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Abstract In this paper, we obtain a Suzuki type unique
common fixed point theorem using C-condition in partial
metric spaces. In addition, we give an example which
supports our main theorem.
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Introduction

The notion of a partial metric space was introduced by

Matthews [12] as a part of the study of denotational
semantics of data flow networks. In fact, it is widely
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recognized that partial metric spaces play an impor-
tant role in constructing models in the theory of com-
putation and domain theory in computer science (see
[6]).

Matthews [12] and Romaguera [16] and Altun et al. [2]
proved some fixed point theorems in partial metric spaces
for a single map. For more works on fixed, common fixed
point theorems in partial metric spaces, we refer
[1, 3-5, 7-11, 13-15, 17-19]).

The aim of this paper is to prove a Suzuki type unique
common fixed point theorem for four maps using (C)-
condition in partial metric spaces.

First, we give the following theorem of Suzuki [18].

Theorem 1.1 (See [18]) Let (X, d) be a complete metric
space and let T be a mapping on X. Define a non-in-
creasing function 0 :[0,1) — (3,1] by

—1
1 ingrng),
0(r) = —1 :
") (1—r)yr2 if (\/5#) <r<27
(147" if2i<r<l.

Assume that there exists r € [0, 1), such that

O(r)d(x,Tx) <d(x,y) = d(Tx,Ty) < rd(x,y)

for all x,y € X. Then, there exists a unique fixed point z of

T. Moreover, lim, T"x = z for all x € X.

Definition 1.2 (See [11]) A mapping T on a metric space
(X, d) is called a non-expensive mapping if

d(Tx,Ty) <d(x,y), Vx,y € X.

Definition 1.3 (See [11]) A mapping T on a metric space
(X, d) satisfies the C-condition if

’r @ Springer
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1
Ed(x, Tx) <d(x,y) = d(Tx,Ty) <d(x,y), Vx,y€X.

First, we recall some basic definitions and lemmas
which play crucial role in the theory of partial metric
spaces.

Definition 1.4 (See [12]) A partial metric on a nonempty
set X is a function p:X x X — RT, such that for all
x,y,z € X:

(p1) x=y & plx,x) =plx,y) =p(,y),
(p2) p(x,x) <p(x,¥),p(y,y) <p(x,y),
(p3) p(x,y) = p(y,x),

(p4) p(x,y) <p(x,2) + p(z,y) — p(z,2).

The pair (X, p) is called a partial metric space (PMS).

If p is a partial metric on X, then the function p®:
X x X — R" given by

P'(xy) =2p(x,y) — p(x,x) — p(»,), (1)

is a metric on X.

Example 1.5 (See [1, 9, 12]) Consider X = [0, 00) with
p(x,y) = max{x,y}. Then, (X, p) is a partial metric space.
It is clear that p is not a (usual) metric. Note that in this
case, p*(x,y) = |[x —y|.

Example 1.6 (See [7]) Let X = {[a,b] : a,b,€ R, a<b}
and define p([a,b], [c,d]) = max{b,d} — min{a, c}. Then,
(X, p) is a partial metric space.

We now state some basic topological notions (such as
convergence, completeness, and continuity) on partial
metric spaces (see [1, 2, 9, 10, 12].)

Definition 1.7

(i) A sequence {x,} in the PMS (X, p) converges to
the limit x if and only if p(x, x) = lim,_ . p(x, X,).

(ii)) A sequence {x,} in the PMS (X, p) is called a
Cauchy sequence if lim,, ;,—.cc P(Xn, Xm) exists and
is finite.

(iii) A PMS (X, p) is called complete if every Cauchy
sequence {x,} in X converges with respect to Tp,
to a point xeX, such that
p(x,x) = limy, yy—oo p(Xn, Xm)-

The following lemma is one of the basic results in PMS
(1, 2, 9, 10, 12]).

Lemma 1.8

(1) A sequence {x,} is a Cauchy sequence in the PMS
(X, p) if and only if it is a Cauchy sequence in the
metric space (X,p*).

’r @ Springer

(i) A PMS (X, p) is complete if and only if the metric
space (X,p*) is complete. Moreover

lim p*(x,x,) =0 < p(x,x) = lim p(x,x,)

n—oo

= lim p(x,,,xm).

n,m—00

Next, we give two simple lemmas which will be used in
the proof of our main result. For the proofs, we refer to [1].

