achieves this purpose.

Now, we discuss the reverse hazard function of the new

Burr distribution. The reverse hazard function of any dis-

tribution function F(x) can be defined as rðxÞ ¼ f ðxÞ
FðxÞ. Con-

sequently, the reversed hazard function of new Burr

distribution with zero location parameter and unit scale

parameter is given by

rðx; pÞ ¼ 3x2e�x3

1þ e�x3
p:

The reversed hazard function has recently attracted con-

siderable interest of researchers (see, for example, [1, 3]).

In a reliability setting, the reversed hazard function (mul-

tiplied by dx) defines the conditional probability of a failure

of an object in ðx� dx; x� given that the failure had

occurred in [0, x]. The reversed hazard function of new

Burr distribution with zero location parameter and unit

scale parameter is a linear function of p.

The rth moment about origin of the new Burr distribu-

tion is given by

lr ¼ EðXrÞ ¼
Z 1

�1
xr

3p

r
x� l
r

� �2
e�

x�l
rð Þ3 1þ e�

x�l
rð Þ3

� ��p�1
� �

dx;

using the change of variable, t ¼ 1

1þe�ðx�l
r Þ3 , 0\t\1, we

obtain

EðXrÞ ¼
Z 1

0

ptp�1 r � ln
1

t
� 1

� �� �1
3

þl

 !r

dt

¼ p
Xr

i¼0

r

i

� �
ð�rÞilr�i

Z 1

0

ptp�1 ln
1

t
� 1

� �� �! i
3

dt:

Now, using 1
t
� 1 ¼ eu, 0\u\1, we obtain

EðXrÞ ¼ p
Xr

i¼0

r

i

� �
ð�rÞilr�i

Z 1

0

ðeu þ 1Þ�p�1
u

i
3eudu

¼ p
Xr

i¼0

r

i

� �
ð�rÞilr�iEqðgðXÞÞ;

where Eqð:Þ denotes expectation for X� q and q is the

standard exponential distribution and

gðxÞ ¼ ðex þ 1Þ�p�1
x

i
3e2x. Using the importance sampling

method, the importance sampling estimate of lr is given by

l̂rq ¼ p
Xr

i¼0

r

i

� �
ð�rÞilr�i 1

n

Xn

k¼1

gðXkÞ
 !

; Xk � q:

ð2:3Þ

Using n ¼ 1000, the importance sampling estimate of

mean and variance of the new Burr distribution as l ¼ 0

and r ¼ 1 for different values of p is demonstrated in

Table 2. From Table 2, it is observed that when p increases,

mean increases and variance decreases. Mean and variance

l̂rq are given by

Eðl̂rqÞ ¼ lr; varðl̂rqÞ ¼ p2
Xr

i¼0

r

i

� �
ð�rÞilr�i

� �2
varðÊqðgðXÞÞÞ;

where varðÊqðgðXÞÞÞ ¼ EqððgðXÞ � EqðgðXÞÞÞ2Þ.
To form a confidence interval for lr, we need to esti-

mate varðÊqðgðXÞÞÞ. Because Xk are sampled from q, the

natural variance estimate is

Table 1 Distance between two

modes of new Burr distribution
p Distance

0.3 2.4294

0.5 2.2930

1 2.1388

2 2.0191

3 1.9682

4 1.9409

5 1.9243

Table 2 Importance sampling

estimate of mean and variance

of the new Burr distribution

p Mean Variance

1 -0.4984 0.3165

2 -0.2091 0.1475

3 -0.0921 0.0683

4 -0.0428 0.0296
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^varðÊqðgðXÞÞÞ ¼
1

n

Xn

k¼1

ðgðXkÞ � ÊqðgðXÞÞÞ2:

Then, an approximate 99% confidence interval for lr is

l̂rq � 2:58
^varðl̂rqÞffiffi

n
p .

The quantile function, Q(u), 0\u\1, for the new Burr

distribution can be computed using the formula:

QðuÞ ¼ r � ln u�
1
p � 1

� �� �1
3þl:

The median of a new Burr distribution occurs at

rð� lnðð1
2
Þ�

1
p � 1ÞÞ

1
3 þ l, and clearly, it is a decreasing

function of p as p� 1 but an increasing function of p as

p� 1.

Skewness and kurtosis of a parametric distribution are

often measured by a3 ¼ l3
r3 and a4 ¼ l4

r4, respectively. When

the third or fourth moment does not exist, for example,

Cauchy, Lévy, and Pareto distributions, a3 and a4, cannot
be computed. For the new Burr distribution, skewness and

kurtosis can be approximated by approximations of l3 and
l4 or alternative measures for skewness and kurtosis, based

on quantile functions. The measure of skewness S defined

by [6] and the measure of kurtosis K defined by [12] are

based on quantile functions and they are defined as

S ¼
Q 6

8

� �
� 2Q 4

8

� �
þ Q 2

8

� �

Q 6
8

� �
� Q 2

8

� � ; ð2:4Þ

K ¼
Q 7

8

� �
� Q 5

8

� �
þ Q 3

8

� �

Q 6
8

� �
� Q 2

8

� � : ð2:5Þ

To investigate the effect of the shape parameter p on the

new Burr density function, Eqs. 2.4 and 2.5 are used to

obtain Galton’s skewness and Moors’ kurtosis. Figure 2

displays the Galton’s skewness and Moors’ kurtosis for the

new Burr distribution in terms of the parameter p when

l ¼ 0 and r ¼ 1.

Shannon’s entropy

The entropy of a random variable X is a measure of vari-

ation of uncertainty. Shannon’s entropy [17] for a random

variable X with pdf f(x) is defined as Eð� logðf ðxÞÞÞ. In
recent years, Shannon’s entropy has been used in many

applications in fields of engineering, physics, and

economics.

Denote by HshðXÞ the well-known Shannon’s entropy.

The following theorem gives the Shannon’s entropy of the

new Burr distribution.

Theorem 3.1 The Shannon’s entropy of the new Burr

distribution is given by

HshðXÞ¼� ln
3p

r
�2p

3

X1

i¼0

�p�1

i

� �
C

0 ð1Þ� lnðpþ iÞ
pþ i

 !

�p
X1

i¼0

�p�1

i

� �
1

ðpþ iÞ2
þ1

p
þ1:

Proof

HshðXÞ ¼ �
Z 1

�1
f ðxÞ ln f ðxÞdx ¼ � ln

3p

r
� 2E ln

X � l
r

� �� �

þ E
X � l
r

� �3
 !

þ ðpþ 1ÞE ln 1þ e�
X�l
rð Þ3

� �� �
:

ð3:1Þ

We need to find the expressions EðlnðX�l
r ÞÞ, EððX�l

r Þ3Þ and
Eðlnð1þ e�ðX�l

r Þ3ÞÞ. First, we calculate the expectation of

ðX�l
r Þr.

E
X � l
r

� �r� �

¼
Z 1

�1

3p

r
x� l
r

� �rþ2

e�
x�l
rð Þ3 1þ e�

x�l
rð Þ3

� ��p�1

dx;

using the change of variable, t ¼ 1

1þe�ðx�l
r Þ3 , 0\t\1, and

then, the change of variable, 1
t
� 1 ¼ eu, 0\u\1, we

obtain,

E
X � l
r

� �r� �

¼ ð�1Þrp
X1

i¼0

�p� 1

i

� �
C r

3
þ 1

� �

ðpþ iÞ
r
3þ1

:

ð3:2Þ

For r ¼ 2k

E
X � l
r

� �2k
 !