Lemma 1.9 Assume x, — z as n — oo in a PMS (X, p),
such that p(z,z) = 0. Then, lim p(x,,y) = p(z,y) for every
n—oo

yeX.
Lemma 1.10 Let (X, p) be a PMS. Then

(A) Ifp(x,y) =0, then x =y.
(B) Ifx#y, then p(x,y) > 0.

Remark 1.11 If x =y, p(x, y) may not be 0.

Definition 1.12 A pair (T, g) is called weakly compatible
pair if they commute at coincidence points.

Now, we prove our main result.

Main result

Theorem 2.1 Let (X, p) be a partial metric space and let
S, T.f,g: X — X be mappings satisfying

(2.1.1) imin{p(fx, Sx), p(gy, Ty)} <p(fx,gy) implies
that Y(p(Sx, T5)) <a(M(x,y)) — BM(x,y)), for all
x, yinX, where o, f: [0,00) — [0,00) are such that
Y is an altering distance function, o is continuous, and 8
is lower semi continuous, o(0) = f(0) =0 and (1) —
a(t) + p(¢) > 0, for all t > 0 and

p(fx, gy), p(fx, Sx), p(gy, Ty),

M(x,y) % [p(Fx, Ty) + p(8y, Sx)]

= max

(2.1.2) S(X) € g(X), T(X) C £(X),
(2.1.3) either f(X) or g(X) is a complete subspace of X,
(2.1.4) the pairs (f, S) and (g, T) are weakly compatible.

Then, S, T, f and g have a unique common fixed point in X.

Proof Let xp € X be arbitrary point in X. From (2.1.2),
there exist sequences of {x,} and {y,} in X, such that
SXon = &Xon41 = Yon,
Tx2n+1 :fx2n+2 = Y2n+1, n:071727""
Case (i): Assume that y, # y,; for all n.
Denote p, = p(Yu, Yut1)-
We show that p, <p,_1,
Now

n=1,2,3...
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1.
3 min{p(fxzn, Sx2n), P(8X2n+1, Tx2n11) } < p(fXon, Sx20)

= p(fx2nagx2n+l)-

From (2.1.1), we get
W (p(Sx2n, Txony1)) < ol(M(X2n, X2011)) — B(M(X20, X2011)).

PV2n—1,Y20),PV2n-1Y20) P (V2n: Yon+1)
M(Xgn,XQn_H) = max

1
Ew(yanl 7y2n+l) +p(y2n7y2n)]

=max{pa_1,p2}, from (ps).

Hence,
Y(pan) < o(max{prn—_1,p2.}) — f(max{pz,_1,pan})-

If py, is maximum, then we have Y (pa,) < a(pa,) —
B(pan), thus Y(pa,) — a(pan) + f(P2n) <0, which is a
contradiction.

Hence p;,—; is maximum. Thus

Y (pan) < o(pan—1) — P(P2n-1) (2)
<¢<172n71)'

Since V is increasing, we have py, < pa,—1.

Similarly, we can show that p,, | <ps,_».

Thus, p, <py,—1, n=1,23,...

Thus, {p,} is a non-increasing sequence of non-
negative real numbers and must converge to a real number,
say, [ >0. Suppose [/ > 0.

Letting n — oo in (2), we get Y(I) <oa(l) — p(I).

Thus, (1) — a(l) + f(I) <0, which is a contradiction.
Hence, [ = 0.

Thus

Jim p(ya, yut1) = 0. (3)
Hence, from (p;), we get

Jim p(yn, yn) =0 (4)
By definition of p*, (3), and (4), we get

Jim p*(yn, yus1) = 0. ()

Now, we prove that {y,,} is a Cauchy sequence in (X, p*).
On contrary, suppose that {y,,} is not Cauchy.

There exist € > 0 and monotone increasing sequences of
natural numbers {2my} and {2n;}, such that n; > my,

ps(yZm“yan) >e€ (6)

and

P‘Y()’zmk,hnkiz) <e. (7)
From (6) and (7), we obtain
€ SPS(Yzmk;)an)

<P Vames Yone—2) + P ame—2, Yome—1) + P* Vonme=1, Yon,)
<e+p' (Vam—2:Ym—1) + P Vone—1,Y2m,)-

Letting k — oo and then using (5), we get
klin;cps(ykavy2nk) = €. (8)

Hence, from definition of p* and (4), we have

= (9)

Letting kK — oo and then using (8) and (5) in |p*(yan+1,
Yam) = P* (Vane> Yomy )| < P°(Vane+1, Y2n,) We obtain

lim p(yZVnk ) y2nk)
k—o00

klirglcps()@nwrlayka) =€ (10)
Hence, we have

) €
]}LI&p(yan+lay2mk):§' (11)

Letting k — oo and then using (8) and (5) in |p*(yan,,
y2mk71) —P‘Y()’2zlk,)’2mk)| Sps(ykaflvykaL we get

lim p*(ya,, yom—1) = €
k—o00

(12)

Hence, we have

. €

lim p(yan, Yome—1) = 5 - (13)
k—o00 2
Letting k — oo and then using (12) and (5) in |p*(Yom—1,
Yan1) = P (V2m—15 Y2m, )| <P°(Yam 41, Y2n,) We obtain

klim P’ (Vome—1,Yom+1) = € (14)
— 00
Hence, we get

. €

lim p(ykaflayZYlk‘H) 5 (15)
k—o00 2

If

1.
Emln{p(ykaflayka)>p(y2nk7y2nk+l)} > p(Yame—1,Yom )

then letting k — oo, we get 0> £ from (3) and (13).

It is a contradiction. Hence %min{P(yZmrb Yom)s

PVames Yo 1)} SPV2me—15Y2me) = P(fXom, s 8Xon41)-
From (2.1.1), we have

ﬁ @ Springer
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'//(P(Y2mk7Y2nk+1))
=Y(p(Sx2m,, Toxon,+1))

P2 1520, P V215 Y2 ) s P (V2 Yam 1) 5
<o | max 1
ELD()QWU(*] 1y2nk+1) +p(y2m. 7y2m]<)]

p(ykafl ,)’2nk)>17()’2mk4 >y2mk)7p(y2nk7y2nk+l)7
— p | max 1 .

ELD(yZM;(—I 7y2nk+l) +P()’2m 7y2mk)}

Letting k — oo and then using (11), (13), (3), (15), and (9),
we have

€ € lre €
5) < a0 07 07 Y |:_ _i|
'p(z)“(max{z 21272 })
€ lre €
- ~ 07 07 " |:_ _i|
o(merfz 00[53))
€ €
=2(3) - #(3)
€
< —
v)
which is a contradiction. Hence, {y,} is Cauchy.
In addition, |p*(Y2ut1,Yomt1) — P*(Von, Yom)| <P*(Vant1,
y2n) +P‘Y(Y2m7)’2m+1).
Letting n,m — oo, we have

lim ps(y2n+lay2m+1) =0.

n,m—00

Hence, {y2,+1} is Cauchy. Thus {y,} is a Cauchy sequence
in (X, p*).
Hence, we have lim p*(y,,ym) = 0.
n,m—o0

Now, from the definition of p* and from (4), we obtain

lim  p(yn, ym) = 0. (16)

n,m—00

Therefore, {y,} is Cauchy sequence in X.

Suppose g(X) is complete.

Since yo, = Sx2, = gXon11, it follows {y,,} C g(X) is a
Cauchy sequence in the complete metric space (g(X),p*),
it follows that {y,,} converges in (g(X),p*).

Thus, Jirgp‘v(yzn, u) = 0 for some u € g(X).

That is, y,, — u = gt € g(X) for some ¢ € X.

Since {y,} is Cauchy in X and {y»,} — u, it follows that

{y2n+1} — Uu.
From Lemma (1.2.5), we get

p(u,u) = im p(yapi1,u) = Um p(yan,u) = lim p(y,,ym)-
n—00 n—oo n,m—oo

(17)
From (16) and (17), we obtain
p(u,u) = im p(yui1,u) = lim p(yz,, u) = 0. (18)
n—oo n—o0

Now, we claim that, for each n> 1, at least, one of the
following assertions holds:

Y4
ﬁ @ Springer

1 1
Ep(yZn_laYZn) <p(yan—1,u) or Ep(y2nay2n+1) <p(yan, u).