¼ p
X1

i¼0

�p� 1

i

� �
C 2k

3
þ 1

� �

ðpþ iÞ
2k
3
þ1

: ð3:3Þ

Differentiating both sides of 3.3 with respect to k at k ¼ 0

leads to

0 5 10 15 20
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0.5
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p

skewness
kurtosis

Fig. 2 Galton’s skewness and Moors’ kurtosis for the new Burr

distribution
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E ln
X � l
r

� �� �

¼ p

3

X1

i¼0

�p� 1

i

� �
C

0 ð1Þ � lnðpþ iÞ
pþ i

:

ð3:4Þ

In the same way, by calculating Eðð1þ e�ðX�l
r Þ3ÞrÞ and then

differentiating with respect to r at r ¼ 0, we obtain

E ln 1þ e�
X�l
rð Þ3

� �� �
¼ 1

p
: ð3:5Þ

By replacing 3.2, 3.4, and 3.5 in relation 3.1, the proof is

completed. h

Distribution of order statistics

The pdf of Xi:n ði ¼ 1; . . .; nÞ is given by

fi:nðx; l; r; pÞ ¼
n!

ði� 1Þ!ðn� iÞ! f ðx; l; r; pÞF
i�1

	 ðx; l; r; pÞð1� Fðx; l; r; pÞÞn�i;

where f ðx; l; r; pÞ and Fðx; l; r; pÞ are pdf and cdf given in

1.5 and 1.6, respectively:

fi:nðx; l; r; pÞ ¼
Xn�i

j¼0

djðn; iÞf ðx; l; r; pðiþ jÞÞ; ð4:1Þ

where

djðn; iÞ ¼
n!ð�1Þj

ði� 1Þ!j!ðn� i� jÞ!ðiþ jÞ :

Note that djðn; iÞðj ¼ 0; 1; . . .; n� iÞ are coefficients not

dependent on p, l, and r. This means that fi:nðx; l; r; pÞ is a
weighted average of other new Burr.

From 1.6 and 4.1, we get the rth moment of Xi:n to be

EðXr
i:nÞ ¼

Xn�i

j¼0

djðn; iÞEðXrÞ

¼ p
Xn�i

j¼0

ðiþ jÞdjðn; iÞ
Xr

k¼0

r

k

� �
ð�rÞklr�kEqðgðYÞÞ;

where X has new Burr distribution with parameters l, r and

pðiþ jÞ and Y has q distribution, standard exponential

distribution, and gðyÞ ¼ ðey þ 1Þ�pðiþjÞ�1
y
k
3e2y. Then, the

importance sampling estimate of the rth moment about

origin of Xi:n is given by

p
Xn�i

j¼0

ðiþ jÞdjðn; iÞ
Xr

k¼0

r

k

� �
ð�rÞklr�k 1

m

Xm

l¼1

gðYlÞ
 !

; Yl � q:

ð4:2Þ

The cdf of Xi:n ð1� i� nÞ is given by

Fi:nðxÞ ¼ IFðxÞði; n� iþ 1Þ;

where Ixða; bÞ is lower incomplete gamma function.

There, the 100uth percentile of Xi:n can be obtained by

solving

Fi:nðxÞ ¼ u: ð4:3Þ

The percentage points of Xi:n can be evaluated from 4.3

using tables of incomplete beta function (see [15]). How-

ever, for i ¼ 1, Eq. 4.3 reduces to

ð1� ð1þ e�ðx�l
r Þ3Þ�pÞn ¼ 1� u. Thus, the 100u-percentage

point of the smallest order statistic X1:n is given by

F�1
1:nðu; p; l; rÞ ¼ lþ r � ln 1� ð1� uÞ

1
n

� ��1
p �1

� �� �1
3

:

Similarly, for i ¼ n, the 100u-percentage point of the lar-

gest order statistic is

F�1
n:nðu; p; l; rÞ ¼ lþ r � ln u�

1
np � 1

� �� �1
3

:

Hazard change-point estimation-classical
approach

Hazard function plays an important role in reliability and

survival analysis. New Burr distribution has modified

unimodal (unimodal followed by increasing) hazard func-

tion. In some medical situations, for example, breast can-

cer, the hazard rate of death of breast cancer patients

represents a modified unimodal shape.