On the contrary, suppose that

1 1
Ep(yanl;yZn) > p(yan—1,u) and Ep(y2n7y2n+l) > p(yan, 1)

for some n>1.
Then we have

Pon—1 = PYVan—1,Y20) <P(Yon—1,u) + p(u,y20) — p(u, u)

1
< E [p(yZn—lvyZn) +P()’2n,yzn+1)]

1
S 5 [panl +p2n}

SpZn—la

which is a contradiction, and so, the claim holds.
Sub case(a) : Suppose %p(yzn,l,yz,,) <p(ya-1,u).
Suppose Tt # u.
We have

1 . 1

Emm{p(fxz,l, Sx2,),p(gt, Tt)} < Ep(fxz,,, Sx2,)

1
== _p(yanlvyZn)

2
<p(yan—1,u)
= p(fxan, g1).

From (2.1.1), we get

W (p(Sx2n, Tt)) < (M (x20,1)) — B(M (x20,1))
p(fxz,,,gt),p(fxz,l,sz,,),p(gt,Tt),
<o | max 1
EL”(thv Tt) + p(gt, Sxan)]
p(fm,,,gt),p(fxbnsz,,),p(gl‘,Tt),
— B | max 1 .
EL”(fXZn»Tt)"’p(gt?S)Ch)}
Letting n — oo and using (17), (18), we get

p(u, gt), p(u,u), p(gt, Tt),
u,Tt)) <o X
PP TS M) L 1 4 e

p(u, g1), p(u, u), p(gt, Tt),
I Yot 4 ptat )
). plu. ), p(,T),

I S W R o)

p(u7u)7p(u’u))p(u7 Tt)?
— B | max 1

5 h)(ua Tt) +p(uv Ll)}

<a(p(u,Tt)) — B(p(u, Tt)) < (p(u, Tt)).

[\
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It is a contradiction. Hence, Tt = u = gt.

Since the pair (g, 7) is weakly compatible, we have
gu = Tu.

Suppose Tu # u.

Since $min{p(frz,, Sx2,),
(2.1.1), we get

P(fxan, gu), p(fran, Sx20), p(gu, Tw),
“”(”(S"Z’”T”))S“(m“{ P, T) + plesSe) })
P(fxan, gu), p(fron, Sx2n), p(gu, Tu),
! (m{ 3P T) +plg S5 }) '

Letting n — oo, we have

p(gua TM)} Sp(fx%n gu)7 from

p(u,gu)7p(u7u)7p(gu, Tu),

VPG TS M) L 1) + e
p(u, gu), p(u,u), p(gu, Tu),
Y S + plen
— Bp(u.Tu)

<o(p(u,Tu))
<y(p(u,Tu)),

which is a contradiction.

Hence, Tu = u.

Therefore, u = Tu = gu.

Since T(X) C f(X), then there exists v € X, such that
Tu=fr=u.

Suppose Sv # fv.

Since  fmin{p(fv, Sv),p
(2.1.1), we have

l//(P(Sv,fV)) = l//( (SV Tu))

(gu,Tu)} <p(fv,gu), from

M(v,u))
p(fv gu),p(fv, Sv), p(gu, Tu),

S LT+ p(eus sv)
p(fv gu), p(fv, Sv), p(gu, Tu),
T ST + e

a(p(Sv, Tu)) — B(p(Sv, Tu))

(p(Sv Tu))
Y (p(Sv. /).

/\I/\

Hence, Sv =fv = u.

Since the pair (f, S) is weakly compatible, we have
Jfu = Su.

Suppose Su # u.

Since  Smin{p(fu, Su),p
(2.1.1), we have

1//(p(Su, u)) Il,b(p(su, TZ))
p(fu, gt), p(fu, Su), p(gt, Tt),
<o | max
- ol ) + p(gt, )]

p(fu, gt), p(fu, Su), p(gt, Tt),
S )+ plet, )

<o(p(Su, Tt)) — B(p(Su, Tt)) <y (p(Su, u)).

(¢1,Tt)} <p(fu,gt),  from

Is a contradiction. Hence, u = Su = fu.
Thus, Tu = gu = Su = fu = u.
Hence, u is a common fixed point of S, T, f and g.
Let w be another common fixed point of S, T, f and g.
Since  min{p(fu,Su),p(gw,Tw)} <p(fu,gw), from
(2.1.1), we obtain

l/’(l’(“? W)) :l//(p(Sm TW))
p(fu, gw), p(fu, Su), p(gw, Tw),
<o | max 1
5 p(fu, Tw) + p(gw, Su)]

p(fu, gw), p(fu, Su), p(gw, Tw),
I L) + e su)

p(u,w),p(u,u), p(w,w),
<o | max 1
5 p(at,w) + p(w, )

p(u,w), p(u,u), p(w,w),
— f| max 1
S P w) + p(w, )]
<o(p(u,w)) — B(p(u,w))
<y(p(u,w)),

which is a contradiction. Hence, u = w.

Thus, u is the unique common fixed point of S, 7, f and
g.

Sub case(b) : Suppose 3p(you, Yani1) < p(yan, ).

In this case, also, we can prove that u is the unique
common fixed point of S, 7, f and g by proceeding as in
Subcase(a).

Case(ii): Suppose v, = You+1 for some m.

Assume that yo,,11 # Yomio-

’r @ Springer
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P(Y2m+1 7y2m):p(y2m+l 7)’2m+2)7p()’2m7hm+1 )7
M (Xom42,Xomt1) = Max

1
EL"(y2m+l~,y2m+l) +p(y2m;y2m+2)]

However, PYams1:Y2m) =PVoms1,Yome1) <PYomrt,
Yam+2), from (p2) and

1

3 (PY2mt 15 Yome1) + P(Vams Yami2)]
1

IA

3 (PV2ms Yoms1) + PVams1, Yomi2)], from (p4)
1
2 [P(Y2m+1 ) y2m+2) +p(y2m+17y2m+2)]

S —
= p(Yamt1, Yomi2)-

Hence, M (X242, Xom+1) = P(Vam+1, Yom+2)-

. I .
Since 3 min{p(fom2, SXom2), P(8%2m+1, TXom1) }
<p(gxami1, TXoms1)
= p(fx2m+2a 8X2m+1 )7
from (2.1.1), we get

Y(Pams2, yamr1)) = Y (P(Sxoms2, Txomr1))
(M (xXom+2, Xom+1)) — BM (Xom+2, Xome1))
a(p(yamr2:Y2m+1)) = B(P(Y2m+2, Y2m+1))
(P(Y2m+2; Yam+1))-

IN

A

It is a contradiction. Hence, y2,,12 = Yom1-

Continuing in this way, we can conclude that y, =y,
for all k > 0.

Thus, {y,} is a Cauchy sequence.

The rest of the proof follows as in Case(i). U

The following example illustrates our Theorem 2.1
Example 2.2 Let X =[0,1] and p(x,y) = max{x,y} for
all x,yeX. Let f,g8T:X—Xf(x)=35,8x) =
5,8(x) =Fand T(x) =%, Let ,0, B : [0,00) — [0, 00) be
defined by (1) = 4t, a(r) = 7t and f(r) = % Clearly, y is
an altering distance function and « is continuous and f3 is
lower semi continuous, o(0) = $(0) = 0 and y(r) — a(z) +
B(t) =% >0, for all £ > 0.

Now

1 . 1 .

zmm{p(f% Sx),p(gy,Ty)} = Emm{maX{fx, Sx},max{gy,Ty}}
1 X X yy
=gmin{max {37} max {36} }
—lmin{i X}
2 2’3

{33}
2rIlElX 273

<p(fx,gy).

IN

ﬁ @ Springer

Y(p(Sx, Ty)) = 4p(Sx, Ty)

Xy
= 4 {7’7}
max 26

=4 x 1max{f,z}
2 2’3

= 2p(fx,gy)

<2M(x,y)

7
S7M(X7y) _EM(xvy)
So

Y (p(Sx, Ty)) <a(M(x,y)) — B(M(x,y)).

Therefore, all of the conditions of Theorem 2.1 are satisfied
and 0 is the unique common fixed point of S, 7, f and g.
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