A modified unimodal shape has three phases: first

increasing, then decreasing, and then again increasing. It

can be interpreted as a description of three groups of

patients, first group is represented by the first phase that

contains the weak patients, so the hazard rate of this group

is increasing, while the second phase represents the group

with strong patients, their bodies have became familiar

with the disease and they are getting better. The hazard rate

of death of these patients is decreasing. In the third phase,

they become weaker and their ability to cope with the

disease declines, then the hazard rate of death increases.

For situations, where the hazard function is modified

unimodal shaped, usually, we have interest in the estima-

tion of lifetime change-point, that is , the point at which the

hazard function reaches to a maximum (minimum) and

then decreases (increase). In reliability, the change-point of

a hazard function is useful in assessing the hazard in the

useful life phase. One of change-points of hazard function

of the new Burr distribution is location parameter. In this

section, we consider maximum likelihood estimation pro-

cedure for change-points of the hazard function.
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Let us assume that x1; . . .; xn is a random sample of size

n of lifetimes generated by a new Burr distribution with

parameters l, r, and p. The log-likelihood function is given
by

lðl;r;pÞ¼n log
3p

r

� �

þ2
Xn

i¼1

log
xi�l
r

� �
�
Xn

i¼1

xi�l
r

� �3

�ðpþ1Þ
Xn

i¼1

log 1þe�
xi�l
rð Þ3

� �
:

The maximum likelihood estimates for l, r, and p denoted

by l̂, r̂, and p̂, respectively, are obtained solving the

likelihood equations, (ol
ol ¼ 0, ol

or ¼ 0, and ol
op
¼ 0Þ.

According to the above, maximum likelihood estimator of

one of change-points is l̂.
From the invariance property of maximum likelihood

estimators, we can obtain maximum likelihood estimators

for functions of l, r and p. For / ¼ gðl; r; pÞ, a one-to-one
function of l, r, and p, and we have /̂ ¼ gðl̂; r̂; p̂Þ. Taking
/ ¼ hðxÞ, defined in 1.7, the change-point of new Burr

hazard function is obtained as solution of equation
d
dx
logð/Þ ¼ 0. The maximum likelihood estimator of the

change-point is the solution of d
dx
logð/Þ ¼ 0 with l, r, and

p replaced by maximum likelihood estimates. We observe

that d
dx
logð/Þ ¼ 0 is non-linear in x, so the change-point of

the hazard function estimate should be obtained using some

one-dimensional root finding techniques, such as Newton–

Raphson.

Testing new Burr model based on the Rényi
Kullback–Leibler information

Test statistics

Suppose that we are interested in a goodness-of-fit test

for

H0 : f ðxÞ ¼ f 0ðx; l; r; pÞ ¼ 3p

r
x� l
r

� �2
e�

x�l
rð Þ3 1þ e�

x�l
rð Þ3

� ��p�1

H1 : f ðxÞ 6¼ f 0ðx; l; r; pÞ;

8
<

:

where l, r, and p are unknown.

We will denote the complete samples as

X1:n\X2:n\ � � �\Xn:n. For a null pdf f 0ðxÞ, the Rényi

Kullback–Leibler information from complete data is

defined as

Drðf ; f 0Þ ¼
1

r � 1
log

Z 1

�1
� � �
Z x2:n

�1

ðfX1:n;...;Xn:n
ðx1:n; . . .; xn:nÞÞa

ðf 0X1:n;...;Xn:n
ðx1:n; . . .; xn:nÞÞa�1

dx1 � � � dxn;

where r[ 0 and r 6¼ 1. Because Drðf ; f 0Þ has the property
that Drðf ; f 0Þ� 0, and the equality holds if and only if

f ¼ f 0, the estimate of the Rényi Kullback–Leibler

information can be consider as a goodness-of-fit test

statistic. For that purpose, the Rényi Kullback–Leibler

information can be estimated by

Drðf ; f 0Þ ¼ �HrðX1:n; . . .;Xn:nÞ �
Xn

j¼1

f 0ðxjÞ:

Thus, the test statistics based on
Drðf ;f 0Þ

n
is given by

Tr ¼
Drðf ; f 0Þ

n
¼ 1

n
�ĤrðX1:n; . . .;Xn:nÞ �

Xn

j¼1

f 0ðxj; l̂; r̂; p̂Þ
 !

;

where l̂, r̂, and p̂ are MLEs of l, r, and p, respectively,

and ĤrðX1:n; . . .;Xn:nÞ is an estimate of Rényi entropy for

sample X1:n\X2:n\ � � �\Xn:n. Under the null hypothesis,

Tr for r close to 1 will be close to 0, and therefore, large

values of Tr will lead to the rejection of H0.

In this paper, we use estimation of Rényi entropy based

on generalized nearest-neighbor graphs that is introduced

by [14]. The basic tool to define their estimator was the

generalized nearest-neighbor graph. This graph on vertex

set V is a directed graph on V. The edge set of it contains

for each i 2 S (S is a finite non-empty set of positive

integers), an edge from each x 2 V to its ith nearest

neighbor according to the Euclidean distance to x.

For p� 0 denote by LpðVÞ, the sum of the pth powers of

Euclidean lengths of its edges. According to proven theo-

rem in [14]

lim
n!1

LpðX1:n; . . .;Xn:nÞ
n1�

p
d

¼ c[ 0 a:s:;

where p ¼ dð1� rÞ and d is dimension of sample

members.

Based on described graph, they estimated Rényi entropy

by

ĤrðX1:n; . . .;Xn:nÞ ¼
1

1� r
log

LpðX1:n; . . .;Xn:nÞ
cn1�

p
d

:

Application

In this section, we consider an uncensored data set corre-

sponding to remission times (in months) of a random

sample of 128 bladder cancer patients. These data were

previously reported in [10]. TTT plot for considered data is

concave then convex indicating an increasing then

decreasing hazard function, and is properly accommodated

by new Burr distribution. Because in the system of Burr

distributions, only Burr X and Burr XII distributions have

unimodal hazard functions, and because of the similarity of

cdf of the new Burr distribution with the Burr II distribu-

tion compared to the rest of distributions in Burr family,
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compare the fits of the new Burr distribution and those of

Burr X, Burr XII, and Burr II and generalized Burr II. Plot

of the estimated cdfs of models fitted to the data set is

given in Fig. 3. Figure 3 and also values of defined test

statistics in the previous section that are shown in Table 3

confirm that the new Burr distribution provides a signifi-

cantly better fit than Burr X, Burr XII, Burr II, and gen-

eralized Burr II distributions. The required numerical

evaluations are implemented using Matlab (version 2013)

and R software (version 3.3.1).

Conclusions

We introduced a new family of Burr-type distributions as

new Burr distribution. Various properties of the distribu-

tion are investigated. The distribution is found to be uni-

modal and bimodal. This new distribution with one

parameter and simple form of cdf has modified unimodal

(unimodal followed by increasing) hazard function. Hence,

this new distribution can be used quite effectively in ana-

lyzing lifetime data with non-monotonic hazard function.

The method of maximum likelihood is suggested for esti-

mating the parameters and change-points of hazard func-

tion of the new Burr distribution. In application to

remission times (in months) of a random sample of 128

bladder cancer patients, the new Burr distribution provided

a significantly better fit than Burr X, Burr XII, Burr II, and

generalized Burr II distributions. This fact is confirmed by

goodness-of-fit test statistic based on the Rényi Kullback–

Leibler information.
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